< (왼쪽부터) 신소재공학과 조은애 교수, 노정한 박사과정 >
미래 에너지원으로 주목받고 있는 수소 연료전지를 기존 귀금속 백금 소재 대비 1,000배 이상 저렴한 소재로 개발하여 화제다.
우리 대학 신소재공학과 조은애 교수 연구팀이 POSTECH 화학공학과 한정우 교수 연구팀과 공동연구를 통해 백금을 대체할 수 있는 비귀금속 촉매를 개발하고, 해당 소재의 고활성 메커니즘을 규명하는 데 성공했다고 22일 밝혔다.
수소차에 사용되는 양이온 교환막 연료전지(proton exchange membrane fuel cell, PEMFC)는 전극 촉매로 많은 양의 백금 촉매를 사용한다. 특히, 연료전지 공기극에서의 전기화학 반응은 속도가 매우 느려, 이를 높이기 위해 전극에 많은 양의 백금 촉매가 필요하다.
< 그림 1. ACS 카탈리시스 논문 표지 그림 >
공동연구팀은 백금을 대체할 수 있는 공기극용 ‘단일 원자 철-질소-탄소-인 소재’를 개발하고, 활성 메커니즘을 규명했다고 밝혔다. 이 촉매는 상용제품에 적용되고 있는 양이온 교환막 연료전지(PEMFC) 뿐만 아니라, 차세대 연료전지인 음이온 교환막 연료전지(anion exchange membrane fuel cell, AEMFC)에도 적용이 가능하다는 점에서 더욱 의미가 있다고 할 수 있다. 새롭게 개발한 소재는 탄소에 미량의 철 원소가 원자 단위로 분산돼 있고, 그 주변을 질소와 인이 결합하고 있는 구조다.
조은애 교수는 “기존의 단일원자 철-질소-탄소 촉매의 활성부에 인을 첨가함으로써 한계를 극복하고 성능 향상에 성공했다”라고 설명하며, “연료전지는 복잡한 반응 장치라서 새로운 촉매가 개발되더라도 실제 연료전지에 적용하는 것은 어려운 경우가 많은데, 이번에 개발한 촉매는 양이온 교환막 연료전지와 음이온 교환막 연료전지에 적용해서 모두 성능을 높이는데 성공했다”라고 말했다.
< 그림 2. 철-질소-탄소-인 원자분산촉매의 투과 현미경 이미지(위)와 고활성 메커니즘(아래) >
신소재공학과 노정한 박사과정이 제1 저자로, POSTECH 조아라 박사가 공동 제1 저자로 참여한 이번 연구 결과는 미국화학회 촉매 분야 저명 국제 학술지 ‘에이씨에스 카탈리시스(ACS Catalysis)’ 2023년 7월 3일자 온라인판에 출판됐다. 또한, 그 우수성을 인정받아 해당 학술지 보조 표지 논문(Supplementary front cover)로 게재됐다. (논문명: Transformation of the Active Moiety in Phosphorus-Doped Fe-N-C for Highly Efficient Oxygen Reduction Reaction)
한편, 이번 연구는 한국에너지기술평가원이 추진하는 에너지인력양성사업과 한국연구재단이 추진하는 미래소재디스커버리사업의 지원을 받아 이뤄졌다.
