-
독립적으로 더 스마트해진 ‘도커SSD’ 개발
정보를 저장하는 솔리드 스테이트 드라이브(Solid-Sate Drive, SSD)가 컴퓨터 없이도 데이터 처리가 가능한 독립 서버로 운영이 가능해지며 편리성이 극대화되고 데이터의 탄소 배출량도 획기적으로 감소시킬 수 있는 새로운 형태의 스마트 SSD로 개발됐다.
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 물리적 장치의 실행이 아닌 가상으로 데이터 처리와 운영이 되는 `도커(Docker)' 개념을 적용한 새로운 고성능·저전력 메모리 (PIM, Processing-In-Memory) 모델 중 하나인 `도커SSD'를 개발했다고 27일 밝혔다.
스마트 SSD는 여러 가지 데이터를 처리하는 프로그램들을 데이터가 실제 존재하는 스토리지 근처에서 실행할 수 있게 함으로써 데이터 이동에 불필요한 에너지 및 전력 소모를 줄이고 고성능 결과를 얻게 하는 기술로 오랫동안 다양한 곳에 적용을 시도해 왔다. 하지만 기존 데이터 처리 프로그램을 SSD 제조사별로 그리고 장치가 제공하는 환경별로 모두 수정하고 새로 만들어야 하는 문제 때문에 스마트 SSD를 다양한 환경과 데이터 처리 응용에 적용하는 것에 한계가 존재했다. 이러한 한계를 극복하고자 KAIST 연구팀은 스마트 SSD의 제조사나 장치 환경에 관계 없이 현존하는 여러 가지 프로그램들을 그대로 스토리지에 이식하여 실행할 수 있는 도커SSD를 개발하였다.
이를 위해 정명수 교수 연구팀은 사용자들에게 데이터 처리 기술 중 편의성을 제공하는 방법으로 `컨테이너'를 주목했다. 컨테이너는 응용 프로그램과 해당 프로그램 실행에 필요한 라이브러리를 모두 포함한 소프트웨어 패키지로, 외부의 환경에 구애받지 않고, 컨테이너 내부적으로 독립적인 실행 환경을 운용할 수 있게 해준다.
연구팀이 개발한 도커SSD는 가상화 운영체제 환경인 *도커(Docker)를 스토리지 내부에서 실행할 수 있는 특허 기술을 적용해 호스트로부터 요청받은 컨테이너 단위의 작업을 처리한다. 사용자들은 메모리/스토리지 제조사에 영향을 받지 않고 다양한 응용 프로그램을 스토리지 내부에서 실행할 수 있다. 또한, 외부와 독립적인 실행 환경을 제공하는 컨테이너의 특성 덕분에, 사용자들이 기존 응용 프로그램의 소스 코드를 수정할 필요조차 없어져 사용자 편의성이 극대화된다.
☞ 도커(Docker): 리눅스 컨테이너를 만들고 사용할 수 있도록 하는 컨테이너화 기술
연구팀은 일반적으로 SSD 장치에 접근하기 위해 사용되는 스토리지 프로토콜과, 도커 소프트웨어 동작의 기반이 되는 네트워크 관련 프로토콜이 서로 호환되지 않는다는 점을 극복하기 위해 스토리지 프로토콜을 통해 네트워크 관련 메시지를 전송할 수 있는 새로운 인터페이스를 독자 개발했다. 또한, 컨테이너 및 도커를 실행하기 위해서 기존 운영체제를 경량화하여 도커SSD 내부에 통합했다. 마지막으로, 스토리지에 내재된 저사양 프로세서를 활용하여 작업을 처리할 경우 성능이 저하될 수 있다는 점을 착안하여 자체 제작한 저전력 하드웨어 가속 모듈을 활용하여 네트워크 및 입출력 관련 동작을 가속함으로써 문제를 해결했다.
연구팀은 도커SSD에 적용한 운영체제 수준 가상화의 실효성 검증을 통해 현재 학계에서 가장 자주 사용되는 스토리지 기반 모델보다도 데이터를 2배 빠르게 처리하면서 전력 소모 또한 약 2배 감소시킴을 확인했다.
정명수 교수는 "불필요한 데이터 이동을 최소화하여 빠르면서 에너지 절약에 최적화된, 동시에 사용자 입장에서 편리하면서도 우수한 호환성을 가진 메모리 모델을 확보했다ˮ며 "고성능·저전력 메모리 모델인 도커SSD는 빠르게 확장하고 있는 국내·외 데이터센터 운영 기업/기관에 실용화되어 탄소중립에 기여할 수 있을 것ˮ이라 말했다.
이번 연구는 스코틀랜드 에든버러에서 오는 2024년 3월에 열릴 컴퓨터 구조 분야 최우수 학술대회인 `국제 고성능 컴퓨터 구조 학회(IEEE International Symposium on High Performance Computer Architecture, HPCA)'에 관련 논문(논문명: DockerSSD: Containerized In-Storage Processing and Hardware Acceleration for Computational SSDs)으로 발표될 예정이다.
한편 해당 연구는 KAIST 교원창업 회사인 파네시아(https://panmnesia.com)와 정보통신기획평가원등의 연구 지원을 받아 진행됐다.
2023.11.27
조회수 3837
-
인공지능 기반 약물 가상 스크리닝 기술로 신규 항암 치료제 발굴 성공
우리 대학 생명과학과 김세윤 교수 연구팀이 `약물 가상 스크리닝 기술을 이용한 신규 항암 치료제 개발'에 성공했다고 12일 밝혔다.
이번 연구 결과는 국제 학술지인 `세포 사멸과 질병(Cell Death & Disease)'에 지난 7월 12일 字 온라인 게재됐다.
※ 논문명 : Lomitapide, a cholesterol-lowering drug, is an anticancer agent that induces autophagic cell death via inhibiting mTOR
※ 저자 정보 : 이보아 (한국과학기술원, 공동 제1 저자), 박승주 (한국과학기술원, 공동 제1 저자), 이슬기 (한국과학기술원, 제2 저자), 오병철 (가천대학교 의과대학, 공동 저자), 정원석 (한국과학기술원, 공동 저자), 손종우 (한국과학기술원, 공동 저자), 김세윤 (한국과학기술원, 교신저자), 포함 총 10명
`엠토르(mTOR)'라고 알려진 신호전달 단백질은 많은 암세포에서 활성이 비정상적으로 높아져 있으며 또한 암뿐만 아니라 당뇨, 염증 및 노화와 같은 다양한 질병에서 핵심적인 역할을 한다. 특히 암을 유발하는 다양한 신호전달 경로가 엠토르 단백질을 통해 매개되기 때문에 많은 제약사에서 항암 치료제 개발의 목적으로 엠토르 저해제 개발에 많은 투자를 하고 있다.
자가포식(autophagy, 오토파지)으로 알려진 생명 현상은 세포 내 엠토르 단백질에 의해 활성 조절이 정교하게 매개되는 것으로 잘 알려져 있다. 자가포식이란 `세포가 자기 살을 먹는다'는 의미로, 영양분이 과도하게 부족하거나 세포 내외적 스트레스 조건에 처한 경우, 세포가 스스로 내부 구성물질들을 파괴해 활용함으로써 세포 내 항상성을 유지하는 일종의 방어기전이다.
이러한 자가포식 활성의 조절은 양날의 칼과 같이 작용하는 것으로 알려져 있으며, 이는 암, 당뇨와 같은 질환의 발생 및 치료에 이용 가능하다고 주목받고 있다. 암세포에 과도하게 활성화돼있는 엠토르 단백질의 활성을 저해하면 자가포식을 과도하게 증가시킬 수 있으며 이를 통해 암세포의 세포 사멸이 유도될 수 있다는 사실이 알려져 있으며 이를 바탕으로 자가포식 강화에 기반한 항암제 약물의 개발전략이 제시되고 있다.
이에 김세윤 교수 연구팀은 단백질의 3차원적 구조를 활용해 화합물과 표적 단백질 사이의 물리적 상호작용을 모델링하는 유효 결합 판별 기술에 기반한 약물 재창출 전략으로 엠토르 억제성 항암제 개발 연구를 수행했다.
