< (왼쪽부터) 신소재공학과 김상욱 교수, 수치스라 파드마잔 연구교수 경희대학교 임준원 교수, 우리 대학 이강산 박사 >
우리 대학 신소재공학과 김상욱 교수 연구팀이 인공지능(Artificial Intelligence, 이하 AI)이 불러온 4차 산업혁명 이후를 뜻하는 포스트 AI시대의 핵심 신소재를 전망하는 초청논문을 발표했다고 6일 밝혔다.
대화형 AI인 `챗GPT(ChatGPT)'가 월간 사용자 1억 명을 두 달 만에 달성하는 등 AI는 우리 생활에 한층 가까이 다가왔다. 4차 산업혁명의 핵심 기술인 AI는 인간의 지능을 모사해 데이터를 학습하고 이에 따라 합리적인 의사결정을 내릴 수 있다. 단순 반복적인 작업을 대체하는데 머물렀던 과거 인공지능 기술들과 달리, 더욱 어렵고 복잡한 작업을 효율적으로 수행할 수 있어 의료, 자율 주행 자동차, 로보틱스 등의 분야에서 새로운 기술 혁신을 이루고 있다.
최근에는 사물인터넷(IoT) 기술의 발전과 함께 현실 세계의 다양한 사물과 개체들이 인터넷을 통해 연결된 초연결 시대가 도래하고 있다. 포스트 AI 시대에는 AI가 다양한 기기들과 결합해 우리 주변의 정보를 항상 받아들이고 이에 따라 최적의 의사결정을 하며 이를 현실적으로 실물세계에 구현하는 사이버세계와 현실세계가 하나로 융합되는 시대가 될 것으로 전망되고 있다.
< 그림 1. 포스트 AI시대의 떠오르는 3가지 연구 분야와 신소재로 제시된 2차원 소재 모식도 >
포스트 AI 시대가 다가옴에 따라 웨어러블 장치를 위한 스마트 섬유, 소프트 로보틱스를 위한 인공근육, 환경친화적인 에너지 생산효율을 극대화할 수 있는 단일원자촉매등 AI의 한계를 보조하고 보완할 수 있는 신소재의 혁신이 더욱 중요해지고 있으며, 무엇보다 실용적인 기술의 확보가 시급하다.
김상욱 교수 연구팀은 스마트 섬유 개발의 원천소재인 그래핀 산화물 액정성을 세계 최초로 발견하였고, 소프트 로보틱스 분야에 새로운 돌파구를 마련한 헤라클레스 인공 근육 개발 그리고 세계 최초로 단일원자촉매를 발견하는 등 미래 신소재분야에서 혁신적인 연구를 수행해 온 공로를 인정받아 세계적인 학술지 `어드밴스드 머티리얼스 (Advanced Materials)' 명예의 전당(Hall of Fame) 특집 리뷰논문을 게재했다.
`어드밴스드 머티리얼스' 명예의 전당 초청논문은 신소재 분야의 세계적인 석학들을 매우 엄격한 기준에 따라 선정하여 그 미래 연구방향을 소개하는 권위 있는 특집 논문이다.
< 그림 2. 2차원 소재 기반 스마트 섬유, 소프트 로보틱스, 단일 원자 촉매 연구 분야의 발전 동향 >
김상욱 교수는 "인공지능이 이끄는 4차 산업혁명 이후의 포스트 AI 시대는 신소재 기반의 사물 혁신이 중요해질 것인데 그래핀과 같은 2차원 소재가 매우 중요한 역할을 할 것으로 기대된다ˮ고 밝혔다.
KAIST 응용과학연구소 이강산 박사가 제1 저자로 참여하고 KAIST 신소재공학과 수치스라 파드마잔 사시카라(Suchithra Padmajan Sasikala) 연구교수와 경희대학교 정보디스플레이학과 임준원 교수가 공동 교신저자로 참여한 이번 연구는 한국연구재단의 리더 연구자 지원사업인 다차원 나노 조립제어 창의연구단의 지원을 받아 수행됐다.