수소 연료전지는 미래의 친환경 에너지 시스템으로 주목받고 있지만 귀금속인 백금이 다량 사용되고 연료전지 구동 과정에서 탄소 지지체가 부식돼 백금 입자끼리 뭉치면서 연료전지 성능이 저하되는 문제를 가지고 있다. KAIST 연구진이 개발한 수소 연료전지 촉매로 고강도 내구성 평가 이후에도 기존 상용 촉매 대비 약 62% 이상의 전류 밀도를 유지시켜 수소 연료전지 수명을 획기적으로 연장시키는데 성공했다. 우리 대학 신소재공학과 정연식 교수, 조은애 교수 공동연구팀이 수소전기차의 핵심 부품인 연료전지 장치에 활용될 수 있는 고내구성 촉매 소재를 개발했다고 4일 밝혔다. 이번에 개발된 촉매는 실제 구동 환경에서 수천 시간에 맞먹는 강도의 2만 사이클 내구성 평가를 거친 후에도 초기 성능에 가까운 수준을 유지할 만큼 높은 내구성을 갖추고 있어 기존 연료전지에서 가장 큰 걸림돌로 지적됐던 수명 문제를 해결하는 성과로 평가된다. 연구팀은 ‘3차원 자이로이드 나노구조체 기반 촉매
2024-12-04그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다. 우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다. 스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개
2024-11-21선도적 신약 개발에서는 약효의 핵심 원자를 손쉽고 빠르게 편집하는 신기술은 의약품 후보 발굴 과정을 혁신하는 원천 기술이자, 꿈의 기술로 여겨져 왔다. 우리 대학 연구진이 약효를 극대화하는 단일 원자 편집 기술 개발에 세계 최초 성공했다. 우리 대학 화학과 박윤수 교수 연구팀이 오각 고리 화합물인 퓨란의 산소 원자를 손쉽게 질소 원자로 편집·교정하여, 제약 분야에서 널리 활용되는 피롤 골격으로 직접 전환하는 원천 기술 개발에 성공했다고 8일 밝혔다. 해당 연구성과는 그 중요성을 인정받아 과학 분야 최고권위 학술지인 ‘사이언스(Science)’誌 에 지난 10월 3일 게재됐다. (논문명: Photocatalytic Furan-to-Pyrrole Conversion) 많은 의약품은 복잡한 화학 구조를 갖지만, 정작 이들의 효능은 단 하나의 핵심 원자에 의해 결정되기도 한다. 대표적으로, 산소, 질소와 같은 원자는 바이러스에 대한 약리 효과
2024-10-10전 세계의 플라스틱 생산량이 증가함에 따라 폐기되는 플라스틱의 양도 증가하게 돼 여러 가지 환경적, 경제적 문제를 일으키고 있다. 한국 연구진이 고성능 촉매를 개발해 플라스틱 폐기물의 분해와 재활용을 쉽고 경제적으로 할 수 있도록 하는 기술을 개발하여 화제다. 우리 대학 생명화학공학과 최민기 교수, 충남대학교 에너지 과학기술 대학원 신혜영 교수 공동연구팀이 폐플라스틱의 분해 및 재활용 공정의 중요 반응인 탈염소 반응의 반응 메커니즘을 규명하고 미량의 백금으로도 염소를 효과적으로 제거할 수 있는 촉매를 개발했다고 26일 밝혔다. 플라스틱의 재활용을 위한 다양한 연구가 진행되고 있는데, 특히 열분해를 이용한 화학적 재활용 방법은 복잡하고 비경제적인 플라스틱 폐기물의 분류 과정을 생략할 수 있어 산업적으로 큰 주목을 받고 있다. 또한 이때 생성되는 유분은 플라스틱의 원료인 에틸렌, 프로필렌으로 변환이 가능하기 때문에 완벽한 플라스틱의 순환 경제를 가능케 한다. 하지만 폐플라스
2024-09-28후쿠시마 오염수가 2023년부터 해양에 방류되면서 중수로 원전 운영 시 발생하는 대표적인 방사성 물질인 삼중수소에 대한 대중적 관심이 크게 늘어났다. 삼중수소는 주로 물 분자에 포함돼 존재하기 때문에 해양 생태계와 환경에 위험을 초래할 수 있어 삼중수소 제거 설비가 필요한데, 한국 연구진이 촉매를 이용해 획기적으로 제거할 수 있는 기술을 개발해 화제다. 우리 대학 생명화학공학과 고동연 교수 연구팀이 한국원자력연구원(원장 주한규) 박찬우 박사 연구팀과의 공동연구를 통해 원전 폐수에 함유된 삼중수소 제거 공정을 위한 새로운 구조의 이중기능* 소수성 촉매를 개발했다고 27일 밝혔다. 연구팀의 촉매는 특정 반응 조건에서 최대 76.3%의 반응 효율을 보였으며, 특히 현재까지 밝혀진 바가 거의 없는 수백 ppm 수준의 저농도 동위원소에 대한 촉매의 작용을 구체적으로 확인했다. *이중기능: 액체 상태의 물은 차단하고 기체 상태의 수증기는 통과하는 성질을 말함 현재 삼중수소 제거에
2024-08-27