본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%95%B4%EC%96%91%EC%8B%9C%EC%8A%A4%ED%85%9C%EA%B3%B5%ED%95%99
최신순
조회순
물에 뜨고 오래가는 인공근육 개발
내구성이 뛰어나면서도 물에 뜨는 인공근육이 개발됐다. 모터 없이도 로봇을 움직이는데 활용될 수 있으며 향후 인간의 근육도 대체가능할 것으로 기대된다. 우리 학교 해양시스템공학전공 오일권 교수와 김재환 박사과정 학생은 한국기계연구원 임현의 박사와 공동으로 그래핀을 이용해 기존보다 10배 이상 오랫동안 작동할 수 있으면서도 물에 뜨는 인공근육을 개발했다. 연구결과는 나노 분야 세계적 학술지 ‘ACS Nano’ 최근호에 게재됐다. 인간의 근육을 모방한 이온성 고분자 인공근육은 소음이 없고 구조가 간단한 것은 물론 단위 부피당 출력이 높아 기계식 모터와 유압식 작동기를 대체할 수 있어 많은 관심을 받아왔다. 그러나 백금 전극 표면에 존재하는 균열을 통해 내부 전해액이 빠져나가 내구성이 부족해 상용화가 어려웠다. 오 교수 연구팀은 귀금속인 백금과 비슷한 전기전도성을 가지면서도 그래핀 입자간 거리가 좁은 그래핀 종이를 전극으로 활용했다. 연구팀은 환원된 그래핀 산화물 입자를 두껍게 쌓아 5㎛(마이크로미터, 100만분의 1미터) 두께로 제작한 종이형태의 전극을 제작해 액체투과성 실험을 한 결과 전해액이 거의 빠져나가지 않았다. 내부 전해액 이온의 크기보다 그래핀의 입자간 공간이 좁기 때문이다. 연구팀은 그래핀 전극이 이온성 고분자와 맞닿는 부분엔 레이저 처리를 통해 표면적을 늘려 접착성을 높였다. 이에 따라 인공근육의 움직임에 대한 내구성도 확보했다. 기존 백금전극으로 만들어진 인공근육은 4.5V(볼트), 1Hz(헤르츠) 조건으로 6시간 동안 실험한 결과, 30분이 지난 후 움직임이 절반 이하로 떨어졌다. 반면 오 교수 연구팀이 개발한 인공근육은 동일 조건에서 성능이 지속적으로 유지되며 안정적으로 작동이 가능했다. 이와 함께 전극으로 사용된 그래핀은 물을 밀어내는 성질이 있어 개발된 인공근육 역시 물어 잘 뜨고 쉽게 구할 수 있어 저렴한 가격으로도 제작가능하다고 연구팀은 전했다. 이처럼 물에 뜨고 내구성이 향상된 인공근육의 원천기술은 향후 △생체로봇 △유연 전자소자 △부드러운 햅틱 디바이스 △생체 의료기기 등 최근 각광 받고 있는 차세대 핵심 분야에 응용될 수 있을 것으로 기대된다. 이번 연구를 주도한 오일권 교수는 “이번에 개발한 그래핀 기반 인공근육은 간단히 전극만을 교체해 기존에 알려졌던 작동기의 근본적인 문제를 해결했다”며 “수년 내 응용전자소자를 개발할 수 있을 것”이라고 말했다. 그림1. 연구팀이 개발한 그래핀 기반 인공근육(사진) 그림1-1. 연구팀이 개발한 그래핀 기반 인공근육(그래픽) 그림2. 인공근육이 6V 전압을 인가했을 시 작동하는 모습 그림3. (a)기존 무전해 도금으로 제작된 이온성 고분자-금속 복합체 작동기 (b)연구팀이 개발한 환원된 그래핀 산화물 페이퍼 전극 기반의 이온성 고분자-그래핀 복합체 작동기. 그림4. 레이저 처리된 환원된 그래핀 산화물 페이퍼 전극의 제작 과정. 그림5. (a) 물이 전해액일 때의 IPMC 작동기와 IPGC 작동기의 성능 지속성 실험 결과와 (b) 60℃의 오븐에서 12시간 이상 건조 후 실험 결과. (c),(d)이온성 액체가 전해액일 때의 IPMC 작동기와 IPGC 작동기의 성능 지속성 실험 결과. (e),(f) IPGC 작동기의 굽힘 거동 성능과 곡률.