*논문명: 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics And Single Atom Catalysts
수소 연료전지는 미래의 친환경 에너지 시스템으로 주목받고 있지만 귀금속인 백금이 다량 사용되고 연료전지 구동 과정에서 탄소 지지체가 부식돼 백금 입자끼리 뭉치면서 연료전지 성능이 저하되는 문제를 가지고 있다. KAIST 연구진이 개발한 수소 연료전지 촉매로 고강도 내구성 평가 이후에도 기존 상용 촉매 대비 약 62% 이상의 전류 밀도를 유지시켜 수소 연료전지 수명을 획기적으로 연장시키는데 성공했다. 우리 대학 신소재공학과 정연식 교수, 조은애 교수 공동연구팀이 수소전기차의 핵심 부품인 연료전지 장치에 활용될 수 있는 고내구성 촉매 소재를 개발했다고 4일 밝혔다. 이번에 개발된 촉매는 실제 구동 환경에서 수천 시간에 맞먹는 강도의 2만 사이클 내구성 평가를 거친 후에도 초기 성능에 가까운 수준을 유지할 만큼 높은 내구성을 갖추고 있어 기존 연료전지에서 가장 큰 걸림돌로 지적됐던 수명 문제를 해결하는 성과로 평가된다. 연구팀은 ‘3차원 자이로이드 나노구조체 기반 촉매
2024-12-04리튬금속은 기존 상용 배터리의 성능 한계를 극복할 수 있는 차세대 음극으로 주목받아 왔다. 하지만, 리튬금속 자체 문제로 배터리의 수명을 단축하고 화재 위험을 초래하는 문제를 보여왔다. KAIST 연구진이 물만을 사용해서 기존 리튬금속 음극보다 수명이 약 750% 향상시키는 세계 최고 수준의 연구에 성공했다. 우리 대학 신소재공학과 김일두 교수 연구진이 아주대 이지영 교수와 협력하여 친환경 공법으로 제조한 중공 나노섬유를 리튬금속보호막으로 사용해, 리튬의 성장을 안정화하고 차세대 ‘리튬금속전지’의 수명을 획기적으로 늘리는 데 성공했다고 2일 밝혔다. 리튬 금속 표면에 보호막을 적용해 리튬금속과 전해액간의 계면을 인공적으로 조성하는 기존의 보호막 기술은 인체에 유해한 공정과 원가가 높은 재료를 필요로 하며 리튬금속음극의 수명을 높이는 데 한계가 있어왔다. 김일두 교수 연구진은 이 문제를 해결하기 위해 ‘리튬이온 성장을 물리적·
2024-12-02전체 태양 에너지의 약 52%를 활용하지 못하는 문제점을 가진 기존 페로브스카이트 태양전지가 한국 연구진에 의해 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상하는 혁신기술로 개발되었다. 이는 차세대 태양전지의 상용화 가능성을 크게 높이며, 글로벌 태양전지 시장에서 중요한 기술적 진전에 기여할 것으로 보인다. 우리 대학 전기및전자공학부 이정용 교수 연구팀과 연세대학교 화학과 김우재 교수 공동 연구팀이 기존 가시광선 영역을 뛰어넘어 근적외선 광 포집을 극대화한 고효율·고안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다고 31일 밝혔다. 연구팀은 가시광선 흡수에 한정된 페로브스카이트 소재를 보완하고, 근적외선까지 흡수 범위를 확장하는 유기 광반도체와의 하이브리드 차세대 소자 구조를 제시하고 고도화했다. 또한, 해당 구조에서 주로 발생하는 전자구조 문제를 밝히고 다이폴 층*을 도입해 이를 획기적으로 해결한 고성능 태양전지 소자를 발표했다
2024-10-31피부 노화는 많은 사람들의 관심사로 주름, 처짐, 탄력 저하 등의 문제를 해결하기 위하여 최근 웨어러블 LED 마스크가 주목받고 있다. 우리연구진이 기존 제품 대비 피부 탄력을 340% 향상시키는 LED 마스크 개발에 성공했다. 우리 대학 신소재공학과 이건재 교수 연구팀이 3,770개의 마이크로 LED와 광확산층*을 활용하여 피부 노화를 억제할 수 있는 진피 자극 얼굴밀착형 면발광 마이크로 LED 마스크를 개발했다고 29일 밝혔다. *광확산층: 광원이 방출하는 빛을 고르게 분산시켜 균일한 발광을 유도하는 층 기존 제품은 딱딱한 구조와 점발광 방식*으로 인해 피부에 밀착되지 않고 광손실이 발생하여, 치료용 빛이 진피까지 균일하게 전달되지 못하는 한계가 있다. *점발광 방식: 점발광이란 점으로 보이는 발광의 형태을 일컫음 이 교수팀은 유연한 기판에 3차원 종이접기 구조를 적용해 얼굴의 굴곡과 돌출된 부위에 밀착할 수 있는 LED 마스크를 개발했다. 이를 통해 1.5m
2024-10-29스마트 의류와 같은 웨어러블 기기에서 활용될 수 있으며, 극한의 환경에서도 안정적인 열 에너지 성능을 유지할 수 있는 열전 소재가 한국 연구진에 의해 개발되었다. 기존 열전 소재 분야의 오랜 난제였던 열전 소재의 성능과 기계적 유연성 간의 딜레마를 획기적으로 해결하였고 상용화 가능성을 입증하기도 했다. 우리 대학 신소재공학과 정연식 교수와 기계공학과 박인규 교수 공동 연구팀이 국립한밭대학교 오민욱 교수, 한국기계연구원(원장 류석현) 정준호 박사 연구팀과 협업을 통해, 차세대 유연 전자소자를 위한 혁신적인 에너지 수확 솔루션인 ‘비스무트 텔루라이드(Bi2Te3) 열전 섬유’를 개발하는 데 성공했다고 21일 밝혔다. 열전 소재는 온도 차이가 있을 때 전압을 발생시켜 열에너지를 전기에너지로 변환하는 소재로, 현재 약 70%의 에너지가 폐열로 사라지는 상황에서 이러한 폐열을 회수해 재활용할 수 있는 지속가능한 에너지 물질로 주목받고 있다. 우리 주변의 열
2024-10-21