본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4%EB%B0%8F%EB%87%8C%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
기존보다 26배 효과적인 폐질환 흡입치료 가능
코로나19의 전 세계적 유행 이후, 폐 등 호흡기 질병에 대비하기 위한 mRNA 백신 및 치료제는 차세대 치료제로 주목받고 있다. 하지만 기존 mRNA 백신용 전달체가 가지고 있는 한계점을 극복하고 우리 대학 연구진이 호흡기 바이러스 및 난치성 폐질환의 mRNA 흡입 치료를 가능케 하며 유전자 폐 치료 연구의 근간이 될 연구에 성공했다. 우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 유전자 폐 치료에 최적화된 나노 전달체를 개발했다고 7일 밝혔다. 연구팀은 기존 mRNA 전달을 위해 활용되던 지질나노입자(이하 lipid nanoparticle, LNP)의 에어로졸화 과정에서의 불안정성과 폐 미세환경에서의 낮은 전달 효율을 해결하기 위해 이온화성 지질나노복합체(ionizable lipocomplex, iLPX)를 개발했다. iLPX는 이온화성 리포좀의 외부에 mRNA를 결합한 형태로, 에어로졸화 과정에서 입자의 구조를 유지하기 때문에 흡입 전달에 용이하다. 또한, 폐 미세환경 내에서 폐계면활성제와의 상호작용을 유도해 호흡 운동을 활용, mRNA를 높은 효율로 폐 세포 내로 전달할 수 있다. 흡입 전달 및 폐 미세환경을 고려한 모방 환경 및 마우스 폐에서의 단백질 발현을 토대로 한 다차원 선별 과정을 통해 iLPX의 구성 요소들을 최적화시킴으로써 흡입용 mRNA 전달체(Inhalation optimized-iLPX, 이하 IH-iLPX)를 완성했다. 연구팀은 에어로졸화 전후의 입자 크기, 균일도, mRNA 탑재율을 비교함으로써 IH-iLPX의 월등한 에어로졸화 안정성을 증명했다. 나아가, IH-iLPX를 전달한 마우스에서 LNP 전달 마우스보다 26배 높은 단백질 발현이 유도됨을 확인했다. 연구팀은 동물 모델에서 흡입 전달된 IH-iLPX가 폐 특이적으로 단백질을 발현시키며, 폐포 상피세포와 기관지 상피세포에서 mRNA를 효과적으로 전달함을 확인했다. 또한 혈액 생화학 분석과 조직 검사를 토대로 IH-iLPX가 폐와 혈액 환경에서 독성이 없음을 확인했기 때문에 효과적인 폐내 mRNA 발현뿐만 아니라 생체 안전성 측면에서 큰 의의를 갖는다고 밝혔다. 박 교수는 “mRNA를 반드시 내부에 탑재해야 한다는 고정 관념을 깨고 새로운 구성의 입자를 제시함으로써 기존에 불가능했던 흡입형 유전자 치료의 길을 열었다”며 “본 연구실에서 개발한 흡입형 유전자 전달체는 치료 단백질을 암호화하는 mRNA를 탑재해 폐질환에 적용되어 유전자 폐 치료의 적용 범위를 넓힐 것으로 기대된다”이라고 말했다. 바이오및뇌공학과 장민철 박사과정이 제1 저자로 참여한 이번 연구 결과는 나노기술 분야 국제학술지 ‘ACS 나노(Nano)’ 9월 3일 자 18권 35호에 게재됐다. (논문명: Inhalable mRNA Nanoparticle with Enhanced Nebulization Stability and Pulmonary Microenvironment Infilration) 이번 연구는 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2024.10.10
조회수 1230
‘불균일 확산’ 160년 난제 풀다
우리 연구진이 160년 넘게 풀리지 않던 불균일 확산 현상의 물리적 원인을 규명했다. 우리 대학 수리과학과 김용정 교수와 바이오및뇌공학과 최명철 교수 연구팀이 기존 확산 법칙이 하지 못했던 불균일한 환경에서 발생하는 분류 현상을 설명하는 새로운 확산 법칙과 실험적 증명을 제시해, 과학의 중요한 진전을 이뤄냈다고 2일 밝혔다. 미시적 입자들의 무작위적인 움직임이 만들어 내는 거시적 질량 이동 현상을 '확산'이라고 한다. 확산은 물리, 화학, 생물, 재료 등 자연 현상뿐만 아니라 정보, 경제, 주가 변동 등 사회 현상에 이르기까지 거의 모든 분야에서 발생하는데, 이는 무작위성(randomness)이 확산 현상의 주요 원인이기 때문이다. 1905년 아인슈타인은 확산을 브라운 운동과 결합해 분자의 무작위 행보(random walk)로 설명했고, 그 이후 균일한(homogeneous) 환경에서의 확산 이론은 완벽하게 정립됐다. 반면, 1856년 루트비히(Ludwig)는 불균일(heterogeneous)한 환경에서는 물질이 확산에 의해 섞이는 것이 아니라 오히려 분류(fractionation)되는 현상을 발견했다. 이후, 확산 이외에 다른 추가적인 대류(advection) 현상이 존재해서 분류 현상을 만드는지, 아니면 입자의 무작위 움직임에 의한 것인지에 대한 의문과 논쟁은 160여 년간 이어져 왔다. 연구팀은 ‘아인슈타인의 입자적 설명'이 불균일한 환경에서 발생하는 분류 현상을 설명할 수 있을 것이라는 가정하에 연구를 진행했다. 연구 결과, 미시적 수준에서의 무작위 행보(random walk)가 불균일한 환경에 적용되면 확산 계수 D는 전도도 K와 운동성 M으로 나뉘며 (D = KM), 이 중 운동성 M에 의해 분류 현상이 발생한다는 것을 수학적 계산과 유도로 밝혔다. 물리적 직관으로 보이지 않던 것이 수학적 계산을 통해 명확해진 것이다. 이렇게 만들어진 새로운 확산 법칙은 기존의 확산 법칙처럼 계수 D 하나로만 이루어지지 않고, 두 계수에 의해 결정되는 ‘2개 요소 확산 법칙(two-component diffusion law)'이 된다. 새로운 확산 법칙이 분류 현상을 완벽하게 설명할 수 있다면, 추가적인 대류 현상은 존재하지 않으며, 오직 입자들의 무작위 운동만으로 분류 현상이 발생한다는 것이 증명된다. 확산의 특성상, 분류 현상을 검증할 정도의 정밀도로 데이터를 측정하는 것이 KAIST 연구팀이 수행한 실험의 도전적 요소였으며, 연구팀은 이 사실을 실험으로 검증해 냈다. 김용정 교수는 "이번 연구는 공간적으로 이질적인 환경에서 확산만으로도 입자의 분류가 가능하다는 것을 입증한 중요한 발견으로 기존 확산 법칙이 설명하지 못한 현상을 정확히 해석해냈다.”고 말했다. 최명철 교수는 “향후 생명과학 및 재료과학 분야에서 새로운 분리 기술 개발에 기여할 것이며 나아가, 불균일한 환경에서의 확산 현상을 다루는 다양한 분야에서 제시된 확산 법칙이 활용될 수 있을 것으로 기대한다" 고 밝혔다. 연구팀은 후속 연구로 온도 불균일에 의한 분류 현상과 고체 내의 성분 불균일에 의한 분류 현상을 연구할 계획이다. 다양한 종류의 분류 현상이 2개 요소 확산 법칙으로 설명될 수 있음을 밝히고, 그 특성을 규명할 것을 계획하고 있다. 수리과학과 김호연 박사와 바이오및뇌공학과 이근민 박사과정생이 공동 제1 저자로, 김용정 교수와 최명철 교수가 공동 교신저자로 참여한 이번 연구는 국제학술지 '미국화학회지(Journal of American Chemical Society)'에 8월 30일 字 온라인 게재됐다. (논문명: Fractionation by Spatially Heterogeneous Diffusion: Experiments and Two-Component Random Walk Model) 이 연구는 한국연구재단, 보건복지부, KAIST의 지원을 받아 수행됐다.
