< 연구진 모습(앞줄 왼쪽 한상우 교수, 앞줄 오른쪽 백무현 교수) >
우리 대학 화학과 백무현 교수(기초과학연구원(IBS) 분자활성 촉매반응 부연구단장) 연구팀은 한상우 우리 대학 화학과 교수(나노텍토닉스 창의연구단장)팀과의 공동연구를 통해 전압을 가하는 것만으로 분자의 반응성을 조절할 수 있는 ‘만능 작용기’를 개발했다.
연구진은 분자의 전기적 성질을 결정하는 원자단인 작용기*를 전극이 대신할 수 있음을 증명하고, 전극을 활용해 다양한 화학반응을 제어하는데 성공했다. 여러 작용기의 역할을 대신할 수 있는 하나의 만능 작용기를 개발한 것이다.
* 유기화합물의 전기적 성질을 결정짓는 원자단. 에탄올(C2H5OH)의 하이드록시기(-OH), 아세톤(CH3-CO-CH3)의 카보닐기(-CO-) 등이 작용기에 해당한다.
과학기술정보통신부(장관 최기영)는 이번 성과가 10월 9일 03시(한국시간) 세계 최고 권위의 학술지 사이언스(Science, IF 41.845)에 게재되었다고 밝혔다.
작용기는 전자를 끌어당기거나/밀어내는 효과를 통해 분자의 전기적 특성을 조절한다. 전자밀도 분포를 조절하여 분자의 반응성을 결정하는 것으로, 이는 화학반응의 평형과 속도에 영향을 미친다.
1937년 미국의 화학자(루이스 하메트)가 작용기의 종류에 따른 분자의 전기적 성질 변화를 정량화한 공식을 만든 뒤, 80여 년 동안 화학반응을 이해하는데 이 공식이 활용되었다.
하지만 기존 밝혀진 작용기는 하나의 작용기가 정해진 특정 전기적 효과만을 줄 수 있어 분자의 전기적 성질을 세밀하게 조절하기 어려웠다. 또한, 복잡한 분자는 여러 단계를 거쳐 합성되는데, 각 반응마다 최적 효과를 줄 수 있는 작용기를 활용하는 것은 현실적으로 불가능했다.
연구진은 여러 종류의 작용기 대신, 하나의 작용기만으로 분자의 반응성을 자유자재로 조절할 수 있는 새로운 방법을 제시했다.
연구진이 제작한 작용기는 금 전극에 분자를 부착한 형태다. 전극에 전압을 가하면 분자 내 전자밀도 분포에 미세한 차이가 발생하고, 이로 인하여 분자의 전기적 성질에 변화가 생긴다.
전압을 바꿔가며 분자의 전기적 성질 변화를 관찰한 결과, 분자는 전극에 음(–) 전압이 걸렸을 때 전자가 풍부해지고, 양(+) 전압이 걸렸을 때 전자가 부족해지는 것을 확인했다.
이후 대표적인 유기화학 반응*에 적용해본 결과, 전극에 전압을 걸어주는 것만으로도 여러 작용기의 효과를 낼 수 있어 기존 작용기의 효과적인 대체재로 사용될 수 있음을 확인했다.
* 에스터 가수분해, 스즈키-미야우라 교차 짝지음, 아미드화 등
< 그림 1. 만능 작용기의 모식도 >
< 그림 2. 기존 작용기의 역할과 만능 작용기의 구동 원리 >
이번 연구는 80여 년간 널리 사용돼 온 전통적인 화학적 실험법을 대체할 수 있는 새로운 아이디어를 제시했다는 학술적 의미가 있다.
하나의 작용기는 하나의 전기적 효과만 줄 수 있다는 고정관념에서 벗어나, 이번 연구에서 제시한 만능 작용기는 화학반응이 진행되고 있는 도중에도 분자의 반응성을 바꿀 수 있다는 장점이 있다.
백무현 부연구단장은 “다양한 화학반응을 간단하게 조절할 수 있는 독창적인 아이디어를 제시한 것으로 학계의 다양한 후속연구를 견인할 수 있을 것”이라며 “산업 규모에서도 적용할 수 있는 ‘만능 작용기’ 개발을 위한 후속연구를 진행할 계획”이라고 말했다.
