본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9E%90%EC%97%B0%EA%B3%BC%ED%95%99%EB%8C%80
최신순
조회순
고성능 촉매 개발, 반도체 핫전자 기술을 통해 해결하다
우리 대학 화학과 박정영 석좌교수, 신소재공학과 정연식 교수, 그리고 KIST 김동훈 박사 공동 연구팀이 반도체 기술을 활용하여 촉매 성능에 특정 변인이 미치는 영향을 정량적으로 분석할 수 있는 새로운 플랫폼을 성공적으로 구현했다. 이를 통해 대표적인 다경로 화학 반응인 메탄올 산화 반응에서 메틸 포르메이트 선택성을 크게 향상시켰으며, 이번 연구는 차세대 고성능 이종 촉매 개발을 앞당기는 데 기여할 것으로 기대된다고 1일 밝혔다. 다경로 화학 반응에서는 반응성과 선택성의 상충 관계로 인해 특정 생성물의 선택성을 높이는 것이 어려운 문제로 남아 있다. 특히, 메탄올 산화 반응에서는 이산화탄소와 더불어 고부가 가치 생성물인 메틸 포르메이트가 생성되므로, 메틸 포르메이트의 선택성을 극대화하는 것이 중요하다. 그러나 기존 불규칙적인 구조의 이종 촉매에서는 금속-산화물 계면 밀도를 비롯한 여러 변인이 동시에 촉매 성능에 영향을 미치기 때문에 특정 변수가 개별적으로 미치는 영향을 분석하는 것이 어렵다. 이에 KAIST-KIST 공동 연구팀은 균일하게 정렬된 금속산화물 나노 패턴을 구현할 수 있는 반도체 기술을 활용하여 이종 촉매 성능에 영향을 미칠 수 있는 다른 변인을 통제하고, 오로지 금속산화물의 물성만이 촉매 성능에 미치는 영향을 정량적으로 분석하였다. 구체적으로, 산소 공극 (Oxygen Vacancy)의 양을 조절하기 위해 다양한 환경에서 열처리한 세륨 산화물 (CeOx) 나노 패턴을 제작하고, 이를 백금(Pt) 박막 촉매 위에 전사하여 금속산화물의 산소 공극이 메틸 포르메이트 선택성에 미치는 영향을 분석했다. 연구 결과, 산소 공극이 가장 풍부하게 생성된 진공 환경에서 열처리한 CeOx-Pt 이종 촉매의 경우, 열처리를 하지 않은 CeO2-Pt 이종 촉매 대비 약 50% 향상된 메틸 포르메이트 선택성을 보였으며, 이는 반응 중 발생하는 핫 전자의 검출을 통해 실시간으로도 확인되었다. 또한, 연구팀은 양자역학 기반의 DFT 시뮬레이션을 통해 금속산화물 내부의 산소 공극이 이종 촉매의 성능에 미치는 영향을 이론적으로 규명하였다. 시뮬레이션 결과, 산소 공극은 금속/산화물 계면에 많은 양의 전자를 축적시키면서 반응 중간체 간 결합을 촉진하였고, 이로 인해 메틸 포르메이트 선택성이 향상됨을 확인하였다. 이에 대해 박정영 교수는 “이번에 개발한 반도체기반 플랫폼을 통해 핫전하와 촉매 선택성의 정량적 분석이 가능해짐에 따라 핫전하 기반의 광촉매 센서의 상용화 개발 및 핫전하 기반 광열촉매 시스템의 상용화 개발로 이어질 수 있다.”고 언급했다. 신소재공학과 정연식 교수는 “기존의 무작위 구조를 가진 촉매에서는 특정 변수의 영향을 정량적으로 분석하는 것이 어려웠으나, 반도체 기술을 활용한 이번 연구를 통해 보다 효율적인 이종 촉매 설계와 선택성 조절 전략을 제시할 수 있을 것으로 기대된다”고 밝혔다. 신소재공학과 이규락 박사, 화학과 송경재 박사, KIST 홍두선 박사가 공동 제 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 3월 25일 자로 온라인 게재됐다. (논문 제목: Unraveling Oxygen Vacancy-Driven Catalytic Selectivity and Hot Electron Generation on Heterointerfaces using Nanostructured Platform) 이번 연구는 산업통상자원부 에너지혁신인재양성사업, 과학기술정보통신부 중견연구자지원사업, 그리고 과학기술정보통신부 국가전략기술소재개발사업 등의 지원을 받아 수행됐다.
2025.04.01
조회수 686
세계 최초 초저잡음 중적외선 광원을 초소형 칩 상에서 구현
브릴루앙 레이저(Brillouin laser)는 물질 내 빛과 음파의 상호작용을 통해 매우 안정적이고 잡음이 적은 레이저 빛을 만들어 내는 광원이다. 그동안 이 기술은 가시광선이나 근적외선 영역에서만 구현되었으며, 중적외선 영역에서는 기술 부족으로 구현이 어려웠다. 국제 공동 연구진이 초소형 저잡음 브릴루앙 레이저를 해당 파장 영역에서 세계 최초 개발하여 더욱 정밀한 분자물리·화학 연구 및 다양한 차세대 응용 기술의 기반을 마련하였다. 우리 대학 물리학과 이한석 교수 연구팀이 호주국립대 최덕용 교수, 예일대 피터 라키치 교수, 한국원자력연구원 고광훈 박사, 닝보대학교 롱핑 왕 교수 연구팀과 국제공동연구를 통해 중적외선 파장 대역에서 주파수 흔들림이 매우 작은 브릴루앙 레이저를 초소형 반도체 칩 위에 최초로 구현하는 데 성공했다고 31일 밝혔다. 칩 상에서 저잡음 브릴루앙 레이저를 구현하는 기술은 이미 잘 알려져 있었으나, 중적외선 파장 대역에서는 레이저 구현에 필수적인 낮은 광 손실의 고성능 광소자가 없다는 점이 문제였다. 일반 산화규소 유리와 같이 가시광선과 근적외선에서 투명해 광소자 제작에 사용되었던 많은 물질이 중적외선 파장에서는 빛을 강하게 흡수해 이용 불가하고, 중적외선의 특징인 빛과 분자 사이 강한 상호작용으로 인해 여러 광 손실이 추가 발생해 고성능 광소자를 제작하기 어려웠다. 연구팀은 중적외선에서 높은 투과도를 보이지만 가공이 까다로운 칼코겐화합물 유리를 독창적인 기법으로 성형해 초고품질 광공진기를 제작하는데 성공했다. 또한, 중적외선 광소자에 고유한 표면 흡착 분자에 의한 광손실을 정량분석하고 억제하는 기술을 최초로 구현해 중적외선 파장 광 손실이 기존 세계기록 대비 30분의 1에 불과한 고성능 광소자 칩을 개발할 수 있었다. 