2024.10.02
조회수 1649
100배 정밀한 신개념 빛 측정 센서 개발
자율주행에서 물체의 모양과 위치를 정확히 추적할 수 있는 기술이 필요하다. 또한, 생물학적 세포, 박막, 미세구조 및 기타 유사한 물질들을 화학 염색 없이도 상세하고 높은 대비로 관찰할 수 있는 기술은 의료 및 산업 현장에서 중요하다. 하지만 기존 기술들은 간섭계를 사용하기 때문에 크고 복잡한 장비가 필요하고 주변 환경에 민감해 실제 현장에서의 활용이 제한됐다. 우리 연구진이 이러한 한계를 극복하고 다양한 응용 분야에서 활용할 수 있는 신개념 빛 측정 기술을 개발해서 화제다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 세계 최초로 메타표면*으로 성능이 대폭 향상된 파면 센서를 이용해 복잡한 물체의 단일 측정 위상 이미징 기술을 개발했다고 20일 밝혔다. *메타표면: 나노미터에서 마이크로미터 스케일의 기하학적 구조를 가지는 나노 구조체들로 이뤄진 평면으로, 각 나노 구조체의 모양에 따라 매우 미세한 규모에서 전자기파의 전파 경로, 위상, 편광, 진폭 등을 제어할 수 있음 파면은 파동이 동일한 위상을 가지고 있는 지점들을 연결한 면이다. 바다에서 보이는 파도는 일상생활에서 볼 수 있는 파면의 한 예다. 파도가 장애물을 만나거나 환경이 달라지면 모양이 바뀌듯, 빛의 파면도 물체를 통과하거나 반사될 때 물체의 모양에 따라 변한다. 따라서 물체를 통과하거나 반사된 빛의 파면을 분석하면, 물체에 의해 변화되는 빛의 위상 정보를 얻을 수 있다. 샥-하트만 파면 센서(Shack-Hartmann wavefront sensor)는 렌즈 배열과 카메라가 결합된 구조로, 각 렌즈에 입사하는 파면의 경사도에 따라 달라지는 초점의 위치를 분석해 입사된 빛의 파면을 복구한다. 샥-하트만 파면 센서는 간단한 구조와 높은 견고성으로 천문학 및 광학 시스템 평가 등 산업 현장에서 널리 사용되고 있다. 하지만, 기존 샥-하트만 파면 센서는 마이크로 렌즈 크기 때문에 공간해상도가 1 mm2 당 100개 수준으로 제한되어 복잡한 물체의 위상 이미징이 불가능했다. 연구팀은 나노 공정 기술을 통해 제작된 메타표면을 이용해 이 문제를 해결했다. 이번 연구에서 메타표면 기술로 제작된 메타 렌즈를 활용해 시판되고 있는 샥-하트만 파면 센서보다 약 100배 높은 공간해상도를 가지는 메타 샥-하트만 파면 센서를 개발했다. 개발된 메타 샥-하트만 파면 센서는 높은 공간해상도를 이용해 기존 샥-하트만 파면 센서로는 측정이 불가능했던 복잡한 구조체의 위상 이미지를 얻는 데 성공했다. 또한 연구팀은 메타 샥-하트만 파면 센서를 통해 3차원 위치를 추적했다. 이 과정에서, 메타 샥-하트만 파면 센서가 거의 모든 가시광 영역에서 작동하며, 기존 샥-하트만 파면 센서보다 약 10배 큰 시야각을 가지는 것을 확인했다. 이 기술을 활용하면 넓은 영역에서 물체의 3차원 위치의 추적이 가능하다. 연구를 주도한 고기현 박사는 “메타 샥-하트만 파면 센서는 기존 기술보다 견고하고 작은 크기를 가지는 장비로서 초기 질병 진단, 제조 공정의 결함 검출과 자율 주행 등 다양한 분야에 적용될 수 있을 것으로 기대된다”고 밝혔다. 또한 "메타 샥-하트만 파면 센서는 기존 기술의 한계를 극복하고, 위상 이미징 기술의 새로운 기준을 세웠다”며, “이번 연구에서는 메타 샥-하트만 파면 센서의 개념 검증에 집중했고, 향후 메타표면의 우수한 빛 조작 능력을 활용해 초소형·다기능 메타 파면 센서를 개발하는 데 주력할 것이다”라고 밝혔다. 우리 대학 바이오및뇌공학과 고기현 박사가 제1 저자, 장무석 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `라이트:사이언스&어플리케이션즈(Light:Science&Applications)'에 지난 8월 12일 字 출판됐다. (논문명: Meta Shack-Hartmann wavefront sensor with large sampling density and large angular field of view: Phase imaging of complex objects) 한편 이번 연구는 과학기술정보통신부 한국연구재단이 주관하는 바이오·의료기술개발사업, STEAM연구사업, 선도연구센터지원사업(ERC), 우수신진연구자사업, 교육부가 주관하는 박사후국내연수사업, 삼성미래기술육성사업, 삼성설비연산학과제의 지원을 받아 수행됐다.