약물 재창출은 이미 안전성이 검증된 FDA 승인 약물 또는 임상 진행 중인 약물군을 대상으로 새로운 적응증을 찾는 신약 개발 방식이다. 이 전략은 전통적으로 10년 이상 소요되는 신약 개발의 막대한 시간과 투자를 혁신적으로 단축할 수 있는 미래 시대 신약 개발전략이다.
연구팀은 FDA 승인 약물 또는 임상 시험 중인 약물에 기반한 데이터베이스를 통해 3,391종의 약물 라이브러리를 활용했다. 라이브러리의 모든 약물을 실험적으로 검증하기에는 연구비용과 시간이 많이 소요되므로, 3차 구조 모델링을 통한 유효 결합 판별 기술을 적용해 엠토르 활성 저해능력을 보이는 약물만 신속하게 스크리닝했다.
연구팀은 엠토르 단백질의 활성을 담당하는 효소 활성부위의 3차 구조 분석과 인공지능 기반 유효 결합 판별 기술을 도입해 후보 물질 발굴의 정확도와 예측도를 높이는 데 성공했다. 그리고 3차 구조를 타깃으로 약물 결합 분석 모듈을 도입해 가상 스크리닝의 정확도와 예측도를 높이는 데 성공했다. 이번 연구를 통해 개발된 기술의 가장 큰 특징은 타깃 단백질과 약물 간의 3차 구조 정보를 이용해 많은 양의 후보 성분들을 빠르고 정확하게 분석하고 결합 여부를 예측할 수 있는 것이다.
우리 대학 생명과학과 이보아 박사, 박승주 박사는 현재 가족성 고콜레스테롤혈증(familial hypercholesterolemia) 치료제로서 임상에서 판매, 활용되고 있는 로미타피드(lomitapide) 약물의 엠토르 활성 억제 가능성을 예측했다. 연구팀은 생화학적 및 세포 생물학적 분석을 통해 로미타피드에 의한 엠토르 효소활성의 억제효능을 검증하는 데 성공했다. 대장암, 피부암 등의 암세포에 로미타피드를 처리할 경우, 암세포의 엠토르 활성이 효과적으로 억제되고 이후 과도한 자가포식이 유도됨으로써 암세포 사멸효과가 발생함을 다각적으로 확인해 로미타피드의 항암 효능을 확립했다.
또한 대장암 환자로부터 유래한 암 오가노이드(organoid)에 로미타피드를 처리할 경우, 기존의 화학 항암 치료제 대비 우수한 암세포 사멸 능력을 보였다. 나아가 최근 차세대 고형암 치료용 항암 전략으로 주목받고 있는 면역관문억제제(immune checkpoint inhibitor)와 로미티피드를 병행할 경우, 면역관문억제제의 단독 처리 대비 비약적으로 개선된 시너지 항암효과를 나타냄을 동물모델 연구를 통해 검증하는 데 성공했다.
연구팀이 발굴한 로미타피드의 항암 효능 성과는 향후 엠토르 억제 및 자가포식 기반 항암제 개발 및 임상적 활용에 적극 활용될 것으로 기대된다.
이러한 연구성과는 벤처창업으로 연계돼 이보아 박사, 박승주 박사, 이슬기 박사는 인공지능 기반 신약개발 전문기업 `에아스텍'을 공동창업했으며 중소벤처기업부 팁스(TIPS) 창업지원 프로그램에 선정되는 등 활발한 연구개발을 수행하고 있다.
한편 이번 연구는 한국연구재단 중견연구자지원사업, 선도연구센터, 창의도전연구사업 및 KAIX 포스트닥펠로사업의 지원을 받아 수행됐다.
2022.08.12
조회수 8185
-
무한대 화소 수준의 초고해상도 AR/VR 디스플레이 기술 개발
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용한 1,600PPI*에 상응하는 마이크로LED 디스플레이를 구현하는 데 성공했다고 29일 밝혔다. 1,600 PPI는 초고해상도 증강현실(AR)/가상현실(VR) 디스플레이에 적용 가능한 해상도로써 2020년 출시된 오큘러스(Oculus) 社(現 메타(Meta))의 메타 퀘스트 2(Meta quest 2, 442 PPI)의 3.6배에 해당하는 디스플레이 해상도다.
☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다.
☞ PPI: Pixel per Inch. 디스플레이에서 1인치에 포함되는 픽셀의 갯수
전기및전자공학부 박주혁 박사과정과 금대명 박사가 제1 저자로 주도하고 백우진 박사과정과 대만의 제스퍼 디스플레이(Jasper Display)의 존슨 쉬(Johnson Shieh) 박사와 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 하와이 호놀롤루에서 열린 `VLSI 기술 & 회로 심포지엄 (2022 IEEE Symposium on VLSI Technology & Circuits)'에서 지난 6월 16일에 발표됐다. (논문명 : Monolithic 3D sequential integration realizing 1600-PPI red micro-LED display on Si CMOS driver IC)
VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택 비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다.
최근 디스플레이 분야는 각종 TV, 모니터 및 모바일 기기뿐만 아니라 스마트 워치, 스마트 글라스 등의 웨어러블 디바이스까지 그 응용처가 크게 확장됐다. 이처럼 디스플레이의 활용이 점차 다양화되고 고도화됨에 따라 요구되는 픽셀의 크기가 점점 작아지고 있는데, 특히 증강현실(AR)/가상현실(VR) 스마트 글라스 등과 같이 사람의 눈과 매우 가까운 거리를 유지하는 디스플레이의 경우 *픽셀화가 없는 완벽한 이미지의 구현을 위해서는 4K 이상의 고해상도가 요구된다.
☞ 픽셀화(Pixelation): 컴퓨터 그래픽에서 비트맵을 구성하는 작은 단색 정사각형 디스플레이 요소인 개별 픽셀이 보이는 현상.
앞서 언급한 초고해상도 디스플레이를 구현하기 위한 차세대 디스플레이 소자로서 무기물 기반의 인듐갈륨나이트라이드/갈륨나이트라이드(InGaN/GaN), 혹은 알루미늄 갈륨 인듐 인화물/갈륨 인듐 인화물(AlGaInP/GaInP)로 대표되는 3-5(III-V)족 화합물 반도체를 활용한 마이크로 LED 소자가 핵심 소재 및 부품으로써 주목받고 있다. 마이크로 LED는 현재 TV, 모바일 기기에 많이 사용되고 있는 OLED, LCD 디스플레이에 비해 높은 휘도와 명암비, 긴 픽셀 수명 등의 장점이 있어 차세대 디스플레이 소자로서 장점이 뚜렷하다.
☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재.
하지만 무기물 기반 마이크로 LED를 활용해 디스플레이를 제작하기 위해서는 적색, 청색, 녹색의 각 색상의 픽셀을 각각의 기판에서 분리해 디스플레이 패널로 옮기는 패키징 작업이 필수적이다.
기존에 사용돼온 픽앤플레이스(Pick-and-place) 방법은 각각의 픽셀을 일일이 기계적으로 옮겨서 디스플레이 패널에 결합하는 방법으로 픽셀의 크기가 수십 마이크로미터 미만 수준으로 작아지게 되면 기계적인 정렬 정밀도가 저하되고 전사 수율이 감소해 초고해상도 디스플레이에는 적용이 어려울 것이라는 평가를 받고 있다.
연구팀은 이러한 문제의 해결을 위해 디스플레이 구동용 규소 상보적 금속산화물 반도체(이하 Si CMOS) 회로 기판 위에 적색 발광용 LED를 모놀리식 3차원 집적하는 방식을 적용했다. 위 방식은 Si CMOS 회로 위에 마이크로 LED 필름층을 먼저 웨이퍼 본딩을 통해 전사한 뒤, 포토리소그래피 공정으로 픽셀을 구현하는 방법으로, 기계적 픽셀 전사 공정이 제외된다. 이후 연구팀은 Si CMOS 회로상에서 상단에서 하단 방향으로(Top-down) 연속적인 반도체 공정 과정을 통해 고해상도 디스플레이 데모에 성공했다.
이 과정에서 연구팀은 조명용으로 활용돼왔던 무기물 기반 LED 반도체가 아닌 디스플레이용 LED 반도체층을 설계해 발광을 위한 활성층의 두께를 기존의 1/3로 감소시켜, 픽셀 형성에 필요한 식각 공정의 난도를 크게 낮추어 이번 연구성과를 얻어냈다.