브릴루앙 레이저의 발진을 위해 필요한 최소 동작 전력은 광 손실의 제곱에 비례해 줄어들기에, 해당 광소자를 이용해 기존보다 최소 동작 전력을 1,000배 이상 낮춰 최초로 중적외선 파장에서 해당 현상을 구현할 수 있었다. 중적외선 대역에 상용화된 광파라메트릭 레이저(optical parametric oscillator laser)나 양자폭포레이저(quantum cascade laser)는 주파수 선폭이 1 메가헤르츠(MHz)가량으로 넓어 이를 이용한 분석 정밀도에 한계가 있었는데, 개발된 레이저 소자는 이보다 만분의 일 정도 작은 선폭의 고순도 중적외선광을 생성할 수 있다. 공동연구팀 관계자는 중적외선 파장 대역의 소형 저잡음 레이저 개발이 분자 과학의 응용범위를 넓히고 정밀도를 개선하기 위한 필수적 요소라고 언급하며, 이를 분자의 특성을 더욱 세밀하게 분석하거나 빛을 이용해 화학 반응을 정밀하게 제어하는 등에 활용할 수 있을 것으로 기대했다. 연구를 주도한 교신저자 물리학과 이한석 교수는 "개발된 레이저 소자를 현재 활발하게 연구되고 있는 칩 크기 양자폭포레이저 및 중적외선 광검출기와 결합한다면 화학, 생물학 및 재료학에 사용되는 거대한 중적외선 측정 장비들을 획기적으로 소형화해 좀 더 다양한 분야에 활용할 수 있을 것ˮ이라 내다봤다. 또 다른 교신저자인 최덕용 교수는 “칼코겐화합물 유리가 뛰어난 중적외선 광학 특성에도 불구하고 가공이 어려워 칩 상에서 널리 사용되지 않았는데, 본 연구에서 이를 이용한 고성능 광소자를 실증함으로써 본격적으로 많은 중적외선 연구에 사용될 수 있을 것”이라고 평했다. 물리학과 고기영 박사과정 학생과 석대원 박사과정 학생(현재 박사후연구원)이 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이쳐 커뮤니케이션스(Nature Communications)' 지난 3월 19자로 게재됐다. (논문명: A mid-infrared Brillouin laser using ultra-high-Q on-chip resonators, DOI: 10.1038/s41467-025-58010-2) 한편 이번 연구는 삼성미래기술육성사업, 정보통신기획평가원 (IITP), 그리고 한국연구재단 (NRF)의 지속적인 지원을 받아 수행됐다.
2025.03.31
조회수 558
6밀리초에 단백질 반응 순간 포착 성공
생명현상을 이해하고 나아가 신약 개발을 위해 단백질 상호 작용 및 효소-기질 반응 등 마이크로초(micro-second)~밀리초(milli-second) 수준의 짧은 시간 동안 일어난 현상을 이해하는 것이 핵심이다. KAIST 연구진이 생명 현상을 이해하는데 필수적인 생화학 반응의 변화를 수 밀리초 수준에서 정지시키고 분석하는 방법을 개발했다. 우리 대학 화학과 강진영 교수와 물리학과 이원희 교수의 공동 연구팀이 초고속 생화학 반응 연구를 위한 ‘패릴렌(parylene)’* 기반 박막 미세유체 혼합-분사 장치’를 개발했다고 24일 밝혔다. *패릴렌: 단백질 반응을 초고속으로 관찰하기 위한 미세유체(microfluidics) 장치를 만드는 핵심 재료로 수 마이크로미터의 얇은 박막형태로 스프레이 제작이 가능하게 만든 소재임 이번 연구는 기존에 제시됐던 시간 분해 초저온 전자현미경(이하 TRCEM, Time-resolved cryo-electron microscopy) 기법의 한계를 극복해 기존 대비 시료 소모량을 1/3 수준으로 줄이면서 분석가능한 최소 반응시간을 기존 기술 대비 수십 배 향상하여 6밀리초(1,000분의 6초)까지 단축했다. 시간 분해 초저온 전자현미경은 단백질 복합체의 반응 중간 상태를 초저온에서 빠르게 냉동해 구조를 분석하는 기술로 최근 특별히 많은 주목을 받고 있다. 통상적인 초저온 전자현미경 분석에서는 짧은시간 존재하고 사라지는 반응 중간체를 포착하기 어려웠다. 이를 해결하기 위해 다양한 TRCEM 기법이 개발됐으나, 기존 기술은 많은 시료 소비와 제한된 시간 해상도 등의 한계로 어려움이 있었다. 연구침은 이를 극복하기 위해 초박막 패릴렌 소재를 적용한 새로운 혼합-분사장치를 개발했다. 본 장치는 시료의 양을 기존 대비 1/3 수준으로 줄여 실질적인 연구의 어려움을 개선했으며, 미세유체역학 소자 내에서 반응 개시에 드는 시료 혼합 시간을 0.5밀리초로 줄여 전체 반응시간을 6밀리초까지 줄였다. 연구팀은 또한 소자의 일체형 설계를 통해 실험의 정밀도와 재현성을 향상했다. 강진영 교수는 “이번 연구는 TRCEM 기법을 더욱 실용적으로 만들었으며, 구조 생물학 및 신약 개발, 효소 반응연구, 바이오 센서 개발 등 다양한 생명과학 및 의약 분야에서 패럴린 박막 소자의 폭넓은 활용 가능성을 제시했다”고 연구의 의의를 설명했다. 이원희 교수는 “연구팀은 앞으로 이를 활용한 생화학 반응 연구와 더 빠른 반응 분석을 위한 성능 향상을 목표로 연구를 이어갈 계획이다”라고 밝혔다. 이번 연구 결과는 화학과 석·박통합과정 황혜랑 연구원이 제 1저자로 국제학술지 어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials) 2025년 1월 28일 자에 온라인 게재됐다. (논문명: Integrated Parylene-Based Thin-Film Microfluidic Device for Time-Resolved Cryo-Electron Microscopy, doi.org/10.1002/adfm.202418224). 한편 이번 연구는 한국연구재단과 삼성미래기술육성재단, CELINE 컨소시엄의 지원을 받아 수행됐다.