2024.08.20
조회수 2216
종양모델 칩으로 다조건 항암제 동시 평가
실제 인체에 항암제가 투여되면 약물 분자는 혈류를 따라 수송된다. 이 약물 분자들은 혈관 벽을 투과하고 확산한다. 확산한 분자는 종양 덩어리 내부까지 점차 침투해 약물 효능이 나타나게 된다. 우리 연구진이 바이오프린팅 기술로 36가지의 종양 미세환경을 유체채널 내부에 모사하여 12가지 실험 조건에 따른 항암제 효능을 동시에 평가하는데 성공하여 화제다. 우리 대학 바이오및뇌공학과 박제균 교수 연구팀이 기존 바이오프린팅* 및 랩온어칩** 기술의 한계점을 극복하고 장점을 극대화하여 복잡한 종양 미세환경이 구현된 랩온어칩을 개발하여 여러 분석 변수가 반영된 약물 스크리닝을 수행하는 데 성공했다고 16일 밝혔다. * 바이오프린팅(bioprinting): 세포와 생체재료로 구성된 바이오 잉크를 활용하여 생체조직 및 기관과 유사한 기능적 구조물을 제작하는 3D 프린팅 기술 ** 랩온어칩(lab-on-a-chip): “칩 위의 실험실”이란 개념을 갖고 있으며 각종 시료분석에 필요한 전처리, 분리, 희석, 혼합, 반응, 검출 기능 등을 미세유체 회로로 이루어진 채널 내에서 일괄적으로 수행할 수 있도록 만들어진 미세유체 소자 및 시스템 바이오프린팅은 조직이나 장기의 복잡한 형상과 조성을 체외환경에서 재현할 수 있는 생체모사 기술이지만, 제작된 생체모델의 배양 환경 제어와 분석이 어렵다. 반면, 랩온어칩은 미세 유체채널 내에서의 유체 제어 기술에 기반해 배양 환경의 정교한 제어와 다양한 분석 수행이 가능하지만, 미세한 유체 통로 내부에 생체 환경을 모사하는 데 한계가 있었다. 연구진은 바이오프린팅 기술로 서로 다른 조성으로 구성된 총 36개의 종양 모델을 랩온어칩 내에 형성한 후, 동일한 소자 내에서 12가지 실험 조건에 따른 항암제 효능을 동시에 평가하는 데 성공했다. 연구팀은 바이오프린팅의 우수한 공간적 자유도와 다양한 생체재료를 활용할 수 있다는 장점을 이용해, 세 가지 서로 다른 조성으로 이루어진 36개의 종양 모델을 하나의 미세 유체소자에 집적시켰다. 세포를 유동 배양해 물질 수송에 핵심 구조물인 혈관 벽과 종양 덩어리를 모사하여 네 가지 농도의 항암제를 종양 모델에 유입함으로써, 하나의 소자에서 12가지 실험 조건의 약물 평가를 수행했다. 또한 연구팀은 혈관 벽에 의해 약물 분자의 수송이 저해되고 종양 덩어리 내부까지 침투되는 현상을 관찰할 수 있었고, 체내 수송 과정을 모사하지 못했던 기존 종양 모델과 약물 효능에 큰 차이를 보인다는 것을 확인했다. 이처럼 바이오프린팅-랩온어칩 통합기술을 활용해 모델 복잡성, 모델 수, 모델 처리량 등 다양한 변수를 고려한 체외 종양 모델을 제작할 수 있었고, 더욱 신뢰성 있는 약물 평가를 수행할 수 있었다. 연구를 주도한 박제균 교수는 “바이오프린팅과 랩온어칩의 통합기술로 제작된 미세 유체 세포배양 및 분석 플랫폼의 개발에 따른 신뢰성 있는 약물 평가 모델에 대한 성과”임을 강조하며, “향후 다양한 조직 및 장기 특성을 모사하고 생물학적 분석과 약물 효능 평가를 고효율로 수행할 수 있는 동물실험 대체용 차세대 체외 세포배양 및 분석 기술로 활용될 수 있을 것”이라고 말했다. 바이오및뇌공학과 이기현 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '어드밴스드 헬스케어 머티리얼즈(Advanced Healthcare Materials)'에 2024년 6월 3일 자로 온라인판에 게재됐다. (https://doi.org/10.1002/adhm.202303716. 논문명: Bioprinted multi-composition array mimicking tumor microenvironment to evaluate drug efficacy with multivariable analysis). 또한, 이번 논문은 와일리-VCH(Wiley-VCH) 출판사의 ‘핫 토픽: 종양과 암(Hot Topic: Tumors and Cancer)’세션과 ‘핫 토픽: 미세유체공학(Hot Topic: Microfluidics)’세션에 동시 선정됐다. 한편 이번 연구는 한국연구재단 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2024.07.16
조회수 2134
맞춤형 종양 모델 구축 스페로이드 플랫폼 개발
세포들이 뭉쳐 생성된 구형 집합체인 스페로이드(spheroid)의 제작 기술은 현재 단일 조건의 스페로이드를 대규모로 생성하는 것까지는 가능하나, 체내 조직의 기능을 모사할 수 있는 최적의 크기 및 세포 조성 범위의 탐색이 어렵고, 다중 약물 스크리닝에 적합하지 않다는 문제가 있었다. 우리 연구진이 단 3번의 세포 주입으로 10가지 세포 조성을 갖는 100개의 스페로이드를 제작하고, 25가지 약물 조합을 동시에 처리할 수 있는 플랫폼을 구축하는 데 성공했다. 우리 대학 바이오및뇌공학과 박제균 교수 연구팀이 다양한 스페로이드 어레이(배열)를 맞춤형으로 손쉽게 제작하고 이를 구획화해 다중 시약 처리를 수행할 수 있는 조립형 마이크로어레이 플랫폼을 개발했다고 27일 밝혔다. 기존 단일 조건의 스페로이드를 대규모로 제작하는 방법은 다중 약물 스크리닝이 어렵고, 다중 약물 스크리닝이 가능한 방법은 대규모 제작이 어려워, 두 가지 장점을 동시에 만족하는 플랫폼이 개발되지 않은 실정이었다. * 다중 약물 스크리닝: 암 치료의 식별 및 약물 안전성 평가를 위해 약물의 종류, 농도 등 다양한 실험 조건 변화에 따른 세포 및 조직의 반응을 평가하는 방법 연구팀은 조립식 플랫폼의 핵심기술인 행잉드롭 마이크로어레이*, 그래디언트(gradient) 블록**, 오목 기둥 마이크로어레이***를 개발하고, 이들의 조립 방식에 따라 달라지는 여러 가지 스페로이드 어레이 기반 종양 모델의 제작 방법과 분석 방법을 발표했다. * 행잉드롭 마이크로어레이: 고드름과 같이 표면에 매달린 형태의 물방울을 의미하는 행잉드롭 내에 세포가 존재하면 중력에 의해 세포들이 응집되어 스페로이드가 만들어짐. 행잉드롭 마이크로어레이는 바닥 면에 구멍이 2차원으로 배열되어, 단 한 번의 세포 혼합용액 주입으로 행잉드롭을 어레이 형태로 형성할 수 있어, 균일한 스페로이드 어레이를 제작할 수 있음 ** 그래디언트 블록: 경사면을 가지는 블록으로, 행잉드롭 마이크로어레이와 조립하게 되면 각각의 어레이 구멍에 가라앉는 세포의 수가 선형으로 변화하게 되어 이를 통해 크기가 규칙적으로 변화하는 스페로이드 어레이를 제작할 수 있음 ***오목 기둥 마이크로어레이: 행잉드롭과 접촉하여 스페로이드를 기둥 상부에 안착시켜 회수할 수 있는 구조를 갖고 있어, 스페로이드 어레이를 개별적으로 분리하고 이동시킬 수 있음 연구팀은 10가지의 다른 세포 조성을 가지며, 조성 별로 10개의 스페로이드가 존재하는, 총 100개의 삼중 배양 스페로이드로 구성된 어레이를 단 세 번의 세포 혼합용액 주입으로 생성시키는데 성공했다. 