또한, 연구팀은 하부 디스플레이 구동 회로의 성능 저하 방지를 위해 350oC 이하에서 상부 III-V 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 상부 소자 집적 후에도 하부 드라이버 IC(Driver IC)의 성능을 그대로 유지할 수 있었다.
이번 연구 결과는 적색 마이크로 LED를 3차원 적층 방식으로 집적해 세계적인 수준의 해상도인 1,600 PPI 구현에 성공한 연구로서 연구에서 활용된 모놀리식 3차원 집적에 관한 연구 결과는 차세대 초고해상도 디스플레이 구현을 위한 좋은 가이드가 될 것으로 예상된다.
김상현 교수는 "향후 유사 공정을 확대 적용해 적색, 녹색, 청색이 모두 포함된 풀 컬러 디스플레이 제작도 가능할 것으로 생각한다ˮ라고 말했다.
한편 이번 연구는 삼성 미래기술육성센터의 지원을 받아 수행했다.
2022.07.29
조회수 7506
-
신경신호 모사를 통한 인공 감각 시스템 개발
우리 대학 바이오및뇌공학과 박성준 교수 연구팀이 고려대학교 천성우 교수, 한양대학교 김종석 박사 공동 연구팀과 함께 인간 피부-신경 모사형 인공 감각 인터페이스 시스템을 개발했다고 12일 밝혔다.
이번 연구 결과는 국제 학술지 `네이처 일렉트로닉스(Nature Electronics)'에 2021년 6월 3일 字로 출판됐다. (논문명: Artificial Neural Tactile Sensing System)
가상/증강 현실, 메타버스, 화상 환자를 위한 인공피부, 로봇형 의수/의족 등에 사용될 수 있는 인공 감각 시스템은, 구현해야 할 원리와 그 시스템의 복잡성 때문에 실제 감각기관처럼 만들기 어려운 상황이었다. 특히 사람은 다양한 유형의 촉각 수용기를 통해 (압력, 진동 등) 정보를 조합하여 촉각을 감지하므로, 완벽한 인공 감각 시스템의 구현은 더욱 어려울 수 밖에 없다.
연구팀은 문제 해결을 위해 나노입자 기반의 복합 촉각 센서를 제작하고, 이를 실제 신경 패턴에 기반한 신호 변환 시스템과 연결하는 방법을 사용하였다. 이 두 가지 기술의 조합을 통해 연구팀은 인간의 촉각 인식 프로세스를 최대로 모방하는 인공 감각 인터페이스 시스템을 구현하는데 성공했다.
연구팀은 우선 압전재료 및 압전 저항성 재료의 조합으로 이루어진 전자 피부를 제작했다. 이 센서는 나노입자의 적절한 조합을 통해 피부 내의 압력을 감지하는 늦은 순응 기계적 수용기(SA mechanoreceptor)와 진동을 감지하는 빠른 순응 기계적 수용기(FA mechanoreceptor)를 동시에 모사할 수 있다는 특징을 가지고 있다. 해당 센서를 통해 생성된 전위는, 연구팀이 제작한 회로 시스템을 통해 실제 감각 신호와 같은 형태의 패턴으로 변환된다. 이때 생체 내 상황을 최대한 모사하기 위해, 실제 감각신경을 추출, 다양한 감각에 의한 신호를 측정하여 함수화하는 방법이 사용됐다.
해당 시스템을 동물 모델에 적용한 결과, 연구팀은 인공 감각 시스템에서 발생한 신호가 생체 내에서 왜곡 없이 전달되며, 근육 반사 작용 등 생체 감각 관련 현상들을 구현할 수 있음을 확인했다. 또한 연구팀은 지문 구조로 만든 감각 시스템을 20여 종의 직물과 접촉함으로써, 딥 러닝 기법을 통해 직물의 질감을 99% 이상 분류할 수 있을 뿐만 아니라 학습된 신호를 기반으로 인간과 동일하게 예측할 수 있음을 보여줬다.
박성준 교수는 "이번 연구는 실제 신경 신호의 패턴 학습을 바탕으로 한 인간 모사형 감각 시스템을 세계 최초로 구현했다는 데 의의가 있다. 해당 연구를 통해 향후 더욱 현실적인 감각 구현이 가능할 뿐만 아니라, 연구에 사용된 생체신호 모사 기법이 인체 내 다양한 종류의 타 감각 시스템과 결합될 경우 더욱 큰 시너지를 낼 수 있으리라 기대한다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 신진연구사업, 범부처의료기기개발 사업, 나노소재원천기술개발사업, 차세대 지능형 반도체 개발사업, KK-JRC 스마트 프로젝트, KAIST 글로벌 이니셔티브 프로그램, Post-AI 프로젝트 사업의 지원을 받아 수행됐다.
2021.07.12
조회수 11495
-
약물 가상 스크리닝 기술로 코로나19 치료제 후보 발굴
우리 대학 생명화학공학과 이상엽 특훈교수(연구부총장)와 한국파스퇴르연구소 김승택 박사 공동연구팀이 ‘약물 가상 스크리닝 기술을 이용한 코로나19 치료제 개발’에 성공했다고 8일 밝혔다.
이번 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 7월 7일 字 온라인 게재됐다.
※ 논문명 : Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 김승택(한국파스퇴르연구소, 교신저자), 장우대(한국과학기술원, 제1저자), 전상은(한국파스퇴르연구소, 제2저자), 포함 총 4명
코로나바이러스감염증-19(이하 코로나19)는 글로벌 팬데믹으로 전개되고 있으며 현재 인류 보건을 심각하게 위협하는 상황이다. 코로나19 치료 목적으로 미국식품의약국(FDA)에서 정식 승인을 받은 렘데시비르(상품명 베클러리)가 현재 임상에서 사용 중이지만, 사망률은 감소시키지 못하고 회복 기간을 5일 정도 단축함으로써 치료 효과가 기대에 미치지 못하는 것으로 알려졌다. 또한 렘데시비르는 정맥 주사제여서 의료기관에서 입원을 통해 수일 동안 투여받아야 하므로 팬데믹 상황에 적합하지 않은 약물이다. 따라서 코로나19로 인한 사망률을 획기적으로 감소시키고, 치료 기간을 단축시키는 경구용 치료제 개발이 시급한 상황이었다.
이에 이상엽 특훈교수와 한국파스퇴르연구소 김승택 박사 공동연구팀은 약물 가상 스크리닝 기술을 이용한 약물 재창출 전략으로 코로나19 치료제 개발 연구를 수행했다.
연구팀은 팬데믹 상황에 대응한 신속한 치료제 개발을 위해 가상 스크리닝 기술을 이용한 약물 재창출 전략을 수립했다. 약물 재창출은 이미 안전성이 검증된 FDA 승인 약물 또는 임상 진행 중인 약물을 대상으로 새로운 적응증을 찾는 방식이다. 이 전략은 신약 개발 과정에 소요되는 시간을 단축시킬 수 있어 코로나19와 같은 팬데믹 상황에 적합한 신약 개발 전략이다.
우리 대학 생명화학공학과 장우대 박사는 우선 FDA 승인 약물 또는 임상 진행 중인 약물을 데이터베이스에서 수집해 6,218종의 약물 가상 라이브러리를 구축했다. 실험으로 이 약물들을 모두 검증하기에는 시간과 비용이 많이 소요되기 때문에 바이러스 치료제로 가능성이 있는 약물만 신속하게 선별할 수 있는 컴퓨터 기반 가상 스크리닝 기술을 도입했다.
기존의 도킹 시뮬레이션 기반의 가상 스크리닝 기술은 높은 위양성률(false positive rate)로 인해 유효물질 도출 비율(hit rate)이 매우 낮은 것이 문제점인 상황이었다. 연구팀은 구조 유사도 분석 모듈과 상호작용 유사도 분석 모듈을 도킹 전후에 도입하여 가상 스크리닝의 정확도를 높이는 데 성공했다. 이번 연구를 통해 개발된 가상 스크리닝 기술은 단백질-약물 복합체 구조 정보를 이용하여 다양한 후보 약물을 빠르고 정확하게 스크리닝할 수 있는 것이 특징이다.
