〈 김 형 수 교수 〉
우리 대학 기계공학과 김형수 교수 연구팀이 알코올과 물이 만날 때 발생하는 마랑고니 효과의 현상을 정량화하는 데 성공했다.
이 기술을 통해 계면활성제의 광범위한 사용을 억제하거나 유체 표면의 불순물들을 효과적으로 제거할 수 있는 원천기술이 될 것으로 기대된다.
이번 연구 결과는 미국 프린스턴 대학의 하워드 스톤(Howard Stone) 교수와 공동으로 진행됐고 국제 학술지 ‘네이처 피직스(Nature Physics)’ 7월 31자 온라인 판에 게재됐다.
마랑고니 효과는 계면을 따라 표면장력의 크기가 일정하지 않을 때 발생하는 현상을 말한다. 흔히 알려진 와인의 눈물 현상이 대표적인 마랑고니 효과이다.
물과 알코올처럼 서로 100% 섞이는 액체들은 만나는 즉시 혼합과 퍼짐이 동시에 이뤄지는 것처럼 보이지만 사실은 그렇지 않다. 실제 물의 표면장력은 알코올보다 3배 정도 큰데 이 표면장력 차이 때문에 두 액체가 닿는 순간 계면에서 마랑고니 효과가 발생한다. 이후 혼합이 일어나기까지는 일정 시간이 소요된다.
이와 같은 현상은 20세기 초반에 보고된 후 많은 논의가 됐지만 복잡한 물리화학적 혼합 현상을 정량화하는 데 한계가 있었다.
김 교수는 광학의 특성을 이용한 다양한 유동장 가시화(Flow visualization) 기법과 초고속 이미징 장비를 이용해 실험을 수행했다.
유동장 가시화는 물과 같은 투명한 액체가 얼마나 빠르게 흐르는지 파악하기 위해 입자를 띄워서 이들을 추적하거나 액체의 밀도차이 변화를 광학적 기법을 이용해 감지한 후 촬영하는 방식이다.
이를 통해 물과 알코올 사이에 발생하는 복잡한 물리화학적 현상의 정량화에 성공했고 이를 토대로 실험 결과를 예측하는 이론 모델도 개발했다.
이론 모델을 이용해 마랑고니 대류 유동 속도의 세기와 알코올 액적의 퍼지는 넓이, 유동장이 발달되는데 소요되는 시간을 예측할 수 있다. 이를 통해 실제 적용 상황과 조건에 맞춰 마랑고니 효과 유발 물질(알코올)의 종류와 액적의 크기를 설계할 수 있다.
연구팀은 이번 성과가 유체 계면을 2차 오염시키지 않고 계면에 따라 원하는 물질을 높은 효율로 쉽게 전달하거나 유체 표면의 불순물들을 효과적으로 제거할 수 있는 원천기술이 될 것으로 예상했다.
무엇보다 이번 연구 결과는 약물 전달을 위해 사용되는 계면활성제를 알코올이 대체할 수 있는 가능성을 보였다는 의의가 있다. 체내에 축적되는 특성을 갖는 계면활성제를 대체할 수 있다면 여러 부작용을 방지할 수 있을 것으로 기대된다.
김 교수는 “약물전달을 위해 계면활성제를 사용하는데 체내에 흡수되면 배출이 어려워 축적이 되고 천식환자에게 심장질환을 유발하는 등 여러 부작용이 발생한다.”며 “알코올과 같은 새로운 약물전달 물질을 사용해 이러한 부작용으로부터 자유로워지길 기대한다”고 말했다.