또한 연구팀은 행잉드롭 마이크로어레이와 오목 기둥 마이크로어레이의 조립을 통해 대규모로 생성된 스페로이드를 작은물방울 형태로 각각 분리하고, 구획화된 행잉드롭 마이크로어레이로 옮겨 스페로이드 어레이를 구획화시키는 방법을 새롭게 선보였다. 이를 통해 스페로이드 어레이의 순차적 다중 시약 처리 및 일괄적 형광 염색이 가능하게 되어 스페로이드 분석 및 실험 과정이 획기적으로 개선됐다. 연구를 주도한 박제균 교수는 “이번 연구는 다양한 크기와 조성을 갖는 스페로이드 어레이를 대규모로 제작하고, 원하는 대로 이동시켜 일괄 또는 다중 시약 처리가 가능한 고효율 스크리닝 플랫폼의 개발 성과”임을 강조하며, “간단하면서도 우수한 편의성을 갖춘 플랫폼이기에, 향후 다른 연구자들도 스페로이드 및 오가노이드의 크기와 조성에 따른 변화 연구와 다양한 세포 조성으로 이루어진 복잡한 스페로이드, 오가노이드 어레이를 이용한 고효율 약물 스크리닝 등에 활용할 수 있을 것”이라고 말했다. 우리 대학 바이오및뇌공학과 김휘수 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 헬스케어 머티리얼즈(Advanced Healthcare Materials)’에 2024년 5월 30일 자로 온라인판에 게재됐다.(https://doi.org/10.1002/adhm.202400501. 논문명: Reconfigurable Hanging Drop Microarray Platform for On-demand Preparation and Analysis of Spheroid Array) 또한 상기 논문은 와일리-VCH(Wiley-VCH) 출판사의 “핫 토픽: 종양과 암(Hot Topic: Tumors and Cancer)” 세션에도 선정됐다. 한편 이번 연구는 한국연구재단 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2024.06.27
조회수 2271
지질 뗏목의 원리 밝혀 질병 치료에 희소식
지질 뗏목은 세포막 간 융합, 신호 전달, 바이러스 침투 등 세포 기능과 질병 발병의 핵심 과정에 중요한 역할을 한다. 한국 연구진이 지금까지 알려지지 않았던 지질 뗏목의 정렬 원인과 그 조절 메커니즘을 밝혀내어 세포막 간 상호작용을 조절하여 질병 치료에 새로운 접근법을 제공할 수 있을 것으로 기대된다. 우리 대학 바이오및뇌공학과 최명철 교수팀이 고등과학원(원장 최재경) 현창봉 교수팀, 포항가속기연구소(소장 강흥식) 이현휘 박사와 공동으로 세포막 간의 상호작용을 매개하는 지질 뗏목(Lipid Raft)의 정렬 현상의 원리를 최초로 규명했다고 5일 밝혔다. 세포 융합, 바이러스 침투, 세포 간 신호 전달 등 다양한 세포막 간의 상호작용을 조절할 수 있는 핵심 기전을 밝힌 것이다. 세포막(Cell membrane)은 세포의 내부와 외부를 구분하는 얇고 유연한 막으로, 지질 이중층(lipid bilayer)으로 구성돼 있다. 세포막에는 수많은 막단백질(membrane proteins)이 존재하는데, 이들은 세포가 외부 환경과 소통할 수 있는 창구 기능을 한다. 지질 뗏목은 세포막의 특정 영역으로서, 높은 유동성을 가지는 세포막의 다른 부분들과는 달리 매우 낮은 유동성을 가지며, 기능적으로 연관된 막단백질들을 안정된 뗏목 안으로 모아 효율적인 상호작용을 가능하게 한다. 세포막을 바다로, 막단백질을 사람으로 비유하자면, 망망대해에서 멀리 떨어져 헤엄치는 사람들끼리는 서로 의사소통하기 어렵지만, 이들을 한 뗏목 위에 모두 태워 놓으면 서로 쉽게 대화할 수 있는 것과 비슷하다. 연구팀은 지질 뗏목 위에 존재하는 막단백질 중 많은 수가 세포막 간의 상호작용, 즉 두 세포막이 서로 생체신호를 주고받거나, 단백질을 통해 결합하거나, 두 막이 하나로 합쳐지는 등의 작용에 관여한다는 점에 주목했다. 연구팀은 두 세포막 간의 거리가 지질 뗏목의 정렬을 조절하는 핵심 요인일 것이라는 가설을 세우고, 세포막을 여러 겹 쌓아 놓은 구조의 지질 다중막(lipid multilayer)을 재구성해 이 가설을 검증했다. 이때 지질 뗏목들은 단순히 정렬만 되는 것이 아니라, 각각의 지질 뗏목의 크기가 커지면서 보다 안정된 구조를 형성했다. 두 세포막 사이의 거리가 지질 뗏목의 정렬과 크기를 조절하는 핵심 스위치인 것을 밝혀낸 것이다. 연구팀은 분자동역학(molecular dynamics) 시뮬레이션*을 통해 물 분자층을 분석한 결과, 지질 뗏목들이 정렬된 상태가 정렬되지 않은 상태보다 불안정한 수소결합 층의 부피가 작기 때문에 전체 시스템의 에너지를 최소화하기 위해 지질 뗏목이 자연적으로 정렬되는 것을 밝혀냈다. *분자동역학 시뮬레이션: 분자 간 상호작용이 주어졌을 때 운동 방정식을 수치적으로 풀어 구조와 동적 과정을 해석하는 방법 최명철 교수는 “지질 뗏목이 세포막 간의 상호작용에 관여한다는 사실은 잘 알려져 있지만, 어떤 원리로 상호작용을 매개하는지는 아직 베일에 싸여 있었다”며, “이번 논문은 세포막 간의 거리가 지질 뗏목의 정렬, 나아가 세포막 사이의 상호작용을 조절하는 핵심 스위치임을 밝혀내어 생명 현상의 바탕이 되는 물리적 환경의 중요성을 재조명하는 이정표적 연구”라고 연구의 의의를 설명했다. 최 교수는 또한 “특히 물 분자의 수소결합이 지질 뗏목의 정렬을 매개하는 중요한 요소임을 보여주었는데, 이는 우리 몸의 약 70%를 차지하는 물이 생명 현상이 일어나는 무대에서 단순한 조연이 아닌 주연으로 활약할 수 있음을 보여준다”고 강조했다. 이어 최 교수는 “지질 뗏목을 모사하는 구조는 현재 생체 센서 등에 활발하게 활용되고 있으며, 이번에 발견한 세포막 사이의 거리라는 스위치를 통해 보다 다양한 기능을 가진 생체 센서들이 개발될 수 있는 공학적 토대도 제공할 것이다”라고 기대감을 내비쳤다. 우리 대학 이수호 박사와 고등과학원 박지현 박사가 공동 제1 저자로, 고등과학원 현창봉 교수와 KAIST 최명철 교수가 공동 교신저자로 참여한 이번 연구 결과는 국제학술지 ‘미국화학회지(Journal of American Chemical Society)’에 5월 22일 字 표지논문(supplementary journal cover)으로 게재됐다. (논문명: Water Hydrogen-Bond Mediated Layer by Layer Alignment of Lipid Rafts as a Precursor of Intermembrane Processes) 한편 이번 연구는 한국연구재단, 보건복지부, KAIST의 지원을 받아 수행됐다.