연구팀은 또한 바이러스 치료제로 주로 사용되는 핵산 유사체(nucleotide analogues) 기반 전구약물(prodrug)의 활성형 구조를 자동으로 생성하는 알고리즘을 개발했다. 전구약물은 그 자체로는 약효가 없고 체내 대사를 통해 활성형 구조로 변환되어야만 약효를 나타낸다. 따라서 전구약물은 활성형으로 구조변환 후, 도킹 시뮬레이션을 수행하는 것이 중요하다. 연구팀은 렘데시비르를 포함한 여러 핵산유사체 기반 전구약물들의 활성형 구조를 자동으로 생성하는 데 성공하였고, 도킹 시뮬레이션의 정확도를 향상시킬 수 있었다.
연구팀은 가상 스크리닝 플랫폼으로 사스-코로나바이러스-2(SARS-CoV-2)의 복제와 증식에 필수적인 역할을 하는 단백질 가수분해 효소(3CL hydrolase, Mpro)와 RNA 중합효소(RNA-dependent RNA polymerase, RdRp)를 저해할 수 있는 후보 화합물을 15종과 23종으로 각각 선별했다.
그 후, 가상 스크리닝으로 선별된 38종의 약물에 대해 한국파스퇴르연구소의 생물안전 3등급(BSL-3) 실험실에서 세포 이미지 기반 항바이러스 활성 분석 플랫폼을 활용해 약효를 검증했다.
먼저 사스-코로나바이러스-2를 감염시킨 원숭이 신장세포(Vero cell)를 이용한 시험관 내(in vitro) 실험을 수행한 결과, 38종의 약물 중 7종의 약물에서 항바이러스 활성이 확인됐다.
또한, 검증된 7종의 약물에 대해 인간 폐 세포(Calu-3 cell)에서 추가적인 검증 실험을 수행했고, 3종의 약물에서 항바이러스 활성이 확인됐다. 후보 약물에는 암 및 특발성 폐섬유증(idiopathic pulmonary fibrosis)으로 임상이 진행 중인 오미팔리십(omipalisib), 암 및 조로증(progeria)으로 임상이 진행 중인 티피파닙(tipifarnib), 식물 추출물로써 항암제로 임상이 진행 중인 에모딘(emodin)이 있다. 특히 오미팔리십은 현재 코로나19 표준 치료제인 렘데시비르 대비 항바이러스 활성이 약 200배 이상 높은 것으로 확인됐고, 티피파닙은 렘데시비르와 유사한 수준으로 항바이러스 활성이 확인됐다.
세포 수준에서 항바이러스 효과가 확인된 약물은 바이러스 감염 동물모델을 이용한 전임상시험이 필요하다. 이에 연구팀은 과기정통부의 코로나 치료제 전임상 지원사업을 통해 후보 약물 중 하나의 약물에 대해 약효를 평가했다. 그러나 이 과정에서 동물에 대한 약물 독성이 나타났다. 약물의 독성을 최소화하면서 치료 유효 농도에 도달할 수 있는 최적의 약물 농도를 찾기 위해 추가적인 전임상시험을 진행할 예정이다. 또한, 나머지 후보 약물들에 대해서도 전임상시험을 계획 중이다.
연구팀 관계자는 이번 연구를 통해 예측 성능이 우수한 약물 가상 스크리닝 플랫폼을 구축했고, 이를 통해 코로나19 치료제로 유망한 후보물질을 단기간에 발견할 수 있었다고 설명했다.
이상엽 특훈교수는 “이번 연구를 통해 신종 바이러스 출현 시 신속하게 대응할 수 있는 기반 기술을 마련했다는 데에 의의가 있으며, 이를 통해 향후 코로나바이러스 계열의 유사한 바이러스나 신종 바이러스 출현 시에도 적용할 수 있는 기술을 개발하고자 한다”라고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 KAIST 코로나대응 과학기술 뉴딜사업과 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2021.07.08
조회수 13229
-
딥러닝으로 소재 합성 가능성 예측 기술 개발
우리 대학 생명화학공학과 정유성 교수 연구팀이 딥러닝을 활용해 소재의 합성 가능성을 높은 정확도로 예측하는 기술을 개발했다고 22일 밝혔다.
신소재 설계의 궁극적인 목표는 소재를 설계하고 그것을 실험적으로 합성하는 것이지만 현실적으로는 새롭게 설계된 대부분의 소재가 실제 합성 단계에서 성공하지 못하고 버려지는 경우가 많다. 이는 불필요한 시간과 자원의 낭비를 초래한다. 소재의 합성 여부는 반응 조건, 열역학, 반응 속도, 소재 구조 등 다양한 요인에 의해서 결정되기 때문에, 소재의 합성 가능성을 예측하는 것은 매우 도전적인 과제로 여겨져 왔다.
이런 문제 해결을 위한 방안으로 간단한 열역학적 안정성만을 고려해 고체 소재의 합성 가능성을 추정하지만 정확도는 매우 떨어지는 편이다. 일례로 에너지적으로 안정된 물질이라 하더라도 합성이 안 되는 경우가 아주 빈번하고, 또 반대로 *준안정 상태의 물질들도 합성되는 경우가 많기 때문이다. 따라서, 합성 가능성에 대한 예측 정확도를 획기적으로 높일 수 있는 방법론의 개발이 시급한 과제로 여겨져 왔다.
☞ 준안정(metastable) 상태 : 어떤 물질이 열역학적으로 안정된 ‘바닥 상태’가 아닌 상태
정유성 교수 연구팀이 개발한 소재 합성 가능성 예측기술은, 기존 합성이 보고된 고체 소재들의 구조적 유사성을 그래프 합성 곱 신경망(GCN, Graph Convolutional Neural Network)으로 학습해 새로운 소재의 합성 가능성을 예측할 수 있다. 특히, 현재까지 합성이 안 된 물질이라 하더라도 합성이 성공할 가능성은 여전히 존재하기 때문에 참값(레이블)을 이미 알고 학습을 진행하는 일반적인 지도학습과는 달리 양의 레이블(+)을 가진 데이터와 레이블이 없는 데이터(Positive-Unlabeled, P-U)를 이용한 분류 모델 기반의 준 지도학습을 사용했다.
정 교수팀은 5만여 종에 달하는 이미 합성이 보고된 물질과 8만여 종의 *가상 물질로 이뤄진 `머터리얼스 프로젝트(Materials Project, MP)'라는 소재 관련 데이터베이스를 이용해 모델을 구축했다. 연구팀 관계자는 이 신기술을 활용한 결과, 소재들의 합성 가능성을 약 87% 정확하게 예측할 수 있다고 설명했다. 정 교수팀은 또 이미 합성된 소재들의 열역학적 특성을 분석한 결과, 열역학적 안정성만으로는 실제 소재의 합성 가능성을 예측할 수 없다는 사실도 알아냈다.
☞ 가상 물질(hypothetical materials) : 기존에 합성되어 보고된 물질들을 원소 치환해서 얻어지는 가상의 물질들로 아직 실험적으로 합성 보고가 이루어지지 않은 물질
이와 함께 머터리얼스 프로젝트(MP) 데이터베이스 내에 합성 가능성 점수가 가장 높은 100개의 가상 물질에 대해 문헌조사를 실시한 결과, 이들 중 머터리얼스 프로젝트(MP) 데이터베이스에는 합성 여부가 아직 알려지지 않았지만 실제로 합성돼 논문에 보고된 소재만도 71개에 달하는 것을 확인했고 이를 통해 모델의 높은 정확도를 추가로 입증했다.
정유성 교수는 "빠른 신소재 발견을 위해 다양한 소재 설계 프레임워크가 존재하지만 정작 설계된 소재의 합성 가능성에 관한 판단은 전문가 직관의 영역으로 남아 있다ˮ면서 "이번에 개발한 합성 가능성 예측 모델은 새로운 소재를 설계할 때 실제로 합성 가능성을 실험 전에 미리 판단할 수 있어 새로운 소재의 개발시간을 단축하는 데 큰 도움이 될 것ˮ이라고 말했다.