2025.03.24
조회수 987
빛을 전기로, 에너지전환 핵심, 핫홀을 잡다
빛이 금속 나노 구조체에 닿으면 순간적으로 생성되는 플라즈모닉 핫전하(plasmonic hot carrier)는 광에너지를 전기 및 화학에너지 같은 고부가가치 에너지원으로 변환하는 중요한 매개체이다. 이 중 핫홀(hot hole)은 광전기화학 반응에 효율을 증폭시키지만 피코초(1조분의 1초) 수준의 극초단 시간 내에 열적으로 소멸되어 실용적인 응용이 되기 어려웠다. 한국 연구진이 핫홀을 더 오래 유지하고 흐름을 증폭시키는 기술을 개발하면서 차세대 고효율 광에너지 전환 기술의 상용화를 앞당기는 성과를 거두었다. 우리 대학 화학과 박정영 석좌교수 연구팀은 인하대 신소재공학과 이문상 교수 연구팀과 공동연구를 통해, 핫홀(hot hole) 흐름을 증폭시키고 이를 실시간으로 국소 전류 분포 맵핑을 하여 광전류 향상 메커니즘을 성공적으로 규명했다고 12일 밝혔다. 연구팀은 금속 나노 그물망을 특수한 반도체 소재(p형 질화갈륨) 기판 위에 배치한 나노 다이오드 구조를 만들어 기판 표면이 핫홀 추출을 촉진하도록 설계했다. 그 결과, 핫홀 추출 방향과 동일한 질화갈륨 기판에서는 다른 방향의 질화갈륨 기판보다 핫홀의 흐름 증폭 효과가 약 2배 증가시키는 데 성공했다. 또한, 광전도성 원자힘 현미경(Photoconductive Atomic Force Microscopy, pc-AFM) 기반의 광전류 맵핑 시스템을 활용해 나노미터(머리카락 두께의 10만 분의 1) 수준에서 핫홀의 흐름을 실시간 분석했다. 핫홀의 흐름이 주로 금 나노 그물망에 빛이 국소적으로 집중되는 ‘핫스팟’ 에서 강하게 활성화되지만, 질화갈륨 기판의 성장방향을 바꿈에 따라 핫스팟 이외의 영역에서도 핫홀의 흐름이 활성화되는 현상을 확인했다. 이 연구를 통해 연구진은 빛을 전기 및 화학 에너지로 변환하는 효율적인 방법을 찾았으며, 이를 활용하면 차세대 태양전지, 광촉매, 수소 생산 기술 등이 크게 발전할 것으로 기대된다. 박정영 교수는 “나노 다이오드기법을 이용하여 핫홀의 흐름을 처음으로 제어할 수 있었고 이를 이용하여 다양한 광전소자 및 광촉매 응용에 혁신적인 기여를 할 수 있을 것이다. 예를 들면 태양광을 이용한 에너지 변환 기술(태양전지, 수소 생성 등)에 획기적인 발전을 기대할 수 있으며 실시간 분석 기술을 개발하여 초소형 광전소자(광센서, 나노 반도체 소자) 개발에 응용이 가능”하다고 말했다. 화학과 이현화 박사와 텍사스 오스틴 대학 화학공학과 박유진 박사후연구원이 제1 저자로, 인하대학교 신소재공학과 이문상 교수와 KAIST 화학과 박정영 교수가 공동 교신저자로 참여한 이번 연구성과는 국제학술지‘사이언스 어드밴시스(Science Advances)’에 3월 7일 자로 온라인 게재됐다. (논문 제목: Reconfiguring hot-hole flux via polarity modulation of p-GaN in plasmonic Schottky architectures) DOI : https://www.science.org/doi/10.1126/sciadv.adu0086 한편, 이 연구과제는 한국연구재단(NRF)의 지원을 받았다.
2025.03.12
조회수 1173
췌장 등 생체조직 고해상도 홀로토모그래피 성공
기존 광학 기술은 두꺼운 생체 조직을 관찰할 때, 조직 내부에서 발생하는 빛의 산란으로 인해 광학적 수차(aberration)가 생기고, 이로 인해 영상 품질이 저하되는 한계가 있었다. 우리 연구진이 디지털 수차 보정 기술을 개발하여 두꺼운 생체 조직의 3차원 영상을 정밀하게 관찰할 수 있는 기술을 개발했다. 우리 대학 물리학과 박용근 교수 연구팀이 별도의 염색 없이 두꺼운 생체 조직의 3차원 영상을 고해상도로 관찰할 수 있는 디지털 수차 보정 기술을 개발했다고 5일 밝혔다. 연구팀은 광학적 메모리 효과(optical memory effect)*를 활용해 두꺼운 생체 조직을 실시간으로 고해상도로 관찰하는 기술을 개발했다. 이 기술은 기존 적응형 광학(adaptive optics) 기술보다 더욱 강력한 보정 효과를 제공하여, 생체 조직 내부의 구조를 보다 선명하게 포착할 수 있다. ☞광학적 메모리 효과: 빛이 기울어질 때, 산란된 빛도 함께 기울어지는 현상으로, 생체 조직과 같은 복잡한 산란 매질에서도 관찰 가능함. 새롭게 개발된 기법을 적용한 결과, 연구진은 생체 조직 내부의 세포 구조를 더욱 세밀하게 관찰할 수 있었으며, 마이크로미터 크기의 시료에서 발생하는 동적 변화를 실시간으로 포착하는 데 성공했다. 이번 연구는 조직 병리학, 신약 개발, 생물학 연구 등 다양한 분야에서 활용될 수 있는 새로운 이미징 기술을 제시했으며, 기존 기술이 극복하지 못한 심층 조직 이미징의 한계를 뛰어넘는 성과로 평가괸다. 이를 통해 생명과학 및 의료 분야에서 큰 기여를 할 것으로 기대된다. 박용근 교수는 “이번 연구는 기존 이미징 기술의 한계를 극복하는 새로운 접근 방식으로, 홀로토모그래피 기반 비침습적 생체 이미징 및 진단 연구에 큰 영향을 미칠 것이다. 앞으로는 생체 조직의 더욱 정밀한 3차원 이미징을 통해 세포 수준에서의 다양한 생명현상을 이해하는 연구를 지속할 계획”이라고 말했다. 물리학과 오철민 석박사통합과정 학생이 제1 저자인 이번 연구 결과는 지난 2월 17일 국제 학술지 ‘네이처 커뮤니케이션즈(Nature communications)’에 온라인 게재됐으며, 해당 기술은 다양한 생명과학 분야에서의 적용 가능성을 인정받고 있다. (논문명: Digital aberration correction for enhanced thick tissue imaging exploiting aberration matrix and tilt-tilt correlation from the optical memory effect) DOI: 10.1038/s41467-025-56865-z 이번 연구는 한국연구재단 리더연구사업 및 한국산업기술진흥원 글로벌산업기술협력센터사업의 지원을 받아 수행됐다.