2014.05.08
조회수 17262
박스형 대용량 고압 LNG 저장탱크 기술 개발
최근 북유럽 및 북미지역을 중심으로 해양 배기가스 배출규제지역(ECA, Emission Control Area)이 지정돼 2015년부터 이 지역에서는 기존의 벙커유의 선박용 연료 사용이 금지된다. 이에 따라 현재 대표적인 대체 연료인 디젤보다 약 50% 이상 저렴하고 친환경적인 LNG를 연료로 사용하는 선박의 도입이 급속도로 확대되고 있다. 우리 학교 해양시스템공학전공 폴 베르간 교수와 장대준 교수는 POSCO(회장 권오준)와 공동으로 격자구조를 활용해 기존보다 최대 20배 많은 LNG를 저장할 수 있는 직육면체형 대용량 고압탱크 개발에 세계 최초로 성공했다. 이번에 개발된 고압탱크는 같은 양의 LNG를 저장할 경우 기존 원통형 고압탱크 대비 약 40%의 공간만 필요하다. 초대형 컨테이너 수송선의 LNG 연료 탱크로 사용될 경우, 약 900개의 컨테이너를 추가로 적재할 수 있어 1척당 연간 90억 원의 운송이익이 발생할 것으로 전망된다. 산업에서 사용되는 대용량 고압탱크는 대부분 원통형이다. 저장량을 늘리기 위해서는 외벽을 두껍게 만들어야 하지만 두꺼워질수록 가공이나 용접이 어려워 부피는 대형버스 10대 크기인 1,000㎥(세제곱미터) 수준에 그쳤다. 또 원통형 구조의 특성상 필요 없는 공간을 많이 차지하기 때문에 유효부피가 작아 저장량이 줄어드는 것은 물론 여러 개의 고압탱크 설치로 인해 유지보수비용이 많이 드는 단점이 있었다. 연구팀은 대용량 직육면체가 압력을 견딜 수 없다는 기존 상식을 과감히 탈피해 내부에 격자구조를 채택, 직육면체 압력 용기를 개발했다. 약 3m 간격으로 설치된 바둑판 형태의 격자구조는 외벽에 전달되는 압력을 분산시켜 부피가 늘어나도 외벽이 두꺼울 필요가 없다. 개발한 기술을 활용해 대형버스 200대 부피인 20,000㎥(10기압)까지 설계 기술 개발을 마쳤다. 원천 기술인 격자구조를 활용하면 더욱 큰 고압탱크도 만들 수 있다고 연구팀은 전했다. 이와 함께, POSCO가 자체 개발한 극저온용 고망간강으로 고압탱크를 제작하면 30%이상의 비용이 절감될 것으로 예상된다. 장대준 교수는 “이번에 개발한 격자형 고압탱크 기술로 에너지의 생산·수송·저장산업에 혁신을 가져올 것”이라며 “고압 공급 사슬 구축으로 LNG·LPG·CNG 공급 분야 전체에서 에너지 소모를 20% 이상 줄일 수 있게 될 것”이라고 전망했다. 초대형 고압탱크의 축소모델로 만든 시험 탱크(10기압, 80㎥)는 오는 21일 포항 강림중공업에서 학계와 산업계 관계자들을 대상으로 시연회를 개최하며, 24일부터 27일까지 일산 킨텍스(KINTEX) 열리는 세계 최대의 천연가스 학회인 ‘가스텍(Gastech) 2014’에서 일반에 공개된다. 시험 탱크는 지난 2월 15기압의 수압 시험에 성공, 미국기계학회 압력용기 인증(ASME U2 Stamp)을 이미 확보한 상태다. 그림1. 원통형 고압탱크가 적용된 기존 LNG선 그림2. 직육면체형 고압탱크가 적용된 LNG선. 파란색 영역의 부분(컨테이너 900개 적재)만큼 공간을 절약할 수 있다. 그림3. 직육면체형 고압탱크의 내부 구조
2014.03.18
조회수 15742
KAIST, 선박 수중폭발 연구 박차
