< (왼쪽부터) 생명화학공학과 정유성 교수, 첸수안 박사과정 >
우리 대학 생명화학공학과 정유성 교수 연구팀이 화학자처럼 생각하는 인공지능을 개발했다고 4일 밝혔다. 연구팀이 개발한 인공지능은 유기 반응의 결과를 정확하게 예측한다.
유기 화학자는 반응물을 보고 유기 화학반응의 결과를 예상해 약물이나 유기발광다이오드(OLED)와 같이 원하는 물성을 갖는 분자를 합성한다. 하지만 실험을 통해 화학반응의 생성물을 직접 확인하는 작업은 일반적으로 시간과 비용이 많이 소모된다. 게다가 유기 화학 반응은 같은 반응물에서 다양한 생성물이 생길 수 있어 숙련된 유기 화학자라도 모든 화학반응을 정확하게 예측하지 못한다.
이런 한계를 극복하고자 인공지능을 이용해 유기 반응을 예측하는 연구가 활발하게 일어나고 있다. 대부분의 연구는 반응물과 생성물을 서로 다른 두 개의 언어로 생각하고 한 언어에서 다른 언어로 번역하는 언어 번역 모델을 사용하는 방법에 집중하고 있다. 이 방법은 예측 정확도는 높지만, 인공지능이 화학을 이해하고 생성물을 예측했다고 해석하기 어려워 모델이 예측한 결과를 신뢰하기 어렵다.
정 교수팀은 화학적 직관을 바탕으로 모델을 설계해서 모델이 예측한 결과를 화학적으로 설명을 할 수 있을 뿐 아니라, 공개 데이터베이스에서 매우 우수한 예측 정확도를 달성했다.
정 교수팀은 화학자가 반응 결과를 예측하는 방법에서 아이디어를 얻었다. 화학자는 반응 중심을 파악하고 화학반응 규칙을 적용해 가능한 생성물을 예측한다. 이 과정을 본떠서 공개 화학반응 데이터베이스로부터 화학반응 규칙을 도출했다. 화학반응 규칙을 바탕으로 분자의 화학 반응성을 예측하기 위해서, 분자를 그래프로 취급하는 그래프 신경망(Graph Neural Network, GNN) 모델을 개발했다. 이 모델에 반응물들을 넣으면 화학반응 규칙과 반응 중심을 식별해 생성물을 성공적으로 예측한다.
< 그림 1. 개발된 화학반응 예측모델 무기화합물의 조성정보와 구조정보를 동시에 학습하는 생성모델을 구축하고, 기존의 소재 데이터베이스를 학습하여, 이를 바탕으로 제한되어있던 화학적 공간을 선택적으로 자유롭게 확장시켜 기존에는 발견할 수 없었던 숨겨진 유망한 신물질을 새롭게 발견할 수 있다. >
정 교수팀은 화학반응에서 널리 사용되는 미국 특허무역청(USPTO) 데이터를 이용해 유기 반응을 90% 이상의 정확도로 예측하는 데 성공했다. 개발된 모델은 실제 사용 시 모델에 높은 신뢰성을 제공하는 `예측의 불확실성'을 말할 수 있다. 예를 들어, 불확실성이 낮다고 간주되는 모델의 정확도는 98.6%로 증가한다. 모델은 무작위로 샘플링된 일련의 유기 반응을 예측하는 데 있어 소규모의 합성 전문가보다 더 정확한 것으로 나타났다.
이번 연구의 성공으로 연구팀은 다른 분야에서 좋은 성능을 보인 모델을 그대로 사용하던 기존 방법보다, 화학자가 생각하는 방법과 동일하게 신경망을 설계하는 전략이 더 합리적이고 우수한 성능을 보인다는 것을 입증했다. 연구팀은 이 연구를 활용하면 분자 설계 과정이 비약적으로 빨라질 것으로 기대하며, 새로운 화합물 개발에 실용적인 응용을 기대하고 있다. 정유성 교수팀은 현재 연구 성과의 특허 출원을 준비하고 있다.