2025.03.05
조회수 1710
양자 컴퓨터 오류정정에 필요한 양자얽힘 구현
양자 컴퓨팅은 고전 컴퓨터로는 계산하기 어려운 문제를 효율적으로 해결할 수 있는 양자 기술이다. 양자 컴퓨터가 복잡한 연산을 정확히 수행하려면 연산 과정에서 발생하는 양자 오류를 정정하는 것이 필수적이다. 하지만 이에 필요한 양자얽힘 상태를 구현하는 것은 매우 큰 난관으로 여겨져 왔다. 우리 대학 물리학과 라영식 교수 연구팀이 양자오류 정정 기술의 핵심이 되는 3차원 클러스터 양자얽힘 상태를 실험으로 구현하는데 성공했다고 25일 밝혔다. 측정기반 양자 컴퓨팅은 특수한 양자얽힘 구조를 가진 클러스터 상태를 측정하여 양자 연산을 구현하는 새로운 패러다임의 양자 컴퓨팅 방식이다. 이러한 방식의 핵심은 클러스터 양자얽힘 상태의 제작에 있으며, 범용 양자컴퓨팅을 위해 2차원 구조의 클러스터 상태가 사용된다. 하지만 양자연산에서 발생하는 양자오류를 정정할 수 있는 결함 허용 양자컴퓨팅(Fault-Tolerant Quantum Computing)으로 발전하려면 더욱 복잡한 3차원 구조의 클러스터 상태가 필요하다. 기존 연구에서는 2차원 클러스터 상태 제작이 보고됐지만, 결함 허용 양자컴퓨팅에 필요한 3차원 클러스터 상태는 양자얽힘의 구조가 매우 복잡해 그동안 실험 구현이 이뤄지지 못했다. 연구팀은 펨토초 시간-주파수 모드를 제어하여 양자얽힘을 구현하는 기술을 개발함으로써 3차원 구조의 클러스터 양자얽힘 상태를 생성하는 데 최초로 성공했다. 펨토초 레이저는 극도로 짧은 시간 동안 강한 빛 펄스를 방출하는 장치로, 연구팀은 비선형 결정에 펨토초 레이저를 입사시켜 여러 주파수 모드에서 양자 광원을 동시에 생성하고, 이를 활용하여 3차원 구조의 클러스터 양자얽힘을 생성했다. 라영식 교수는 "이번 연구는 기존 기술로는 구현하기 어려웠던 3차원 클러스터 양자얽힘 상태 제작에 성공한 최초의 사례”라며, “향후 측정 기반 양자컴퓨팅 및 결함 허용 양자컴퓨팅 연구에 있어 중요한 발판이 될 것”이라고 말했다. 물리학과 노찬 석박사통합과정 학생이 제1 저자로 참여하고 곽근희, 윤영도 석박사통합과정 학생이 공동 저자로 참여한 이번 연구는 저명 국제 학술지 `네이처 포토닉스(Nature Photonics)'에 2025년 2월 24일 온라인판으로 정식 출판됐다. (논문명: Generation of three-dimensional cluster entangled state, DOI: 10.1038/s41566-025-01631-2) 한편 이번 연구는 한국연구재단 (양자컴퓨팅 기술개발사업, 중견연구자 지원사업, 소재혁신 양자시뮬레이터 개발사업)과 정보통신기획평가원 (양자인터넷 핵심원천기술 사업, 대학ICT연구센터지원사업) 및 미국 공군연구소의 지원을 받아 수행됐다.
2025.02.25
조회수 1339
기후 변화가 뎅기열 확산 가속한다
뎅기열이 전 세계적으로 역대 최고 확산세를 기록하고 있는 가운데, 기후 변화가 뎅기열 확산을 가속한다는 분석이 나왔다. 우리 대학 수리과학과 김재경 교수 연구팀이 자체 개발한 수학 모델로 기후 변화가 뎅기열 발병에 미치는 영향을 분석한 결과, 필리핀의 기온 상승과 강우 패턴 변화가 뎅기열 발생 증가와 밀접한 관련이 있음을 밝혀냈다. 뎅기열은 모기를 통해 전파되는 바이러스성 감염병이다. 세계보건기구(WHO)에 보고된 감염 사례만 2000년 50만 명에서 2019년 520만 명으로 20년 만에 10배가량 가까이 증가했다. 급격한 증가의 주요 원인으로는 기후 변화가 지목된다. 이상 고온 현상과 극단 강우 현상이 모기 번식에 유리한 환경을 조성하기 때문이다. 하지만 기후 요인과 뎅기열 발병 사이의 복잡한 상호작용에 대한 이해는 아직 제한적이다. 특히, 강우량의 영향에 대해서는 학계의 오랜 논쟁이 있어 왔다. 높은 강우량이 뎅기열 발병을 유발한다는 결과와 억제한다는 결과가 비슷한 숫자로 존재하기 때문이다. 제1 저자인 올리비아 카위딩 연구원은 “이런 모순된 결과는 기존 연구가 기후와 뎅기열 간의 상호작용을 단순히 상관관계나 선형 회귀 모델에 기반해 분석했기 때문”이라며 “우리 연구진은 기존 방식을 넘어 비선형적이고 복합적인 기후 요인의 영향이 정확히 예측할 수 있는 도구를 활용해 연구를 진행했다”고 설명했다. 연구진은 자체 개발한 인과관계 추정 방법론인 ‘GOBI(General ODE-Based Inference)’를 활용해 2015~2019년 필리핀 16개 지역의 기후 및 뎅기열 데이터를 분석했다. 분석 결과, 모든 지역에서 기온 상승이 뎅기열 발병을 증가시키는 주요 요인으로 작용했다. 반면, 강우량의 경우 지역에 따라 서로 다른 영향을 미쳤다. 동부 지역에서는 강우량 증가가 뎅기열 발병을 증가시키는 경향을 보였으나, 서부 지역에서는 감소시키는 경향이 나타났다. 이어 연구진은 강우의 효과가 지역별로 달라지는 원인도 찾아냈다. ‘건기의 규칙성’이 강우와 뎅기열 발병 간의 관계를 결정짓는 중요한 요인이었다. 건기가 규칙적으로 유지되는 지역(서부)에서는 강우가 뎅기열 발병을 억제했지만, 규칙성이 약화된 지역(동부)에서는 강우가 뎅기열 발병을 촉진했다. 