생명화학공학과 장지돈 박사과정과 구근호 박사후연구원이 공동 제1 저자로 참여한 이번 연구결과는 미국화학회가 발행하는 국제학술지 미국화학회지(Journal of the American Chemical Society) 온라인 10월 26일 자에 실렸다. (논문명: Structure-Based Synthesizability Prediction of Crystals Using Partially Supervised Learing)
한편 이번 연구는 과학기술정보통신부 산하 한국연구재단의 기초연구사업(중견연구)과 미래소재 디스커버리 사업 지원을 받아 수행됐고, 연구에 KISTI의 슈퍼컴퓨터를 활용했다.
2020.12.22
조회수 51058
-
피부형 센서 패치 하나로 사람 움직임을 측정하는 기술 개발
우리 대학 전산학부 조성호 교수 연구팀이 서울대 기계공학과 고승환 교수 연구팀과 협력 연구를 통해 딥러닝 기술을 센서와 결합, 최소한의 데이터로 인체 움직임을 정확하게 측정 가능한 유연한 `피부 형 센서'를 개발했다.
공동연구팀이 개발한 피부 형 센서에는 인체의 움직임에 의해 발생하는 복합적 신호를 피부에 부착한 최소한의 센서로 정밀하게 측정하고, 이를 딥러닝 기술로 분리, 분석하는 기술이 적용됐다.
이번 연구에는 김민(우리 대학), 김권규(서울대), 하인호(서울대) 박사과정이 공동 제1 저자로 참여했으며 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 5월 1일 字 온라인판에 게재됐다. (논문명 : A deep-learned skin decoding the epicentral human motions).
사람의 움직임 측정 방법 중 가장 널리 쓰이는 방식인 모션 캡처 카메라를 사용하는 방식은 카메라가 설치된 공간에서만 움직임 측정이 가능해 장소적 제약을 받아왔다. 반면 웨어러블 장비를 사용할 경우 장소제약 없이 사용자의 상태 변화를 측정할 수 있어, 다양한 환경에서 사람의 상태를 전달할 수 있다.
다만 기존 웨어러블 기기들은 측정 부위에 직접 센서를 부착해 측정이 이뤄지기 때문에 측정 부위, 즉 관절이 늘어나면 더 많은 센서가 수십 개에서 많게는 수백 개까지 요구된다는 단점이 있다.
공동연구팀이 개발한 피부 형 센서는 `크랙' 에 기반한 고(高) 민감 센서로, 인체의 움직임이 발생하는 근원지에서 먼 위치에 부착해서 간접적으로도 인체의 움직임을 측정할 수 있다. `크랙' 이란 나노 입자에 균열이 생긴다는 뜻인데, 연구팀은 이 균열로 인해 발생하는 센서값을 변화시켜 미세한 손목 움직임 변화까지 측정할 수 있다고 설명했다.
연구팀은 또 딥러닝 모델을 사용, 센서의 시계열 신호를 분석해 손목에 부착된 단 하나의 센서 신호로 여러 가지 손가락 관절 움직임을 측정할 수 있게 했다. 사용자별 신호 차이를 교정하고, 데이터 수집을 최소화하기 위해서는 전이학습(Transfer Learning)을 통해 기존 학습된 지식을 전달했다. 이로써 적은 양의 데이터와 적은 학습 시간으로 모델을 학습하는 시스템을 완성하는 데 성공했다.
우리 대학 전산학부 조성호 교수는 "이번 연구는 딥러닝 기술을 활용해 실제 환경에서 더욱 효과적으로 사람의 실시간 정보를 획득하는 방법을 제시했다는 점에서 의미가 있다ˮ며 "이 측정 방법을 적용하면 웨어러블 증강현실 기술의 보편화 시대는 더욱 빨리 다가올 것ˮ 이라고 예상했다.
한편, 이번 연구는 한국연구재단 기초연구사업(선도 연구센터 지원사업 ERC)과 기초연구사업 (중견연구자)의 지원을 받아 수행됐다.
< 피부형 센서 패치로 손가락 움직임 측정 모습 >
2020.05.20
조회수 12962
-
신인식 교수, 스마트기기 간 어플기능 공유 기술 개발
〈 신인식 교수 연구팀 〉
사례 1. 직장인 김씨는 해외 출장 중 공항에 비치된 태블릿 PC를 이용해 본인의 SNS 계정에 접속해 남는 시간을 활용했다. 하지만 그 태블릿 PC에는 해킹 바이러스가 설치돼 있었고 김씨의 SNS 속 사진들이 다른 누군가에 의해 삭제되는 사고가 발생했다.
사례 2. 중학생 아들을 둔 이씨 부부는 카드사와 게임 회사에 분주하게 연락을 취하고 있다. 게임을 좋아하는 아들이 스마트폰을 이용해 백만 원 상당의 게임 아이템을 결제했기 때문이다.
사례 3. 평소 게임을 좋아하는 박씨는 스마트폰을 통해 고가의 레이싱 게임을 구매했다. 하지만 화면이 너무 작아 생동감이 떨어졌고, TV에 연결해 조이스틱을 사용해봤지만 조이스틱의 반응이 느려 게임을 제대로 즐길 수 없었다.
위의 사례는 스마트폰 및 다양한 스마트기기가 존재하는 현대 사회에서 기기로 인해 발생할 수 있는 다양한 문제점 중 일부이다. 위와 같은 문제들을 손쉽게 해결할 수 있는 기술이 개발됐다.
우리 대학 전산학부 신인식 교수 연구팀이 스마트 기기 간 어플리케이션의 기능을 공유할 수 있는 모바일 플랫폼 기술 ‘모바일 플러스(Mobile Plus)’를 개발했다.
이는 다른 모바일 기기에 설치된 앱끼리 별도의 수정 없이 자유롭게 기능을 공유할 수 있는 기술이다.
오상은 박사과정이 1저자로 참여한 이번 연구는 지난 6월 21일 미국에서 열린 모바일 컴퓨팅 분야 최고 권위 학술대회 ACM(국제컴퓨터학회) MobiSys에서 논문으로 출간됐다.
스마트폰 사용자들은 카카오톡이나 페이스북을 통해 다른 SNS 계정에 로그인을 하거나 사진 앱에 저장된 사진을 다른 SNS로 전송하는 작업 등을 빈번하게 활용한다. 이와 같은 기술은 앱 끼리 로그인 기능, 사진 관리 기능 등을 공유하고 있기 때문에 가능하다.
이러한 기능 공유를 통해 사용자는 다양하고 편리하게 스마트폰을 활용할 수 있고, 개발자는 간편하게 앱을 개발할 수 있다.
하지만 현재의 안드로이드나 iOS 플랫폼에서는 앱 기능 공유의 범위가 같은 모바일 기기 안에서만 작동한다. 기기 간 서비스 공유를 위해서는 특정 앱의 개발이 필요하고 기기마다 설치, 구매를 해야 하기 때문에 개발자와 사용자 모두에게 번거로운 일이다.
연구팀은 문제 해결을 위해 기기 간 서비스 공유 기능을 지원하는 플랫폼 기술을 개발했다. 이는 여러 모바일 기기에서 각각 실행되는 앱들이 마치 하나의 모바일 기기에서 실행되는 것과 같은 효과를 주는 가상화 기술이 핵심이다.
연구팀은 단일 기기에서 동작하던 원격 함수 호출(Remote Procedure Call) 원리를 멀티 디바이스 환경에 맞게 확장시키면서 가상화에 성공했다.
이 가상화 기술은 기존 앱들의 코드를 수정하지 않아도 기능 공유가 가능하다. 사용자 입장에서는 추가 구매 혹은 업데이트 없이도 사용할 수 있다. 또한 앱 종류에 구애받지 않는 기능 공유가 가능하다.
모바일 플러스 기술은 카메라, 마이크, GPS 등 하드웨어 뿐 아니라 앱이 제공하는 로그인, 결제, 사진 공유 등의 기능도 공유할 수 있다. 적용할 수 있는 기술의 범위가 매우 넓다는 큰 장점을 갖는다.
신 교수는 “모바일 플러스 기술은 스마트홈, 스마트카 기술 등과 함께 시너지 효과가 클 것으로 예상된다”며 “스마트폰을 허브로 스마트 가전제품이나 차량 인포테인먼트 시스템에서 다양한 앱들을 보다 더 편리하고 안전하게 사용하는 새로운 사용자 경험(UX)을 제공할 수 있다.”고 말했다.