2024.06.05
조회수 3301
암세포 약물반응 예측 ‘그레이박스’ 개발
지난 수십 년간 많은 의생명과학자의 집중적인 연구에도 불구하고 여전히 국내 사망원인 1위는 암이다. 이처럼 암 치료가 난해한 이유는 환자마다 암 발생의 원인이 되는 유전자 돌연변이와 그로 인한 유전자 네트워크 변형이 서로 달라서 전통적인 실험생물학 접근만으로 표적치료를 적용하는 데에는 본질적인 한계가 있기 때문이다. 한편 딥러닝과 같은 소위 블랙박스(black-box) 방식의 인공지능 기술을 활용해 실험을 대체하고 데이터 학습을 통해 약물 반응을 예측할 수 있으나 이에 대한 생물학적 근거를 설명할 수 없어 결과를 신뢰하기 어려웠다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 인공지능과 시스템생물학을 융합해 암세포의 약물 반응 예측 및 메커니즘 분석을 동시에 이룰 수 있는 새로운 개념의 ‘그레이박스’ 기술을 개발했다고 3일 밝혔다. 조광현 교수 연구팀은 높은 예측 성능을 보이지만 그 근거를 알 수 없어 블랙박스로 불리는 딥러닝과 복잡한 대규모 모델의 경우 예측 성능의 한계를 지니지만 예측 결과에 대한 상세한 근거를 제시할 수 있어서 화이트박스로 불리는 시스템생물학 기술을 융합함으로써 두 기술의 한계를 동시에 극복할 수 있는 소위 ‘그레이박스’ 기술을 착안했다. 연구팀은 다양한 암종의 돌연변이 및 표적항암제 타겟 유전자 정보를 집대성해 분자 조절 네트워크 모델을 구축함으로써 여러 암종과 항암제의 약물 반응 예측에 활용될 수 있는 범용적 골격 모델을 우선 정립했다. 특히 다양한 암종에서 돌연변이가 빈번하게 발생하는 유전자들을 중심으로 전암(pan-cancer) 유전자 네트워크를 제작했고 표적항암제별 약물 반응과 관련된 돌연변이 및 연관 유전자들로 구성된 부분네트워크(sub-network)를 추출함으로써 약물 반응 예측을 위한 시스템생물학 모델을 제작했다. 연구팀은 이렇게 제작된 모델의 매개변수를 딥러닝 블랙박스 최적화기를 통해 결정하는 방식으로 트라메티닙, 아파티닙, 팔보시클립 세 개의 표적항암제 및 대장암, 유방암, 위암 세 개의 암종에 대한 그레이박스 모델을 구축했다. 완성된 모델의 약물 반응 컴퓨터시뮬레이션 결과는 각 암종별 약물반응의 민감도 차이를 보이는 세포주(cancer cell lines) 실험을 통해 비교 검증됐다. 특히 개발된 모델은 미국 국립암연구소(National Cancer Institute)의 돌연변이 정보 기반 약물 반응 예측으로는 동일한 반응을 보일 것으로 예상된 암세포주들이 실제로는 서로 다른 약물 반응을 보일 수 있다는 것을 정확히 예측했으며, 약물 반응의 차이가 발생하는 원인 또한 세포 주별 분자 네트워크 동역학의 차이로 상세히 설명할 수 있었다. 이번 연구 성과는 학습에 의한 시뮬레이션 모델 최적화를 통해 블랙박스 모델인 인공지능 기술의 높은 예측력과 화이트박스 모델인 시스템생물학 기술의 해석력을 동시에 달성한 새로운 약물 반응 예측 기술 개발이어서 그 의미가 크다. 특히, 발생 원인이 이질적이고 복잡한 네트워크 질환인 암에 대해 범용적으로 활용가능한 약물 반응 예측 원천기술이므로 향후 기술 고도화를 통해 다양한 종류의 암종 및 환자 맞춤형 치료 전략 제시에 활용될 수 있을 것으로 기대된다. 조광현 교수는 "인공지능 기술의 높은 예측력과 시스템생물학 기술의 우수한 해석력을 동시에 갖춘 새로운 융합원천기술로서 향후 고도화를 통해 신약 개발 산업의 활용이 기대된다ˮ고 말했다. 바이오및뇌공학과 김윤성 박사, 한영현 박사 등이 참여한 이번 연구 결과는 셀 프레스(Cell Press)에서 출간하는 국제저널 `셀 리포트 메소드(Cell Reports Methods)' 5월 20일 字 표지논문으로 출판됐다. (논문명: A grey box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations) 논문링크: https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(24)00117-6 한편 이번 연구는 삼성미래기술육성사업 및 과학기술정보통신부와 한국연구재단의 중견연구사업 등의 지원으로 수행됐다.