건기가 규칙적인 지역에서는 건기 동안 물이 고여 있는 모기 서식지가 강우에 의해 쉽게 제거돼 뎅기열 발생을 억제하는 ‘플러싱 효과(Flushing Effect)’가 강하게 나타난다. 이와 달리 건기가 불규칙적인 지역에서는 강우가 산발적으로 발생해 플러싱 효과가 약화되고, 오히려 모기 번식지를 형성해 뎅기열 발생을 촉진한다는 것이다. 이번 연구는 기후 변화가 뎅기열 발병에 미치는 복잡한 영향을 이해하고, 지역별 특성을 고려한 맞춤형 공중보건 전략을 설계하는 데 중요한 과학적 근거를 제공했다는 의미가 있다. 연구진은 필리핀 외의 지역으로 확장해 푸에르토리코 등 다른 지역에서도 유사한 패턴이 나타남을 확인했다. 다양한 기후 환경에 적용 가능한 일반성을 지닌다는 의미다. 연구를 이끈 김재경 교수는 “‘건기의 규칙성’은 기존 연구에서 간과된 부분으로 우리 연구는 뎅기열 발병에 대한 새로운 해석을 제공했다는 의미가 높다”며 “기후 변화가 뎅기열, 말라리아, 독감, 지카 등 기후 민감 질병에 미치는 영향을 이해하는 데 중요한 전환점을 제시한 것으로, 향후 자원 배분 및 예방 전략 수립을 위한 핵심 정보로 사용되길 바란다”고 말했다. 연구결과는 2월 13일(목) 04시(한국시간) 국제학술지 ‘사이언스 어드밴시스(Science Advances)’온라인판에 실렸다.
2025.02.13
조회수 1346
폴리페놀 코팅 기술로 탈모 예방 가능성 입증
탈모는 전 세계적으로 수억 명이 겪고 있는 문제로 심리적·사회적 영향을 크게 미치고 있다. KAIST 연구진이 천연 폴리페놀(polyphenol)의 일종인 탄닌산이 탈모 예방에 기여할 가능성에 주목하고 연구를 통해 탄닌산이 단순한 코팅제가 아니라, 탈모를 완화시키는 ‘접착 중재자(adhesion mediator)’ 역할을 한다는 점을 밝혀냈다. 우리 대학 화학과 이해신 교수 연구팀이 탄닌산 기반 코팅 기술을 활용해 탈모 완화 기능성 성분을 서서히 방출하는 새로운 탈모 예방 기술을 개발했다고 6일 밝혔다. 탈모에는 안드로겐 탈모증(androgenetic alopecia, AGA) 및 휴지기 탈모(telogen effluvium, TE)가 있는데 유전적, 호르몬적, 환경적 요인이 복합적으로 작용하며, 현재까지도 효과적이면서 부작용이 적은 치료법이 부족한 실정이다. 대표적인 탈모 치료제인 미녹시딜(minoxidil)과 피나스테라이드(finasteride) 는 일정 효과를 보이지만, 장기적인 사용이 필요하고, 체질에 따라 효능이 다르게 나타날 뿐만 아니라 일부 사용자는 부작용을 경험하기도 한다. 이해신 교수 연구팀은 탄닌산이 모발의 주요 단백질인 케라틴과 강하게 결합해 모발 표면에 지속적으로 부착될 수 있음을 입증했으며, 이를 활용해 특정 기능성 성분을 제어된 방식으로 방출할 수 있음을 확인했다. 특히 연구팀은 살리실산(salicylic acid, SCA), 니아신아마이드(niacinamide, N), 덱스판테놀(dexpanthenol, DAL) 등 탈모 완화 기능성 성분을 포함한 조합을 개발하고, 이를 ‘스캔달(SCANDAL)’이라 명명했다. 연구 결과, 탄닌산과 결합된 스캔달 복합체는 수분과 접촉하면 점진적으로 방출되며, 모발 표면을 따라 모낭으로 전달되는 것으로 나타났다. 굿모나의원(원장: 이건민) 연구팀은 탄닌산/스캔달 복합체가 포함된 샴푸를 12명의 탈모 환자에게 7일간 적용한 결과, 임상자 모두에게 유의미한 탈모 감소 효과가 관찰됐다. 실험 결과, 평균적으로 56.2%의 모발 탈락 감소 효과가 나타났으며, 최대 90.2%까지 탈모가 감소하는 사례도 확인됐다. 이는 탄닌산이 모발 표면에서 스캔달 성분을 안정적으로 유지하고, 서서히 방출되면서 모낭까지 전달되는 방식이 탈모 완화에 효과적일 수 있음을 시사한다. 이해신 교수는 “천연 폴리페놀(polyphenol)의 일종인 탄닌산은 강력한 항산화 효과를 가지며, 단백질과 강하게 결합하는 특성이 있어 생체 접착제(bioadhesive) 역할을 할 수 있다는 것을 입증하는데 성공했다.”고 말했다. 이어 이 교수는 “기존 연구에서도 피부 및 단백질 코팅 소재로 활용된 사례가 있지만, 이번 연구는 모발과의 결합 및 탈모 완화 성분 전달을 위한 최초 사례로 교원창업기업 폴리페놀팩토리(주)를 통해 제품화한 ‘그래비티 (Grabity)’샴푸에 적용하였다. 앞으로도 끊어지는 얇은 헤어의 강도를 획기적으로 늘리는 샴푸, 곱슬머리를 펴 주는 제품 등 더 다양한 연구 결과에 따른 제품화를 위해 노력하고 있다”고 강조했다. 화학과 김은우 박사과정이 제1 저자로, 이해신 교수가 교신저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼 인터페이스Advanced Materials Interfaces’ 1월 6일 온라인판에 게재됐다. (논문명: Leveraging Multifaceted Polyphenol Interactions: An Approach for Hair Loss Mitigation) DOI: 10.1002/admi.202400851 한편 이번 연구는 KAIST 교원 창업 기업인 폴리페놀팩토리(주)의 지원을 받아 수행됐다.