해양시스템공학전공 신영식 교수 - 15일, 국내최초로 모형 선박을 이용해 수중폭발 실험해 -- “우리나라 수중폭발 분야 기초연구에 시발점 될 것” - KAIST가 국내에서는 처음으로 선박 수중폭발 연구를 본격화한다. 우리 학교 해양시스템공학전공 신영식 교수가 지난 15일 국내 최초로 모형 선박을 이용해 폭약의 수중폭발로 인한 충격이 선박에 미치는 영향을 분석하기 위한 실험을 실시했다. 연구팀은 가로 X 세로 1m X 2m 크기의 알루미늄 재질 모형 선박을 만들어 속도, 가속도, 압력 측정 센서를 부착했다. 그 후, 물에 모형선을 띄운 상태에서 선박과 폭약의 수평, 수직 거리를 바꿔가며 수중에서 폭약을 폭발시켜 각 센서의 응답 데이터를 기록했다. 신 교수 연구팀은 이번 실험을 통해 컴퓨터 시뮬레이션만으로는 얻을 수 없었던 실제 실험 데이터를 얻어냈다. 이 데이터는 컴퓨터 시뮬레이션의 결과와 비교해 계산 값의 검증에 사용될 계획이다. KAIST는 이번 실험을 계기로 향후 수중폭발 관련 시뮬레이션 기법을 점차 고도화 해 보다 정확한 수중충격에 대한 예측이 가능해질 것으로 기대하고 있다. 아울러 충격 등의 수중폭발 현상에 대한 이해를 높여, 선박의 탑재장비의 생존성 확보를 위한 연구와 내충격성 향상을 위한 설계의 검토, 변경의 기초자료 등으로 활용할 예정이다. 연구팀은 이번 결과를 바탕으로 근접수중폭발에 의해 발생하는 현상 중 하나로 선박의 침몰을 유발할 수 있는 휘핑현상을 재현하는 실험을 계획하고 있다. 이 연구가 완료되면 휘핑현상에 대한 보다 정확한 이해를 통해 선박의 디자인을 검토, 보완해 함정과 승조원의 생존능력을 확보하는 데 크게 기여할 수 있을 것으로 예상된다. 신영식 교수는 “미국, 러시아 등 군사강국에서는 실제 함선을 이용한 수중폭발실험이 활성화돼 있어 함정의 내충격성 강화 및 탑재장비의 생존성여부에 관한 자료로 폭넓게 활용되고 있지만 군사기밀로 다뤄져 공개되지 않고 있다“며 ”국내 최초로 실시되는 이번 수중폭발 실험은 이 분야 기초연구의 시발점이 될 것“이라고 이번 실험에 의미를 부여했다. 이번 연구를 주도한 수중충격분야 세계적 석학인 신영식 초빙교수는 미 해군대학원에서 약 30년 동안 교수로 재직하면서 수중폭발, 탑재 전자 장비의 충격 내구성 검증, 충격 및 진동문제해결 등의 성과를 인정받아 2005년 이 대학 최고의 영예직인 특훈교수로 임명되기도 했다. 현재 KAIST 해양시스템공학전공 초빙교수로 재직 중인 신 교수는 미국에서의 경험을 바탕으로 수중폭발이 선박이나 해양구조물에 미치는 영향 등 국내에서는 수행하기 어려운 연구를 수행하고 있다. 한편, 이번 연구를 지원한 KAIST 해양시스템공학전공(학과장 한순흥)은 WCU사업으로 설립됐는데 최고의 자질과 잠재력을 지닌 학생들을 교육시키되 기존의 조선해양 관련학과와 차별화된 미래지향적 교육 프로그램을 통해 우리나라 조선해양공학의 미래를 개척할 수 있는 세계적 수준의 엔지니어와 학자 배출을 목표로 하고 있다. 그림1. 각종 센서를 부착해 만든 알루미늄 모형 배를 물 위에 띄운 모습 그림2. 실험에 사용한 모형 선박의 3D 모델과 수중폭발 컴퓨터시뮬레이션 그림3. 수중폭발실험 장면(수중에서 폭약을 폭파해 버블제트가 생겨 물기둥이 솟구치고 있다.) 그림4. 연구팀 사진(신영식 교수가 모형 선박을 가리키면서 연구진들에게 설명하고 있다.)
2012.03.26
조회수 13896
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1