□ 사용 예시 및 그림 설명
다른 모바일 기기 간 앱 기능 공유는 여러 가지 새로운 사용 예시를 만들 것이며 당장 실현 가능한 기술도 존재한다.
1. 보안성 향상: 로그인(login), 온라인 결제(payment) 등
사용자가 공공 도서관에서 빌린 태블릿이나 호텔방에 비치된 스마트TV 등에서 인스타그램과 같은SNS 앱에 로그인하고 싶은 경우가 있다. 그러나 이와 같은 공공(public) 태블릿이나 스마트TV는 보안상으로 매우 취약할 가능성이 높다. 이러한 공공 기기에(패스워드를 입력하며) 직접 로그인을 한다는 것은 매우 꺼려질 수 있다. 이때 이러한 공공 태블릿에서 직접 패스워드를 입력하는 대신 사용자 개인(personal) 스마트폰의 페이스북/카카오톡 로그인 기능을 사용해 공공 태블릿에 로그인함으로써 이와 같은 보안 위험을 회피할 수 있다. (그림2 참조)
그림2. 자신의 스마트폰을 이용해 공용 기기에서도 안심하고 로그인할 수 있다.
또한 공공장소에 있는 스마트TV 등에 나오는 인터넷 쇼핑 사이트에서 보고 있는 특정 제품을 구매할 경우, 이와 같은 공공 스마트TV에서의 결제는 역시 보안 위험에 노출될 수 있다. 이 경우 결제시에 사용자 개인 스마트폰의 결제 기능을 사용하여, 사용자 개인 스마트폰에서 결제가 수행되도록 함으로써 역시 이와 같은 보안 위험을 회피할 수 있다.
또한, 청소년이 게임중 우발적으로 혹은 중독적으로 게임 아이템등을 쇼핑할 경우, 결제 서비스가 부모 스마트폰에서만 이루어지도록 강제함으로써, 청소년들의 우발적/중독적 쇼핑을 제한할 수 있다. (그림3 참조)
그림3. 자녀의in-app 구매를 부모가 자신의 스마트폰을 통해 제어할 수 있다.
2. 컨텐츠 분배(contents sharing)
예를 들어 사용자가 스마트폰에서 이메일을 읽던 중 첨부파일을PDF로 열어보고 싶은 경우(스크린이 더 큰) 다른 태블릿에서 이PDF 파일을 열고자 할 경우가 있다. 이 때 기존 모바일 환경에서 사용자는PDF 파일을 먼저 스마트폰에 저장한 후 카카오톡 등 메신저 앱으로 직접 태블릿으로 옮기거나PDF 파일을 클라우드 스토리지에 업로드한 후 태블릿에서 다시 다운로드하는 번거로운 방식을 통해 다른 태블릿에서PDF 파일을 열어 볼 수 있다. 이에 반해, Mobile Plus에서는 사용자가 스마트폰에서PDF 파일을 태블릿에서 열겠다고 지정하면, 이 기능이 자동으로 수행된다. 이 때, 기존의 이메일 앱(i,e., Gmail)과PDF Viewer를 전혀 수정하지 않아도, 이러한 기능 수행이 가능하다. 또한 태블릿에서PDF 문서 중 일부를copy한 후, 스마트폰의 이메일 앱에 붙여넣기(paste)할 수도 있다.
3. I/O 분배(I/O sharing)
스마트TV에서 카레이싱 게임을 생각해보자. 카레이싱 게임은 가속도 센서를 이용하는 게임인데, 스마트TV에서는 가속도 센서가 없다. 이 경우 사용자는 다른 모바일 기기의 가속도 센서 기능을 사용하며(모바일 기기를 자동차 핸들처럼 움직이며) TV 영상에 나오는 차량을 운전하며 카레이싱 게임을 할 수 있다. 즉, 가속도 센서가 없는 스마트TV에서도 사용자는 스마트폰의 센서 기능을 공유하여, 스마트폰을 마치 콘솔 기기의 컨트롤러처럼 사용하며 카레이싱 게임을 즐길 수 있다. (그림4 참조) 비슷한 예로 카메라가 없는 스마트TV에서 스마트폰의 카메라를 이용하여 영상 통화를 하거나, 유심카드가 없는 태블릿에서 스마트폰의 유심카드를 이용하여 전화 통화를 하거나LTE 데이터 통신을 할 수 있다.
그림4. 스마트폰을 컨트롤러로 사용해서 게임을 더욱 더 신나게 즐길 수 있다.
2017.07.26
조회수 14995
-
우운택 교수, 스마트 관광 증강현실 어플리케이션 개발
〈 우 운 택 교수 〉
우리 대학 문화기술대학원 우운택 교수 연구팀이 스마트 관광 지원을 위한 증강 및 가상현실 어플리케이션을 개발했다.
‘케이 컬처 타임머신(K-Culture Time Machine)’ 어플리케이션은 창덕궁을 대상으로 한 시범 서비스로 iOS 앱스토어에 5월 23일 공개됐다.
개발된 케이 컬처 타임머신은 웨어러블 360도 비디오를 통해 문화유산이나 유적지에 대한 시공간을 넘는 원격 체험을 제공한다.
사용자는 VR기기에 스마트폰을 장착해 제공되는 360도 비디오로 문화 유적지를 원격으로 체험하고 해당 문화유산 및 연관관계가 있는 인물, 장소, 사건 등에 대한 정보를 확인할 수 있다. 또한 소실된 문화유산에 대한 3차원 디지털 복원도 체험할 수 있다.
웨어러블 기기 활용 없이도 모바일 모드를 통해 사용자 주변 유적지 확인, 카메라에 인식된 문화유산을 인식하고 관련된 정보와 콘텐츠를 제공하는 증강현실 기반의 문화유산 가이드가 가능하다.
사용자는 자신의 위치에서 창덕궁 돈화문을 시작으로 인정문, 인정전, 희정당에 이르는 창덕궁 내부를 이동하며 360도 파노라마 이미지나 비디오를 통해 현장을 가상체험 할 수 있다.
현재는 존재하지 않는 인정전 동쪽의 궐내 곽사 지역에는 3D모델을 통한 승정원의 가상 복원을 확인할 수 있다.
위 기능은 웨어러블 기기 없이 스마트폰 상에서도 체험 가능하며 개발 중인 증강현실 기능이 완성되면 현장에서 활용 가능한 수준의 어플리케이션이 될 것으로 기대된다.
우 교수 연구팀은 문화유산 데이터베이스와 증강-가상현실 콘텐츠의 표준화된 메타데이터를 구축하고 이를 적용했다. 이를 활용해 일시적으로 개발 후 소비되는 기존 어플리케이션과는 달리 추가적인 콘텐츠 생성 및 추가가 가능하다.
우 교수는 “증강현실 콘텐츠의 상호 활용성과 재활용성을 증진해 스마트관광 분야의 새로운 시장을 선점할 수 있을 것이다”며 “콘텐츠 개발 비용 절감과 증강현실 콘텐츠 생태계 활성화를 가능하게 하는 다양한 부가 효과도 기대한다”고 말했다.
이번 연구는 ㈜포스트미디어(대표 홍승모)와 문화체육관광부 CT R&D 사업과의 공동 수행을 통해 이뤄졌으며, 관련 연구 성과는 올 7월 캐나다에서 진행되는 HCII 2017 학회를 통해 발표될 예정이다.
□ 그림 설명
그림1. 360 VR 서비스 개념도
그림2. K-Culture Time Machine의 모바일 증강현실 기능 구동 화면
그림3. K-Culture Time Machine의 360도 파노라마 이미지-비디오 기능 화면
2017.05.23
조회수 16416
-
우운택 교수, 증강현실 속 캐릭터 실시간 조작기술 개발
〈 우 운 택 교수 〉
우리 대학 KI IT융합연구소 증강현실 연구센터의 우운택 교수(문화기술대학원) 연구팀이 증강현실 안경을 통해 현실공간에 존재하는 가상 객체의 이동경로를 간편하고 자유롭게 설정할 수 있는 기술을 개발했다.
이 기술은 홀로렌즈와 같은 투과형 증강현실 안경을 착용한 사용자가 스마트폰을 이용해 현실공간에서 직관적으로 동물, 식물 등의 가상 객체를 조작하면서 이동경로를 실시간으로 설정 및 변경할 수 있다.