2025.02.06
조회수 3634
펨토초보다 짧은 순간 전이상태 분자구조를 밝히다
즈웨일 교수(1999년 노벨화학상)가 창출한 펨토화학을 통해 화학반응 중 일어나는 분자구조 변화를 실시간에서 관측할 수 있는 길이 열렸지만, 엄밀한 의미에서 에너지에 따른 전이상태 (Transition-State) 구조 변화를 직접 관측한 예는 매우 드물다. KAIST 연구진은, 광분해 화학반응 전이상태의 분자구조 변화를 분광학 기법*으로 정확하게 측정하는데 세계 최초로 성공했다. *분광학 기법: 빛과 분자의 상호작용을 통해 양자역학적 분자구조를 정확하게 알아냄 우리 대학 화학과 김상규 교수 연구팀이 화학반응의 전이상태 (Transition-State) 구조를 실험적으로 밝히는 데 성공했다고 4일 밝혔다. 화학반응 속도론이 개발되면서, 가장 중요한 핵심으로 자리잡은 개념이 ‘전이상태 (Transition-State)’다. 전이상태 이론(Transition State Theory, 이하 TST) 에서는 반응물과 생성물 중간에 위치한 전이상태의 분자구조 및 동역학적 특성에 의해 반응속도, 생성물의 상대적 수율, 에너지 분포 등이 결정된다. TST는 지난 1세기 동안, 모든 환경에서의 연소, 유기, 생화학 반응 등에 널리 응용 되어온 가장 보편적인 반응속도론이다. 그러나, 전이상태는 펨토초(10-15 second)보다 더 짧은 시간 동안만 존재하므로, 전이상태를 직접 실험적으로 관찰하는 것은 매우 어려운 일이며 항상 도전적인 과제로 남아있었다. 김상규 교수 연구팀에서 관측한 전이상태는 특별한 의미를 갖는다. 분광학적 기법을 통해, 분자가 전이상태로 접근하면서 가지는 구조 변화를 매우 정확하게 측정할 수 있었던 첫 번째 예라는 점이다. 분광학 기법으로 측정된 정확한 전이상태 분자구조 변화에 따라 관찰된 반응속도의 급격한 변화를 통해서, 분자구조와 화학반응성 간 긴밀한 상관관계도 아울러 증명되었다. 김상규 교수는 “복잡한 분자의 화학반응에서 전이상태에 접근하면서 급격하게 변화하는 분자구조를 분광학 및 반응동역학 기법으로 밝힌 것은 처음이며, 향후 많은 이론 및 실험적 연구를 촉진할 것으로 기대된다. 특히, 전이상태 구조는 특정 화학반응을 선택적으로 빠르게 할 수 있는 고효율 촉매 설계에 가장 근원적인 정보를 제공할 것이다.”라고 말했다. 이번 연구 결과는 김정길 박사 (제 1 저자), 강민석 박사과정 학생, 윤준호 박사(現 LG화학)가 공동 저자로 2025년 1월 ‘네이처 커뮤니케이션즈(Nature Communications, Vol. 16, 210) 에 대표적(Featured) 연구 성과로 발표됐다. 또한 매우 이례적으로 분광학 분야 최고 권위자인 MIT의 로버트 필드(Robert Field) 교수 및 이스라엘 벤구리온 대학 바라밴 (Baraban) 교수가 공동작성한 하이라이트 커멘트(Nature Communications, 16, 76)를 통해, 이번 연구 결과가 가지는 독창성과 시사성, 중요성 및 향후 실험물리화학 분야에서의 임팩트가 강조됐다. 한편 이번 연구는 한국연구재단의 중견연구사업 및 기초과학 4.0 중점연구소 (자연과학연구소)에서 지원받아 수행됐다.
2025.02.04
조회수 1819
버려지는 이산화탄소를 되살릴 수 있다면
세계적으로 기후 변화와 탄소 배출 문제의 심각성이 대두되면서 이산화탄소(CO2)를 화학 연료와 화합물 등의 자원으로 전환해서 활용하는 기술이 절실한 상황이다. 우리 대학 화학과 박정영 교수 연구팀이 한국재료연구원 나노재료연구본부 박다희 박사 연구팀과 공동연구를 통해 이산화탄소(CO2) 전환 효율을 크게 향상하는 촉매 기술을 개발했다. 기존의 이산화탄소(CO2) 전환 기술은 높은 에너지를 소비하는 것에 비해 효율은 낮아 상용화가 어렵다. 특히, 단원자 촉매(SACs)는 촉매 합성이 복잡하고, 금속 산화물 지지체(촉매 입자를 안정적으로 유지하거나 내구성을 높이는 역할)와 결합 안정성을 유지하기 어려워 촉매 성능이 떨어졌다. 이러한 한계를 극복하기 위해 연구팀은 단일 및 이중 단원자 촉매 기술을 개발하고 간단한 공정으로 촉매 효율을 높이는 기술을 선보였다. 본 성과는 이중 단원자 촉매(DSACs)로 금속 간 전자 상호작용을 적극 활용해 기존보다 50% 이상 높은 전환율과 우수한 선택성(촉매가 원하는 생성물을 많이 생성할 수 있도록 유도하는 능력)을 구현했다. 본 기술은 금속 산화물 지지체 내 산소 공공(Oxygen Vacancy)과 결함 구조를 정밀하게 제어해 이산화탄소(CO2) 전환 반응의 효율과 선택성을 획기적으로 높이는 촉매 설계 기술이다. 산소 공공이 촉매 표면에 이산화탄소가 잘 흡착되도록 돕고, 단원자 및 이중 단원자는 수소(H2)가 흡착되도록 돕는다. 산소 공공과 단원자 및 이중 단원자가 함께 작용하면서 이산화탄소(CO2)가 수소(H2)와 만나 원하는 화합물로 쉽게 전환되는 것이다. 특히, 이중 단원자 촉매(DSACs)는 두 금속 원자 간의 전자 상호작용을 적극 활용해 반응 경로를 조절하고 효율을 극대화했다. 연구팀은 에어로졸 분무 열분해법(Aerosol-Assisted Spray Pyrolysis)을 적용해 간단한 공정으로 촉매를 합성하고 대량 생산 가능성도 확보했다. 이는 복잡한 중간 과정 없이 액체 상태의 재료를 에어로졸(안개 같은 작은 입자)로 만든 후 뜨거운 챔버에 보내면 촉매가 완성되는 간단한 공정 방식이다. 해당 방식은 금속 산화물 지지체 내부에 금속 원자를 균일하게 분산시키고, 결함 구조를 정밀하게 조절할 수 있도록 돕는다. 이처럼 금속 산화물 지지체의 결함 구조를 정밀하게 제어함으로써 단일 및 이중 단원자 촉매를 안정적으로 형성하고 이중 단원자 촉매(DSACs)를 활용해 기존 단일 원자 촉매 사용량을 약 50% 줄이면서도 이산화탄소(CO2) 전환 효율을 기존 대비 약 두 배 이상 향상시키고, 99% 이상의 높은 선택성을 구현했다. 본 기술은 화학 연료 합성, 수소 생산, 청정에너지 산업 등 다양한 분야에 활용할 수 있다. 또한, 촉매 합성법(에어로졸 분무 열분해법)이 간단하고 생산 효율도 높아서 상용화될 가능성이 매우 크다. 