2024.06.03
조회수 2945
화학적, 전기적 양방향 소통이 가능한 파이버형 뇌-컴퓨터 인터페이스 개발
뇌 속 뉴런은 화학적, 전기적 신호가 동시에 작동하면서 정교한 시스템을 만들어내지만 현재까지는 이러한 신호를 동시에 주고받으면서 신경의 작동 원리를 확인할 수 있는 장치가 존재하지 않았다. 한국 연구진이 화학적 신호와 전기적 신호를 양 방향적으로 주고받으며 세부적인 신호 전달 체계를 탐사할 수 있는 다기능 신경 인터페이스를 개발하여 앞으로 신경 체계 연구, 질환 연구 및 치료에 획기적인 발전을 가져올 것으로 기대한다. 우리 대학 바이오및뇌공학과 박성준 교수 연구팀이, 초소형 와이어 병합 열 인발공정(Microwire Co-drawing Thermal Drawing Process, MC-TDP)*을 통해 카본, 폴리머, 금속의 다양한 재료를 통합하여 4가지 기능성을 가진 다기능 섬유형 신경 인터페이스를 개발했다고 13일 밝혔다. ☞ 열 인발공정 : 열을 가해 큰 구조체의 복잡한 구조체를 빠른 속도로 당겨 같은 모양 및 기능을 갖춘 섬유를 뽑아내는 일 또는 가공 뇌신경 시스템 조사를 위한 삽입형 인터페이스는 전기적 성능에 중점을 두고 발전해 왔다. 하지만 전기적, 화학적 신호의 시너지 효과를 연구하기 위해서는 전기적 신호뿐만 아니라 화학적 신호의 역학을 기록하고 화학적 자극 또한 할 수 있는 신경 디바이스가 필요했다. 그러나 기존의 제작 방법으로는 다양한 자극과 기록을 수행할 수 있는 다양한 재료를 융합하는 것이 어려웠고, 특히 마이크로미터 스케일로 정교한 다기능성 신경 인터페이스를 만드는 것이 어렵다는 문제가 있었다. 연구팀은 문제 해결을 위해 이번 연구에서 초소형 와이어 병합 열 인발공정을 통해 머리카락 크기의 다기능 섬유를 뽑아내는 동안 초소형 와이어를 병합하고 카본 파이버를 융합하여 뉴런 사이에서 일어나는 대표적인 신호 전달을 동시에 조사할 수 있는 다기능 섬유를 제작했다. 연구팀은 제작된 하나의 섬유가 카본 파이버를 통한 도파민 모니터링, 마이크로 유체관을 통한 약물 주입, 폴리머 광 도파관을 통한 광 유전학적 신경 자극, 그리고 초소형 와이어를 통한 전기신호 측정을 할 수 있음을 확인했다. 해당 뇌-기계 인터페이스를 실제 쥐 모델에서 광유전학적 자극에 따른 화학적 신경전달물질 중 도파민과 전기적 신경 활성 신호를 효과적으로 측정하고 약물에 따른 도파민 방출량의 변화를 확인할 수 있음을 보였다. 또한 연구팀은 개발된 섬유가 자발적인 신경 신호를 측정할 수 있음을 보여주며 신경 인터페이스로써의 범용적 사용성도 확인했다. 이번 연구 결과는 국제 학술지 '에이씨에스 나노(ACS Nano)'에 2024년 5월 온라인 출판됐다. (논문명: A Multifunctional and Flexible Neural Probe with Thermally Drawn Fibers for Bidirectional Synaptic Probing in the Brain) 박성준 교수는 "화학적 신경전달물질 기록 및 화학적 자극, 전기적 신경 활성신호 기록, 그리고 광학적 조절 기능을 갖춘 차세대 초다기능성 신경 인터페이스의 개발 성과ˮ임을 강조하며, "향후 다양한 신경 회로에의 적용을 통해 신경 회로의 작동원리 규명과 뇌 질환의 세부적인 메커니즘 파악에 사용될 수 있을 것ˮ 이라고 말했다. 한편 이번 연구는 한국연구재단 기초연구실, STEAM연구사업 및 범부처재생의료기술사업의 지원을 받아 수행됐다.
2024.05.13
조회수 2795
초장기간 작동 뇌-기계 인터페이스 개발
수술이 불가피한 삽입형 신경 인터페이스의 경우, 한 번의 수술로도 최대한 많은 정보를 얻을 수 있고 장기간 사용가능한 디바이스의 개발이 필요하다. 한국 연구진이 1년 이상 사용가능한 다기능성 신경 인터페이스를 개발하여 향후 뇌 지도, 질환 연구 및 치료에 획기적인 발전을 가져올 것으로 기대한다. 우리 대학 바이오및뇌공학과 박성준 교수 연구팀과 한양대학교(총장 이기정) 바이오메디컬공학과 최창순 교수 연구팀이, 열 인발공정(Thermal Drawing Process, TDP)*과 탄소나노튜브 시트를 병합해 장기간 사용 가능한 다기능성 섬유형 신경 인터페이스를 개발했다고 24일 밝혔다. ☞ 열 인발공정 : 열을 가해 큰 구조체의 복잡한 구조체를 빠른 속도로 당겨 같은 모양 및 기능을 갖춘 섬유를 뽑아내는 일 또는 가공. 뇌신경 시스템 탐구를 위한 삽입형 인터페이스는 생체 시스템의 면역 반응을 줄이기 위해 생체 친화적이며 부드러운 물질을 사용하면서도, 다양한 기능을 병합하는 방향으로 발전해 왔다. 하지만 기존의 재료와 제작 방법으로는 다양한 기능을 구현할 수 있으면서도 장기간 사용가능한 디바이스를 만들기 어려웠고, 특히 탄소 기반 전극의 경우 제조 및 병합 과정이 복잡하고 금속 전극에 비해 기능적 수행 능력이 떨어진다는 문제점이 있었다. 연구팀은 문제 해결을 위해 이번 연구에서 탄소나노튜브 시트 전극과 고분자 광섬유를 병합했다. 탄소나노튜브 섬유가 한 방향으로 배열된 탄소나노튜브 시트 전극을 통해 신경세포 활동을 효과적으로 기록했고, 광 전달을 담당하는 고분자 광섬유에 이를 감아 머리카락 크기의 다기능 섬유를 제작했다. 연구팀은 제작된 섬유는 우수한 전기적, 광학적, 기계적 성질을 보였음을 확인했다. 해당 뇌-기계 인터페이스를 실제 쥐 모델에 삽입한 결과, 전기적 신경 활성신호, 화학적 신경전달물질(도파민)을 잘 측정하고 광유전학적 조절을 통해 행동학적 산출을 이끌어낼 수 있음을 확인했다. 또한 연구팀은 1년 이상 광학적으로 발화된 신경 신호와 자발적으로 발화된 신경 신호를 측정함으로써 초장기간 사용 가능성도 보여줬다. 이번 연구 결과는 국제 학술지 `어드밴스드 머터리얼스(Advanced Materials)'에 2024년 3월 29일 字로 출판됐다. (논문명: Structurally Aligned Multifunctional neural Probe (SAMP) using forest-drawn CNT sheet onto thermally drawn polymer fiber for long-term in vivo operation) 박성준 교수는 "전기적 신경 활성신호와 더불어 화학적 신경전달물질 기록 및 광학적 조절 기능을 갖춘 초장기간 사용가능한 차세대 신경 인터페이스의 개발 성과ˮ임을 강조하며, "향후 대동물 적용 및 자기공명영상 장비와 동시 사용을 통해 뇌 질환의 세부적인 메커니즘 파악과 전뇌적(Whole brain) 기록 및 조절 분야에 사용될 수 있을 것ˮ 이라고 말했다. 한편 이번 연구는 과학기술정보통신부, 한국연구재단 나노및소재기술개발사업, 경찰청 미래치안도전기술개발사업의 지원을 받아 수행됐다.