곤충의 겹눈은 빠르게 움직이는 물체를 병렬적으로 감지하고, 어두운 환경에서는 감도를 높이기 위해 시각세포가 여러 시간의 신호를 합쳐서 반응해 움직임을 결정한다. KAIST 연구진이 곤충의 생체를 모사하여 기존 고속 카메라가 직면했던 프레임 속도와 감도 간의 한계를 극복한 저비용 고속 카메라를 개발하는데 성공했다. 우리 대학 바이오및뇌공학과 정기훈·전산학과 김민혁 교수 연구팀이 곤충의 시각 구조에서 영감을 받아 초고속 촬영과 고감도를 동시에 구현한 새로운 생체모사 카메라를 개발했다고 16일 밝혔다. 고속 및 저조도 환경에서의 고품질 이미징은 많은 응용 분야에서 중요한 과제이다. 기존의 고속 카메라는 빠른 움직임을 포착하는 데 강점을 가지고 있지만, 프레임율을 높일수록 빛을 수집할 수 있는 시간이 줄어들어 저조도 환경에서는 감도가 부족한 문제가 발생해왔다. 이를 해결하기 위해 연구팀은 곤충의 시각 기관처럼, 여러 개의 광학 채널과 시간 합산을 활용하는 방식을
2025-01-16생물학적 구조는 인공적으로 복제하기 어려운 정도의 복잡한 특징을 가지고 있지만 이러한 생체 구조체를 직접적으로 활용여 제작하는 생체형틀법*은 다양한 분야의 응용으로 사용됐다. KAIST 연구진이 이전에 활용할 수 없었던 생체 구조체를 활용하고, 생체형틀법을 통해 적용될 수 있는 영역을 넓히는데 성공했다. *생체형틀법: 바이러스부터 우리의 몸을 구성하는 조직과 장기에 이르기까지 이러한 생체 구조의 기능을 활용하고자, 생체 구조를 형틀로 사용하여 기능성 구조재료를 만들어내는 방식 우리 대학 신소재공학과 장재범, 정연식 교수 공동연구팀이 생체 시료 안의 특정 내부 단백질을 활용하고 높은 조정성을 지닌 생체형틀법을 개발했다고 10일 밝혔다. 기존의 생체형틀법 방법은 주로 생체시료의 외부 표면만을 활용하거나, 한정된 치수와 샘플 크기로 인해 다양한 생체 구조체들의 구조-기능 상관성을 활용하여 기능성 나노구조체를 제작하기 어렵다는 한계를 가지고 있다. 이런 문제를 해결하고자 연
2025-01-10한미 공동 연구진이 기존 센서 대비 전력 효율이 높고 크기가 작은 고성능 이미지 센서를 구현할 수 있는 차세대 고해상도 이미지 센서 기술을 개발했다. 특히 세계 시장에서 소니(Sony)社가 주도하고 있는 초고해상도 단파적외선(SWIR) 이미지 센서 기술에 대한 원천 기술을 확보해 향후 시장 진입 가능성이 크다. 우리 대학 전기및전자공학부 김상현 교수팀이 인하대, 미국 예일대와 공동연구를 통해 개발한 초박형 광대역 광다이오드(PD)가 고성능 이미지 센서 기술에 새로운 전환점을 마련했다고 20일 밝혔다. 이번 연구는 광다이오드의 기존 기술에서 나타나는 흡수층 두께와 양자 효율 간의 상충 관계를 획기적으로 개선한 것으로, 특히 1마이크로미터(μm) 이하의 얇은 흡수층에서도 70% 이상의 높은 양자 효율을 달성했다. 이 성과는 기존 기술의 흡수층 두께를 약 70% 줄이는 결과를 가져왔다. 흡수층이 얇아지면 화소 공정이 간단해져 높은 해상도 달성이 가능하고 캐리어 확산이
2024-11-20열 에너지를 전기로 전환시키는 열전 소자는 버려지는 폐열을 활용할 수 있어 지속 가능하고 친환경적인 에너지 플랫폼으로 주목받고 있다. 한국 연구진이 우수한 신축성과 최고 수준 성능을 보이는 열전소자를 개발하여 웨어러블 소자를 위한 체온을 이용한 차세대 에너지 공급원으로의 가능성을 한층 더 앞당겼다. 우리 대학 생명화학공학과 문홍철 교수팀이 POSTECH 화학공학과 박태호 교수팀과 공동연구를 통해 열역학적 평형 조절을 통한 기존 N형 열전갈바닉 소자*성능 한계 극복 기술을 구현했다고 14일 밝혔다. *열전갈바닉 소자: 생성되는 전자 흐름의 방향에 따라 N형과 P형으로 구분 가능 네거티브(negative)를 의미하는 N형은 전자가 저온에서 고온 쪽으로, 포지티브(positive)를 의미하는 P형은 고온에서 저온 쪽으로 전자가 이동 열전 소자의 성능을 최대한 끌어올리기 위해 P형과 N형 소자의 통합이 필수적이다. 최근 우수한 성능을 지닌 P형 열전 소자에 대한 연구는 많이 진
2024-11-14현재 그린 수소 생산의 한계를 극복할 새로운 수소 생산 시스템을 KAIST 연구진이 개발하여 수용성 전해질을 사용한 물분해 시스템을 활용해 화재의 위험을 차단하고 안정적인 수소 생산이 가능할 것으로 예상된다. 우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 아연-공기전지* 기반의 자가발전형 수소 생산 시스템을 개발했다고 22일 밝혔다. *공기전지: 일차 전지 중 하나로 공기 중 산소를 흡수해 산화제로 사용하는 전지이며, 수명이 긴 것이 장점이지만 기전력이 낮은 것이 단점임. 수소(H2)는 고부가가치 물질 합성의 원료로 기존 화석연료(휘발유, 디젤 등) 대비 3배 이상 높은 에너지밀도(142MJ/kg)를 지녀 청정 연료로 주목받고 있다. 그러나 현재 수소 생산 방식 대부분 이산화탄소(CO2)를 배출하는 문제가 있다. 아울러 그린 수소 생산은 태양전지, 풍력 등 신재생에너지를 동력원으로 물을 분해해 수소의 생산이 가능하나, 신재생에너지 기반의 동력원은 온도,
2024-10-22