유정민 연구교수가 1저자로 참여한 이번 연구 결과는 한국 인간-컴퓨터 상호작용 학회(HCI)에서 지난 8일에 시연됐고, 관련 논문은 2017년도 국제 인간-컴퓨터 상호작용 학회(HCI International 2017)에서 발표될 예정이다.
기존의 증강현실을 저작하는 과정은 피시(PC) 환경에 특화된 저작 프로그램을 이용하거나 전문적인 프로그래밍 언어로 가상의 객체를 선택하고 조작해야 한다. 따라서 과정이 복잡하고 비용이 상대적으로 많이 소요되는 한계가 있었다.
연구팀은 특수한 입력장치를 사용하는 대신 자체 개발한 앱을 스마트폰에서 구동시켜 홀로렌즈가 부착된 안경형 디스플레이 장치와 연동했다.
이를 통해 3차원 마우스와 같은 입력장치로 사용할 수 있고 증강현실 속 가상 객체를 컴퓨터의 아이콘 옮기듯 쉽게 조정하고 이동할 수 있게 된다.
이 기술은 사용자가 스마트폰의 입력 정보와 내장된 3축 기울기 센서로부터 획득한 스마트폰의 자세 정보를 이용해 가상 객체를 선택 혹은 취소하거나 크기를 조절할 수 있다. 또한 가상 객체의 이동경로를 현실 공간에 바로 설정하거나 수정할 수 있다.
이러한 기능은 현실 공간에서 가상 객체의 이동을 직관적으로 설정할 수 있기 때문에 다양한 동적인 증강현실 환경을 현장에서 즉각적으로 구성할 수 있다.
누구나 쉽게 사용할 수 있는 저작도구는 다양한 증강현실 콘텐츠의 즉각적인 생산과 체험을 가능하게 하고 새로운 증강체험 관련 산업의 형성 및 생태계 구축에 기여할 수 있을 것으로 기대된다.
우 교수는 “이 기술은 스마트 폰만 있으면 누구나 콘텐츠를 현장에서 직관적으로 저작할 수 있다”며 “추가 개발될 증강현실 저작도구를 통해 누구나 포켓몬go 같이 가상 캐릭터와 현실공간이 상호작용하는 환경을 만들 수 있을 것으로 기대한다”고 말했다.
□ 그림 설명
그림1. 증강현실 체험 위한 안경형 디스플레이기반 이동경로 저작 기술의 개념도
그림2. 기술을 활용하여 증강현실 환경을 구성하는 실제 화면
2017.02.16
조회수 12770
-
박용근 교수, 성능 수천배 향상된 3차원 홀로그래픽 디스플레이 기술 개발
우리 대학 물리학과 박용근 교수 연구팀(KI 헬스사이언스 연구소)이 성능이 2천 배 이상 향상된 3차원 홀로그래픽 디스플레이 기술을 개발했다.
이번 연구를 통해 기존 무 안경 홀로그래픽 기술의 큰 문제점이었던 제한적인 영상 크기와 시야각을 향상시킬 수 있을 것으로 기대된다.
유현승 박사과정이 1저자로 참여한 이번 연구는 광학 분야 국제 학술지인 ‘네이처 포토닉스(Nature Photonics)’ 1월 24일자 온라인 판에 게재됐다.
공상과학 영화에 자주 등장하는 3차원 홀로그램은 대중에게 친숙한 기술이지만, 영화 속 홀로그램은 컴퓨터 그래픽 효과로 만들어낸 것이다. 실제 기술로 구현하기에는 한계가 많기 때문이다.
이 때문에 디스플레이 산업계는 2차원 영상 두 개로 착시 효과를 활용하는 가상현실(VR)과 증강현실(AR)에 집중하고 있다. 이 기술들은 3차원 이미지 대신 두 개의 서로 다른 2차원 이미지를 눈에 투사하는 방식을 채택한다.
3D안경 등 특수 장비 없이도 볼 수 있는 3차원 홀로그램을 만들기 위해선 공간광파면 조절기(빛이 퍼져나가는 방향을 정밀하게 조절할 수 있는 광학제어장치)를 이용해 빛의 방향을 변경해야 한다.
그러나 이와 같은 공간광파면 조절기를 3차원 디스플레이로 사용하지 못하는 가장 큰 걸림돌은 픽셀의 개수이다. 최근 각광받는 고해상도 모니터의 많은 픽셀 개수조차도 2차원 이미지에만 적합할 뿐 3차원 이미지를 만들기에는 정보량이 매우 부족하다.
이 때문에 기존의 기술로 만들 수 있는 3차원 영상은 크기 1센티미터, 시청 가능 각도 3도 이내 수준으로서 실용성과는 거리가 멀다.
연구팀은 문제 해결을 위해 공간광파면 조절기만 사용하는 대신 간유리를 추가적으로 활용해 빛을 무작위로 산란시켰다. 무작위로 산란된 빛은 여러 방향으로 퍼지기 때문에 넓은 각도에서 시청 가능하고 영상 크기도 확대된다.
하지만 무작위한 패턴을 갖기 때문에 특별한 제어 없이는 3차원 이미지를 볼 수 없다. 연구팀은 빛의 결맞음(파동이 간섭 현상을 보이는 성질) 정도에 대한 수학적인 상관관계를 활용해 빛을 적절히 제어해 문제를 해결했다.
연구팀은 실험을 통해 가로, 세로, 높이 2센티미터 영역에 약 35도의 시청각을 갖는 3차원 이미지를 제작하는 데 성공했다. 이는 기존의 공간대역폭보다 약 2천 600배 이상 향상된 결과이다.
연구팀의 홀로그래픽 디스플레이는 기존의 공간광파면 조절기에 간유리를 추가하는 것만으로 제작이 가능해 일반적인 디스플레이 장치와 결합해 상용화가 가능할 것으로 기대된다.
1저자인 유현승 학생은 “물체의 인식을 방해한다고 여겨진 빛의 산란을 적절히 이용해 기존 3차원 디스플레이보다 향상된 이미지를 만들 수 있음을 선보였다”며 “특수 안경 없이 볼 수 있는 실용적인 디스플레이의 기반이 될 것으로 기대된다”고 말했다.
이번 연구는 한국연구재단의 시간역행반사 창의연구단 사업과 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 3차원 홀로그래픽 디스플레이의 모식도
그림2. 2 cm × 2 cm × 2 cm 영역에 만들어진 3차원 이미지
그림3. 3차원 홀로그래픽 디스플레이의 원리
2017.01.24
조회수 16831
-
공간을 자유자재로 누비는 가상스피커 개발
김양한 교수
- 3D 입체 영상과 결합해 진정한 3D TV 시대 임박 -- 이론적, 실용적 측면 모두 해결해 곧 상용화 예정 -
원하는 공간 어디서나 마치 스피커가 놓여 있는 것처럼 소리를 들을 수 있는 시스템이 개발돼 곧 상용화 예정이다.
우리 학교 기계공학과 김양한, 최정우 교수 연구팀이 공동으로 3차원 공간상에 자유롭게 가상스피커를 배치할 수 있는 ‘사운드 볼 시스템’을 개발했다.
이번에 개발된 시스템은 원하는 공간상의 위치에 자유자재로 소리를 집중시킬 수 있다. 따라서 3D TV에 적용하면 마치 소리도 사람에게 다가오는 것처럼 느껴져 시각과 청각 모두 3D 기능을 갖춘 진정한 의미의 3D TV를 경험할 수 있게 됐다.
또 오케스트라의 바이올린, 첼로 등 현악기와 플루트, 클라리넷 등의 관악기 소리를 원하는 공간에서 나게 조절할 수 있어 집안에서도 마치 실제 콘서트홀에 온 것 같은 느낌을 받을 수 있다.
게다가 여러 가지 소리를 개별적으로 제어가 가능해 방송국 음향 편집에도 활용될 수 있으며, 자동차에서는 각 좌석별로 네비게이션, 음악, TV 소리 등을 따로 전달하는 등 적용범위가 매우 다양할 것으로 예상된다.
사운드 볼 시스템은 여러 개의 스피커를 이용해 공간상의 원하는 지점에 음향 에너지를 집중시킨 후, 집중된 지점에서 다시 전파되는 소리를 이용해 가상 스피커를 만드는 기술이다.