2024.04.24
조회수 3329
사회처럼 건강한 유전자 커뮤니티의 모습을 찾다
구성원들 사이의 활발한 교류로 결속력이 높은 사회적 커뮤니티가 건강한 개인을 만들 듯, 유전자 커뮤니티의 결속력도 개인의 건강 상태에 영향을 미칠 수 있을까? 한국 연구진이 유전자 커뮤니티의 결속력 또한 개인의 건강 상태를 결정하고 환자 맞춤형 의료를 위해 활용될 수 있음을 보여 화제다. 우리 대학 바이오및뇌공학과 이도헌 교수 연구팀이 개인화된 유전자 네트워크에서 환자 특이적으로 결속력이 약화된 유전자 커뮤니티를 찾아내 환자 맞춤형으로 약물 표적을 예측할 수 있는 기술을 개발했다고 23일 밝혔다. 최근 고령화와 생활 습관 변화 등에 따라 암, 심혈관계 질환, 대사 질환 등 많은 복합질병의 발병률이 크게 증가하는 실정이다. 이에 전문가들은 개별 환자의 특성을 고려한 ‘환자 맞춤형 의료’를 제공해 그 치료 효과를 높임으로써 개인적, 사회적 의료비 부담을 경감해야 한다고 지적한다. 이도헌 교수 연구팀은 이러한 요구에 발맞춰 개인화된 유전자 네트워크를 정교하게 구축하고 해당 네트워크에서 각 유전자 커뮤니티의 결속력을 정확하게 측정할 수 있는 코지넷(COSINET, COmmunity COhesion Scores in Individualized gene Network Estimated from single Transcripotmics data) 기술을 개발했다. 연구진들은 수백 개의 정상 조직 유전자 발현 데이터를 근거로 유의미한 상관관계를 보이는 유전자 상호작용을 기반으로 정상 조직의 유전자 네트워크를 구축했다. 그리고 유전자 커뮤니티들의 유전자 상호작용마다 보이는 상관관계를 선형 회귀 분석을 통해 모델링한 뒤, 개별 환자의 유전자 발현량이 해당 예측 모델을 잘 따르는지를 통계적으로 분석했다. 이를 통해 환자 특이적으로 그 상호작용이 소실된 유전자 쌍을 정상 조직 유전자 네트워크에서 제거함으로써 개인화된 유전자 네트워크를 구축했다. 더 나아가 개인화된 유전자 네트워크에서 유전자들 사이의 최단 거리를 기반으로 소실된 유전자 상호작용이 각 유전자 커뮤니티 결속력 약화에 미치는 영향력을 정확하게 측정했다. 연구진들은 환자 특이적으로 그 결속력이 크게 감소한 유전자 커뮤니티를 통해 환자 특이적인 질병 기전을 설명할 수 있음을 보이고, 해당 유전자 커뮤니티에서 환자 특이적으로 결속력 약화에 크게 기여하는 유전자들을 찾아, 보다 효과적인 환자 맞춤형 약물 표적을 제안했다. 연구진들은 이러한 약물 표적 발굴 기술이 기존 기술 대비 약 4배 이상 효과적임을 증명했다. 이도헌 교수는 “여러 유전자가 관여하는 복합질병은 개별 유전자보다는 유전자들 사이의 상호작용을 고려하는 시스템적 관점에서 바라봐야 하며 현재 임상 현장에서 환자 맞춤형 의료를 위해 쓰이는 단일 유전자 기반의 바이오마커들은 복합질병의 이질성과 복잡성을 충분히 담아내기에는 한계가 있다. 따라서 이번 연구에서 개발한 개인화된 유전자 네트워크에서 유전자 커뮤니티의 결속력에 기반한 코지넷(COSINET) 기술이 복합질병의 환자 맞춤형 의료 실현을 위한 새로운 시각을 열어 줄 수 있을 것”이라고 말했다. 바이오및뇌공학과 이도헌 교수와 왕승현 박사과정이 공동으로 진행한 이번 연구는 영국 옥스퍼드대학교에서 발간하는 생명정보학 분야 최고 학술지인 `생명정보학 브리핑(Briefings in Bioinformatics)’ 2024년 5월호에 게재되고 온라인으로는 4월 15일 발표됐다. (논문 제목: Community cohesion looseness in gene networks reveals individualized drug targets and resistance, https://academic.oup.com/bib/article/25/3/bbae175/7645997) 한편 이번 연구는 과학기술정보통신부 데이터 기반 디지털 바이오 선도 사업의 지원을 받아 수행됐다.
2024.04.23
조회수 2772
세계 최고 속도 입체적 조명 기술 개발
디스플레이(조명) 기술에서는 고속화가 아주 중요한 성능 중 하나로 꼽힌다. 최근 주요 스마트폰 제조사들은 화면 전환 속도가 기존의 초당 60회보다 크게 향상된 초당 120회의 고속 디스플레이를 선보였다. 이런 고속 디스플레이를 탑재한 모델의 이용자들 사이에 ‘한번 경험하면 예전으로 돌아갈 수 없다’는 말이 회자될 정도로, 고속화는 상업적인 가치도 크다고 볼 수 있다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 북해도대학 전자과학연구소의 시부카와 아츠시 부교수, 미카미 히데하루 교수, 오카야마대학 의·치·약과학과의 스도 유키 교수 연구팀과 공동연구를 통해 세계 최고속의 3차원 광 패턴 조명 기술*을 개발하는 데 성공했다고 15일 밝혔다. *광 패턴 조명 기술: 빛을 특정 패턴이나 형태로 조절하여 원하는 조명 효과를 얻는 기술 광 패턴 조명 기술은 우리에게 친숙한 디스플레이나 빔프로젝터에서 찾아볼 수 있다. 디스플레이나 빔 프로젝터 내부에는 원하는 이미지나 모양 등을 화소 단위로 만들어낼 수 있는 광 패턴 조명 장치인 공간 광 변조기*가 사용되고 있다. 이외에도 광 패턴 조명 기술은 최근 주목받는 가상 현실 기술 분야의 핵심 요소 기술인 3차원 디스플레이 기술에도 사용되며, 산업 분야에서는 금속 가공, 연구 분야에서는 뇌 심부 이미징을 위한 레이저 스캐닝 현미경 등에 사용되고 있다. *공간 광 변조기: 빛을 화소 단위로 조작하여 원하는 이미지나 모양을 만들어내는 장치로, 빔 프로젝터나 3차원 디스플레이 기술 등에 사용되는 장치 하지만 공간 광 변조기는 조명 패턴의 전환을 고속으로 수행하는 데 큰 한계를 겪고 있었다. 현재 시판되는 공간 광 변조기는 액정형 디스플레이 장치나 디지털 미러 장치가 있지만, 통상적인 전환 속도는 50마이크로초에서 10밀리초 수준으로 제한되며, 원리적으로 이보다 더 빠르게 만드는 데에는 기술적 어려움이 있었다. 연구팀은 공간 자유도-시간 자유도 사이의 치환 개념을 개발하고, 이를 독자 개발한 초고속 1차원 광 변조기와 산란 매질*을 결합하여 구현하는 방식으로, 시판되는 공간 광 변조기보다 약 1,500배 빠른 30나노초의 전환 속도를 갖는 세계 최고 속도의 3차원의 조명(디스플레이) 기술을 개발했다. *산란 매질: 안개나 물방울 맺힌 유리창처럼 빛을 무질서하게 굴절시키는 물질 연구팀은 빛의 전파를 교란하는 산란 매질의 특성을 역이용해 1차원의 광 패턴을 사용자가 원하는 3차원의 패턴으로 변환하기 위해 복잡 광 파면 조작 기술을 핵심 기술로 활용했다. 연구팀이 개발한 세계 최고 속도의 광 패턴 조명 기술은 특정 각도에서만 볼 수 있는 기존의 2차원 유사 홀로그램과 달리 실제로 3차원 공간상에 광 정보를 재구성해 입체 영상을 만드는 기술로 활용될 수 있다. 그뿐만 아니라 광유전학 기술에 기반한 뇌 신경 조절 기술과 같은 생체 조절 기술의 고속화·대규모화나 금속 3D 프린터 등의 광 가공 생산 효율 향상 등, 다양한 분야에서 응용될 전망이다. *광유전학 기술: 빛을 이용해 살아있는 생물 조직의 세포를 제어하는 기술 해당 연구 결과는 바이오및뇌공학과 송국호 박사과정이 공저자, 장무석 교수가 교신저자로 참여했으며 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2024년 4월 8일 온라인판에 게재되었다. (논문명 : Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography) 이번 연구는 과학기술정보통신부 한국연구재단이 주관하는 선도연구센터사업(컬러변조 초감각 인지기술 선도연구센터), 우수신진연구자 사업, 삼성미래기술육성사업, 국토교통부 국토교통과학기술진흥원이 주관하는 차세대 대인 보안검색 기술 개발 사업의 지원을 받아 수행됐다.