연구책임자인 박다희 선임연구원은 "본 기술은 이산화탄소(CO2) 전환 촉매의 성능을 획기적으로 향상하는 동시에 간단한 공정을 통해 상용화를 가능하게 한 중요한 성과”라며, "탄소중립 실현을 위한 핵심 기술로 활용될 수 있을 것으로 기대된다.”라고 밝혔다. 또한 박정영 교수는 “본 연구는 새로운 종류의 단원자 촉매를 상대적으로 쉽게 합성할 수 있어 다양한 화학 반응에 쓰일 수 있고, 온실가스로 인한 지구온난화 문제 해결에 가장 시급한 연구 분야인 이산화탄소 분해/활용 촉매개발에 중요한 단초를 제공한다.”라고 언급했다. 본 연구는 한국재료연구원의 주요사업과 과학기술정보통신부, 산업통상자원부, 국가과학기술연구회의 지원을 받아 수행되었다. 연구 결과는 촉매 및 에너지 분야에서 권위 있는 저널인 어플라이드 카탈러시스 비: 인바이런멘탈 앤 에너지(Applied Catalysis B: Environmental and Energy(JCR 상위 1%, IF 20.3))에 온라인 게재됐다. *논문(Applied Catalysis B: Environmental and Energy) DOI 주소 https://doi.org/10.1016/j.apcatb.2024.124987
2025.01.23
조회수 1774
암흑 물질 액시온 탐색 가능성 획기적 높여
암흑 물질이란 질량은 있으나 관측이 불가능한 미지의 물질을 말하며, 우주 전체 에너지의 약 27% 정도를 차지하고 있다. 암흑 물질을 연구하는 주된 이유는 우주의 구조와 진화의 비밀을 밝히고 이를 통해 우주의 형성과 모습을 이해하고자 함이다. 한국 연구진이 암흑 물질 후보로 알려진 액시온의 탐색 효율을 크게 향상시킬 고주파 공진기 튜닝 기술을 개발했다. 우리 대학 물리학과 야니스 세메르치디스 교수 연구팀이 기초과학연구원(IBS)(원장 노도영) 산하 액시온 및 극한상호작용 연구단(이하 CAPP)(단장 야니스 세메르치디스)과 협력해 메타물질*을 이용, 암흑 물질인 액시온의 탐색 범위를 효율적으로 확장할 방법을 구현했다고 25일 밝혔다. *메타물질: 아직 자연에서 발견되지 않은 특성을 갖도록 인공적으로 설계한 물질을 말함. 암흑물질의 존재와 더불어 또 다른 미스터리는 ‘오늘날 우주가 왜 물질로만 이루어져 있는가?’라는 점이다. 초기 우주에서는 물질과 반물질이 거의 같은 양으로 생성되었을 것이라 추정하고 있다. 따라서, 현재의 우주에 대해, 입자물리학에서는 물질이 반물질보다 압도적으로 우세한 이런 물질-반물질의 불균형을 CP*라고 불리는 대칭성의 깨짐으로 설명하려고 한다. *CP: 전하(Charge)와 공간 반전(Parity) 액시온은 강한 상호작용에서 발생하는 이 특정 대칭 불균형과 관련된 문제, 즉 대칭성이 깨져있을 거라는 이론적 예측과 이 대칭성이 보존되는 것처럼 보인다는 실험적 관측 사이의 차이를 해결해 줄 수 있는 가상의 입자이다. 즉, 액시온 입자의 존재는 우주의 물질-반물질 불균형과 암흑물질이라는 두 가지 근본적인 미스터리를 동시에 해결할 열쇠가 될 수 있다. 암흑 물질 액시온은 그 고유한 진동 주파수에 맞는 공진기를 통해 탐색할 수 있으며, 최근 암흑 물질 액시온의 질량을 예측하려는 이론적 연구들에 따르면, 현재 민감한 실험들이 다루고 있는 영역보다 더 높은 주파수대에서 탐색이 필요하다는 전망이 제기되고 있다. 이에 따라 고주파 탐색의 필요성이 대두되면서 다양한 공진기 개발이 이뤄졌고 고주파 액시온 탐색에서 높은 효율을 기대할 수 있게 됐지만, 고차 공명 모드를 효과적으로 튜닝할 방법은 여전히 부족한 상황이다. 이에 연구팀은 음팽창 메타물질 구조를 활용해 회전 운동을 2차원 팽창 및 수축 운동으로 전환하는 새로운 튜닝 메커니즘을 개발했다. 키리가미(kirigami)라는 종이접기/자르기 방식에서 영감을 얻은 음팽창 메타물질 구조체는 특유의 결합 배열 덕분에, 한쪽 면에 팽창·수축하는 힘이 가해질 때 다른 면도 함께 팽창·수축하는 특성을 갖는다. 이러한 성질을 이용하면 구조체의 중심이 회전할 때 전체 구조가 팽창하거나 수축하는 움직임으로 변환된다. 이를 통해 간단한 1차원 회전 움직임을 더 복잡한 2차원 움직임으로 확장할 수 있는 혁신적인 구조가 만들어진다. 또한 저온 환경에서 음팽창 구조체의 효율적인 움직임을 위해 기어 구조를 도입해 힘을 보강했다. 이를 통해 극저온 환경에서도 최소한의 힘과 열 발생으로 구조체를 효과적으로 구동하며 주파수를 조정할 수 있었다. 연구팀은 육각 음팽창 구조를 유전체 튜닝 구조체로 고려하고, 이를 공진기의 적용해 주파수를 효과적으로 조정할 수 있음을 확인했다. 나아가 이 공진기를 극저온으로 냉각한 상태에서 9T(테슬라, 자기장의 강도를 나타내는 단위, 1T는 지구 자기장의 약 2만 배) 자기장을 인가해 실제 액시온 검출 실험을 수행했고, 기존 민감도를 두 배로 향상하는 성과를 거뒀다. 연구팀이 개발한 이 독특한 구조체는 극저온과 강한 자기장 환경에서도 작동 가능한 메타물질 기반 주파수 조정 장치로, 향후 고주파 영역의 암흑 물질 액시온 탐색에 적극 활용될 것으로 기대된다. 또한, 이 시스템은 극한의 저온·고자기장 환경에서 로보틱스 분야로도 확장될 잠재력을 가지고 있다. 제1 저자인 KAIST 배성재 박사과정 학생은 “이 결과는 고차 공명모드를 실용적으로 활용할 수 있는 튜닝 메커니즘의 입증을 통해 고주파 액시온 탐색에 새로운 방향을 제시한 것”이라고 밝혔으며, 공동 제1 저자인 IBS 정준우 박사후 연구원은 “궁극적으로 액시온 암흑 물질의 비밀을 풀기 위해 보다 포괄적이고 효과적인 탐색 전략의 돌파구를 마련했다”라고 덧붙였다. 물리학과 배성재 박사과정과 IBS-CAPP 정준우 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘피지컬 리뷰 레터스(Physical Review Letters)’ 11월 22일 133호에 게재됐다. (논문명 : Search for Dark Matter Axions with Tunable TM020 mode) 한편 이번 연구는 기초과학연구원의 지원을 받아 수행됐다.