□ 사진 설명
사진1. 알콜 액적이 물 계면에 닿을 때 발생하는 마랑고니 유동(Marangoni flows)
사진2. 아지랑이(Schlieren) 가시화 기법을 이용한 알콜 종류에 따른 혼합 유동 비교 (왼쪽 메타놀, 오른쪽 아이소프로필 알코올)
사진3. 알콜 액적이 물 계면에 닿을 때 발생하는 마랑고니 혼합 유동(Marangoni mixing flow)의 측면 가시화 결과
조광현 교수 연구팀은 암세포를 죽이지 않고 그 상태만을 변환시켜 정상 세포와 유사한 상태로 되돌리는 암 가역 치료 원천기술을 개발한 바 있다. 이번에는 정상세포가 암세포로 변화되는 순간의 유전자 네트워크에 암 가역화를 유도할 수 있는 분자스위치가 숨겨져 있음을 최초로 밝히는데 성공하였다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 정상세포에서 암세포로 변화하는 순간의 임계 전이(臨界轉移, critical transition) 현상을 포착하고 이를 분석해 암세포를 다시 정상세포로 되돌릴 수 있는 분자스위치를 발굴하는 기술 개발에 성공했다고 5일 밝혔다. 임계 전이란 물이 섭씨 100도에서 증기로 변하는 것처럼 특정 시점에 갑작스러운 상태변화가 일어나는 현상을 말한다. 정상세포가 유전적, 후성유전적 변화의 축적으로 인해 특정 시점에 암세포로 변화되는 과정에도 이러한 임계 전이 현상이 나타난다. 연구팀은 암 발생 과정에서 정상세포가 암세포로 전환되기 직전, 정상세포와
2025-02-05우리 대학 물리학과 박용근 교수가 아산사회복지재단(이사장 정몽준)이 선정한 제18회 아산의학상 젊은의학자부분 수상자로 선정됐다. 아산의학상은 기초의학 및 임상의학 분야에서 뛰어난 업적을 이룬 의과학자를 격려하기 위해 2008년 제정된 상으로 의과학 전문가들로 구성된 위원회의 심사과정을 통해 수상자를 선정하고 있다. 그 중 젊은의과학자상은 45세 미만의 의과학자에게 수여된다. 박용근 교수는 세포 및 조직을 염색 없이 고해상도 3D 영상으로 측정하고 분석할 수 있는 ‘홀로토모그래피’ 원천 기술을 개발하여 바이오이미징 분야에 혁신적인 기여를 하였다. 또한, 홀로토모그래피의 이론과 실용화에 성공하여 전통적인 현미경 기술의 한계를 극복하였다. 이를 통해 세포 치료제, 재생 의학 등 다양한 의학 분야에서 새로운 연구 가능성을 열어 의과학 연구의 효율성을 크게 향상시켰다. 특히, 인공지능과 홀로토모그래피를 결합해 라벨링없이 생체 시스템을 3D로 시각화하고
2025-01-21지금까지 다양한 항암 치료 기술이 개발됐음에도 현재 시행되고 있는 모든 항암치료의 공통점은 암세포를 사멸시켜서 치료하는 것을 목표로 하고 있다. 이로 인해 암세포가 내성을 획득해 재발하거나 정상세포까지 사멸시켜 큰 부작용을 유발하는 등 근본적인 한계를 지니고 있다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대장암세포를 죽이지 않고 그 상태만을 변환시켜 정상 대장세포와 유사한 상태로 되돌림으로써 부작용 없이 치료할 수 있는 대장암 가역 치료를 위한 원천기술을 개발하였다고 22일 밝혔다. 연구팀은 정상세포의 암화 과정에서 정상적인 세포분화 궤적을 역행한다는 관찰 결과에 주목하고, 이를 기반으로 정상세포의 분화궤적에 대한 유전자네트워크의 디지털트윈을 제작하는 기술을 개발했다. 그리고 이를 시뮬레이션 분석해 정상세포 분화를 유도하는 마스터 분자스위치를 체계적으로 탐색해 발굴한 뒤 대장암세포에 적용했을 때 대장암세포의 상태가 정상화된다는 것을 분자세포 실험과 동물실험
2024-12-23암흑 물질이란 질량은 있으나 관측이 불가능한 미지의 물질을 말하며, 우주 전체 에너지의 약 27% 정도를 차지하고 있다. 암흑 물질을 연구하는 주된 이유는 우주의 구조와 진화의 비밀을 밝히고 이를 통해 우주의 형성과 모습을 이해하고자 함이다. 한국 연구진이 암흑 물질 후보로 알려진 액시온의 탐색 효율을 크게 향상시킬 고주파 공진기 튜닝 기술을 개발했다. 우리 대학 물리학과 야니스 세메르치디스 교수 연구팀이 기초과학연구원(IBS)(원장 노도영) 산하 액시온 및 극한상호작용 연구단(이하 CAPP)(단장 야니스 세메르치디스)과 협력해 메타물질*을 이용, 암흑 물질인 액시온의 탐색 범위를 효율적으로 확장할 방법을 구현했다고 25일 밝혔다. *메타물질: 아직 자연에서 발견되지 않은 특성을 갖도록 인공적으로 설계한 물질을 말함. 암흑물질의 존재와 더불어 또 다른 미스터리는 ‘오늘날 우주가 왜 물질로만 이루어져 있는가?’라는 점이다. 초기 우주에서는 물질과
2024-11-25그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21