2024.04.15
조회수 3928
단백질 ‘생산 설계도’ 보호하는 RNA 조절 기전 찾았다
생명체는 DNA, RNA, 단백질과 같은 바이오분자들의 조절 작용으로 다양한 생물학적 기능을 수행한다. 바이오분자들의 조절로 유전 정보가 전달되고, 잘못 전달된 정보는 유전자 변형이나 감염성 질병의 원인이 된다. 따라서 분자생물학적 조절 연구는 유전자 치료제와 첨단 백신 개발에 중요하다. 특히, 2023년 코로나 mRNA 백신 기술을 개발한 과학자들이 노벨 생리의학상을 수상하면서 RNA 조절 연구에 기반한 첨단신약, 바이오공학 기술이 크게 주목받고 있다. 우리 대학 바이오및뇌공학과 이영석 교수 연구팀이 기초과학연구원(IBS) RNA 연구단 김빛내리 단장(서울대 생명과학부 석좌교수), 미국 국립암연구소 유진 발코프(Eugene Valkov) 박사팀과 공동연구를 통해 자체 개발한 단일핵산 분석법을 적용해 전령 RNA(messenger RNA, 이하 mRNA) 분해의 새로운 조절 기전을 찾았다고 밝혔다. mRNA는 긴 단일 가닥 RNA 분자로, DNA에 보관된 유전 정보를 단백질에 전달하는 매개체로서 마치 단백질의 ‘생산 설계도’와 같다. 예를 들어, 코로나 mRNA 백신은 약 4,000개의 RNA 분자로 이루어져 있으며, 코로나 스파이크 단백질의 유전 정보와 다양한 RNA 변형을 활용해 스파이크 단백질 생산을 조절하도록 설계되어 있다. 결국 RNA 기능과 조절에 따라 유전자 치료제 및 mRNA 백신의 효능이 결정된다. 연구진은 다양한 RNA 조절 인자 중 특히 mRNA 꼬리에 주목해 왔다. mRNA는 말단에 50-150개의 아데닌 염기로 구성된 긴 꼬리를 갖는데, mRNA를 보호하고 단백질 합성을 촉진하는 역할을 한다. 그동안 이 꼬리는 아데닌으로만 구성된 것으로 알려졌지만, 연구진은 지난 연구에서 비(非) 아데닌 염기가 추가된 ‘혼합 꼬리(Mixed tail)’가 존재한다는 사실을 보고하였고, 이 혼합 꼬리가 mRNA의 분해를 막는 역할을 하여 유전자 활성을 높이는 데 기여함을 밝힌 바 있다. 그러나 RNA 변형의 결과인 mRNA 꼬리는 그 변형의 특이적인 행태로 인해 생화학 실험과 정량적 분석에 어려움이 있었다. 또한, 50-150개 RNA 분자의 연속적인 변형에 대한 단일염기 분석이 필요하여 mRNA 혼합 꼬리 조절 기전 연구에 제한이 있었다. 이를 해결하기 위해 연구진은 미국 국립암연구소 유진 발코프 박사 연구팀과 함께 mRNA 꼬리 조절 연구를 위한 단일핵산 분석법을 개발했다. 이어 이 분석법을 활용하여 세계 최초로 mRNA 꼬리가 분해되는 속도를 단일핵산 단위로 측정하는데 성공, mRNA 꼬리의 새로운 분해 기전을 규명했다. 연구진은 mRNA 분해를 유도하는 탈아데닐 복합체(CCR4-NOT)를 이용한 탈아데닐화 시스템을 개발하고 단일 염기 단위의 분해 반응을 수학적으로 모델링하여 혼합 꼬리 분해 효과를 정량화했다. 그 결과, 탈아데닐 복합체의 진행이 지연되는 위치를 확인할 수 있었으며, 복합체의 구성 요소들이 비 아데닌 염기에 의해 특정 위치에서 막혀 분해 속도가 조절되는 것을 밝혔다. 즉, 비 아데닌 염기가 일종의 ‘과속 방지턱’ 역할을 한다는 것을 입증한 것이다. 김빛내리 단장은 “mRNA 혼합 꼬리 조절에 대한 이해를 확장해 mRNA 안정성 조절과 유전자 발현 메커니즘에 대한 새로운 통찰을 제공했다”라며, “혼합 꼬리에 기반한 다양한 유전자 치료법 연구와 RNA 첨단 신약 개발에 기여할 것”이라고 말했다. 우리 대학 바이오및뇌공학과 이영석 교수는 “이번 연구는 분자생물학, 생화학 및 수학 분야가 만나 이룬 융합 연구의 결실”이라며, “미래 바이오공학 및 첨단바이오 분야 발전을 위한 공동연구의 중요성을 시사한다”라고 연구의 의의를 밝혔다. 이번 연구결과는 국제 학술지 ‘네이처 구조 분자생물학(Nature Structural & Molecular Biology, IF=16.8)’에 지난 2월 19일 게재됐다.
2024.02.28
조회수 3461
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 10