2024.11.25
조회수 2085
천연물 최초 합성으로부터 신개념 광스위치 개발
자연에서 일어나는 대부분의 화학 반응은 에너지적으로 안정한 형태를 취하는 방향으로 진행된다. 그렇기에 상대적으로 불안정한 구조를 가진 세큐린진 B의 합성은 매우 도전적인 과제다. 우리 연구진이 천연물 합성 원리를 바탕으로 빛으로 on/off가 가능한 분자 스위치 신소재 원천기술을 확보했다. 우리 대학 화학과 한순규 교수와 윤동기 교수 공동연구팀이 항암 및 퇴행성 뇌 질환 치료 효과로 학계의 꾸준한 관심을 받고있는 세큐리네가 알칼로이드 천연물 군에 속하는 세큐린진(securingine) B의 합성 방법을 세계 최초로 밝혀내고, 이 과정에서 발견한 화학적 반응성을 응용해 새로운 타입의 분자 광스위치를 개발했다고 11일 밝혔다. 한 교수 연구팀은 천연물 합성에 머무르지 않고 이 분자 재배열 원리를 바탕으로 서로 다른 파장의 빛을 통해 가역적으로 형태와 성질이 바뀌는 분자 광스위치를 고안했다. 천연물에 전자주개 치환기*를 달자 가시광선 영역의 빛을 흡수하면서, 무색인 기본 천연물과 달리 신물질은 노란색을 띠었다. 이렇게 새로 만든 천연물 유래 소재에 파란색 빛을 쬐었더니 수 초 뒤 색이 없어졌다. 빛에 의해 분자구조가 변형되면서 물질의 성질이 바뀌어 더 이상 색을 띄지 않게 된 것이다. 게다가 이 변형된 구조의 물질에 310나노미터(nm) 파장의 자외선을 쬐었더니 다시 구조가 원래대로 돌아오면서 노란색이 됐다. *전자주개 치환기: 상대적으로 전자밀도가 풍부하여 전자가 부족한 시스템을 안정화시킬 수 있는 탄화수소의 모체 사슬 상의 한 개 이상의 수소 원자를 대체하는 원자 또는 원자단 한 교수 연구팀은 새로이 개발한 광 감응 물질을 고분자에도 적용했다. 연구팀은 PDMS(polydimethylsiloxane, 연성고분자의 일종) 고분자에 분자 광스위치 물질을 혼합하고 굳혀서 427 nm 파장의 파란색 가시광선을 쬐어쬐어주면 무색이 되고 310 nm 파장의 자외선을 쬐어주면 노란색으로 변하는 젤리 물질을 개발하였다. 연구팀은 새로 개발한 광스위치 소재를 광학재료 분야에 접목하고자 같은 학과 윤동기 교수 연구팀과 광 감응 카이랄* 혼입제 개발에 착수했다. 디스플레이 분야에 적용하기 위해 액정 물질에 파란색 빛을 쬐었을 때 카이랄 액정의 꼬임 주기가 변하면서 광스위치의 성질도 여전히 가지는 것을 관찰했다. *카이랄: 왼손과 오른손처럼 서로 거울 쌍을 이루지만, 둘이 서로 겹쳐지지 않는 성질로 화학의 핵심 개념이자 물질의 광학적 특성을 결정하는 근본 요소 중 하나. 이번에 개발한 광스위치는 분자 내에서 결합이 이동해 분자구조가 바뀌는 혁신적인 작동 원리에 기반해 분자 광스위치 관련 분야 연구자의 눈길을 끌었다. 파장에 따른 색 변화뿐 아니라 형광의 on/off도 가능하기 때문에 형광 탐침자로써 생물학 분야에도 응용가능하다. 한 교수는 “이번 성과는 천연물 합성이라는 기초과학 연구 과정에서 발견한 원리를 다양하게 응용 가능한 새로운 분자 광스위치 개발로 연결한 사례”라며 “새로운 기술의 개발을 위해서는 자연현상의 작동 원리를 탐구하는 기초과학 연구가 굉장히 중요하다는 것을 다시 한번 일깨워준 계기가 되었다”라고 밝혔다. 화학과 박상빈 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 ‘셀 프레스(Cell Press)’에서 발간하는 국제 학술지 ‘켐(Chem)’에 10월 31일 字 게재됐다. (논문명: Synthesis of securingine B enables photoresponsive materials design) 이번 연구는 한국연구재단이 지원하는 선도연구센터인 KAIST 멀티스케일 카이랄 구조체 연구센터에(센터장: 이희승 교수) 속한 한순규-윤동기 교수 연구팀의 공동연구로 진행됐다. 이 밖에도 이번 연구는 한국연구재단의 개인기초연구사업과 KAIST의 도약연구(UP) 사업, KC30 사업, 그리고 초세대 협업연구실 프로젝트의 지원을 받아 수행됐다.
2024.11.11
조회수 2639
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 19