< 그림 2. 표지논문 이미지: 화학반응의 결과를 알기 위해서는 실험을 통해 확인해야 하지만, 높은 정확도를 갖는 화학반응 예측 인공지능을 이용하면 잠재적으로 이러한 실험을 대체하거나, 미래의 디지털 실험실에서 물질 개발에 필요한 시간과 비용을 절감할 수 있을 것으로 기대된다. >
우리 대학 생명화학공학과 첸수안(Shuan Chen) 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '네이처 머신 인텔리전스(Nature Machine Intelligence)'에 9월호 표지논문으로 선정돼 출판됐다.
한편 이번 연구는 산업통상자원부와 한국연구재단의 지원을 받아 수행됐다.
자동차와 기계 부품 등에 사용되는 강철 합금은 일반적으로 고온에서 녹이는(융해) 공정을 거쳐 제조된다. 이때 성분이 변하지 않고 그대로 녹는 현상을 ‘합치 융해(congruent melting)’라고 한다. 우리 연구진은 이처럼 고온 실험을 통해서만 가능했던 합금의 융해 특성을 인공지능(AI)으로 해결했다. 이번 연구는 고질적인 난제였던 합금이 녹을 때 서로 얼마나 잘 섞이는지를 미리 예측함으로써, 미래 합금 개발의 방향성을 제시한다는 점에서 주목받고 있다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 미국 노스웨스턴대 크리스 울버튼(Chris Wolverton) 교수팀과 국제 공동연구를 통해, 밀도범함수이론(DFT)* 기반의 형성에너지(합금이 얼마나 안정적인지를 나타내는 값) 데이터를 활용해 합금이 녹을 때 성분이 유지되는지를 예측하는 고정확도 머신러닝 모델을 개발했다고 14일 밝혔다. *밀도범함수이론(Density Functional Theory,
2025-07-14‘음향 분리 및 분류 기술’은 드론, 공장 배관, 국경 감시 시스템 등에서 이상 음향을 조기에 탐지하거나, AR/VR 콘텐츠 제작 시 공간 음향(Spatial Audio)을 음원별로 분리해 편집할 수 있도록 하는 차세대 인공지능(AI) 핵심 기술이다. 우리 대학 전기및전자공학부 최정우 교수 연구팀이 세계 최고 권위의 음향 탐지 및 분석 대회인 ‘IEEE DCASE 챌린지 2025’에서 ‘공간 의미 기반 음향 장면 분할(Spatial Semantic Segmentation of Sound Scenes)’ 분야에서 우승을 차지했다고 11일 밝혔다. 이번 대회에서 연구팀은 전 세계 86개 참가팀과 총 6개 분야에서 경쟁 끝에 최초 참가임에도 세계 1위 성과를 거두었다. KAIST 최정우 교수 연구팀은 이동헌 박사, 권영후 석박통합과정생, 김도환 석사과정생으로 구성되었다. 연구팀이 참가한 ‘공간 의미 기
2025-07-11원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다. 우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다. 최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적
2025-07-02우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제 학술 대회 중 하나인 IEEE/CVF International Conference on Computer Vision 2025(ICCV 2025)에 채택되어, 연구팀의 독보적인 연구 역량을 다시 한번 국제적으로 인정받았다. ICCV는 CVPR, ECCV와 함께 컴퓨터비전 및 인공지능 분야에서 가장 영향력 있는 국제 학술대회 중 하나로, 1987년부터 격년으로 개최되어 왔다. 이번 ICCV 2025에는 총 11,152편의 논문이 제출되었고, 이 중 2,698편이 채택되어 약 24.19%의 낮은 채택률을 기록하였다. 학술대회에 제출할 수 있는 논문 편수에 대한 제한이 있음에도 불구하고 단일 연구실에서 12편의 논문이 동시 채택되는 것은 매우 드문 성과다. 윤국진 교수 연구팀은 학습 기반의 시각 지능 구현을 목표로 연구를 진행하고 있으며, 이번에 발표된 12편의 논문들은 3D 객체 탐지 및
2025-06-30기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해
2025-06-30