이 기술은 2002년 김 교수팀이 미국음향학회(Acoustical Society of America)에 발표한 청취공간에 있는 사람만 소리를 듣고, 다른 영역에서는 조용하게 하는 음향 밝기·대조 기술을 발전시킨 것으로 음향 에너지 집중을 통해 소리의 방향, 움직이는 소리 및 소리의 공간감을 제어할 수 있다.
연구팀은 먼저 가상스피커에 대한 이론적 해를 완전한 적분방정식 형태로 세계 최초로 풀어내 3차원 공간 어디에서도 구현 가능하도록 했다.
이와 함께, 여러 개의 단극 음원을 조합한 다극음원(multipole)을 사용하고 지향성(directivity) 조정을 통해 원하는 음장을 만들어 탁월한 청취 선명도를 이끌어 냈다.
김양한 교수는 ”2002년 논문부터 시작된 음향제어분야의 새로운 이론적 토대를 마련한 것은 중요한 의미가 있다“며 ”이 기술을 바탕으로 지난 9월 국내 굴지 전자업체와 TV용 3차원 음향시스템 개발을 착수했다“고 말했다.
최정우 교수는 “앞으로 홈씨어터, 영화관, 공공장소 등에서 개발된 시스템이 사용되면 새로운 3차원 음장 기술이 가지고 있는 효과를 느낄 수 있을 것이다”며 “3차원 영상 기술과 함께 통합돼 새로운 영상과 음향의 세계를 경험할 날이 멀지 않았다”고 말했다.
한편, 연구팀은 이번 기술에 대한 특허출원을 완료했으며, 관련 논문은 지난 달 관련 분야 최대 학술단체인 국제전기전자공학회(IEEE)가 발간하는 국제저널(IEEE Transaction of Audio, Speech, and Language Processing)에 게재됐다.
※ 기술 개요(소리의 공간감을 자유자재로 누구나 요리해 맛볼 수 있는 기술)
오래도록 우리는 완벽한 3D사운드 혹은 소리의 공간감의 완전한 재현이 가능한 이상적인 오디오 시스템을 꿈꾸어 왔다. 그러나 3D사운드는 그 정의가 명확하지 않은 주관적인 개념이며, 그 평가에 대한 절대적인 척도 또한 존재하지 않는다.
최근 다양한 3D sound 기법이 난립하고 있으나, 이는 청취 환경에 따라 변화할 뿐만 아니라, 동일한 환경에서도 청취자가 누구냐에 따라 다르게 인지되는 근본적인 문제점을 내포하고 있다. 음장 재현 방법의 이러한 근본적인 문제는 과거의 스테레오 시스템에서 볼 수 있는 밸런스 노브(balance knob)로부터 그 해결의 실마리를 찾을 수 있다. 즉, 밸런스 노브는 보편적인 최적의 소리를 찾는 대신에 청취자가 원하는 음향 효과를 얻을 때까지 직접적으로 소리를 청취하고, 스스로 조절해 평가할 수 있는 매개체의 역할을 수행한다.
KAIST에서 개발한 Spatial Equalizer는 밸런스 노브와 같이 청취자가 원하는 3D 사운드를 스스로 평가하고 조절하기 위한 것이다. 즉, 청취자가 시공간적으로 원하는 3D사운드를 실시간으로 청취하고 변화시킬 수 있는 인터페이스의 개념 및 구현에 초점을 맞추고 있다. Spatial Equalizer는 인터페이스 상에서 하나의 점 또는 다수의 점으로 표시되는 가상 음원을 사용자가 조종함으로써 소리의 공간감을 제어할 수 있는 길을 열어 주고 있다. 이는 다수의 점 음원들의 위치를 변화시키거나 각 점에 위치한 가상 음원의 크기를 변화시킴으로써 청취자가 원하는 소리를 구현하는 원리다.
즉, 사용자가 원하는 소리의 공간감을 공간상에 위치하는 몇 개의 가상 음원의 조합으로 대치하고, 실제로 사용자는 원하는 공간감과 듣는 소리가 부합되도록 하나 또는 다수의 가상 음원의 위치 및 각 음원에 의한 소리의 크기를 조절하는 것이다. 여기서, 원하는 공간감을 얻기 위한 기본적인 요소로서의 가상 음원을 sound ball이라 정의하고 사용하기로 한다.
가상의 sound ball 혹은 가상의 스피커를 자유롭게 공간상에 만들어 내기 위해 스피커 어레이 제어 기술의 혁신이 필요하다. 다수의 스피커로 이루어진 스피커 어레이(loudspeaker array)를 사용하면 소리(sound)가 전파하는 모양을 자유자재로 만드는 것이 가능함은 잘 알려져 있다. 다수의 스피커를 개별적인 크기와 위상으로 구동하면, 각각의 스피커를 중심으로 하는 다수의 파면이 형성되고, 이들이 공간상에서 간섭(interference)되면서 고유의 형상을 갖게 되는 원리이다. 1678년 발표된 호이겐스(Huygens)의 원리로부터, 키르히호프-헬름홀츠(Kirchhoff-Helmholtz) 적분 방정식에 이르는 이론식이 관련 연구의 배경을 이루고 있다. 하지만, 이러한 이론들은 어디까지나 우리가 만들고자 하는 가상의 스피커, 즉 음원(sound source)이 공간 외부에 존재하는 경우에 적용할 수 있으며, 소리를 재현하고자 하는 공간 내부에 음원이 있을 경우는 물리적으로 불가능한 문제가 된다.
기존 WFS(wave field synthesis)등 관련 연구에서는 근사화한 적분 방정식을 사용하여 시간 역전(time-reversal)의 형태로 내부의 음원이 발생시키는 것과 유사한 음장을 만들어 낼 수 있음을 부분적으로 밝혀졌으나, 물리적으로 발생 가능한 이유와 온전한 형태의 해에 대해서는 알려진 바가 없었다. KAIST에서는 온전한 적분 방정식 형태로 일반해가 존재함을 수학적으로 밝혀내었으며, 이에 따라 전 3차원 공간에서 임의의 위치의 sound ball을 형성할 수 있는 이론적 토대를 마련하였다.
개발된 sound ball 형성 알고리듬을 사용하여, Spatial Equalizer를 실제 오디오 시스템의 형태로 구축하였다. 이 시스템의 목적은 다수의 sound ball을 사용자가 원하는 임의의 지점에 형성하는 것이므로, 이것을 고려하여 24개의 스피커로 이루어진 선형 어레이 및 50개 스피커로 구성된 구형 어레이를 제작하였다. 사용자와 Spatial Equalizer® 사이에 피드백이 실시간으로 이루어지는 제어를 수행하기 위해 스마트 폰을 사용하여 원거리에서 sound ball을 제어할 수 있는 장치를 구현하였다. 이 인터페이스는 OSC(Open Sound Control) 프로토콜을 사용함으로써 제어 장치인 스마트 폰과 호스트 PC가 원거리에서도 제어 변수를 주고 받을 수 있도록 하였다. 즉, 각각의 sound ball의 위치 및 크기가 Spatial Equalizer®의 노브로서 작동하게 되어, 사용자는 Sound ball의 위치와 크기를 조절함으로써 의도하는 소리의 공간감을 직관적으로 형성할 수 있다.
음식을 만드는 경우와 비유적으로 설명하면, sound ball을 이용하여 이제는 사용자가 원하는 시.공간적 소리를 만들 수 있게 된 것이다. 종래에는 특별한 청취 능력을 가진 사람이 이러한 소리를 만드는 즉 특별한 요리사 만이 소리의 공간 감을 만들 수 있었다 하면 이제는 이 기술을 이용하여 모든 사람이 자신이 느끼기에 좋다고 생각하는 소리를 공간상에 만들 수 있는 “소리 만들기” 요리 법과 도구를 가지게 된 것이다.
그림1. 여러 개의 스피커를 통해 가상다극음원을 만들었다. 지향성 조정을 통해 수렴음장을 제거했으며, 가상스피커로부터 원하는 음장을 재현했다.
그림2. 사운드 볼 시스템 개념도
그림3. 5.1채널 방식의 서라운드 스피커(좌)와 가상스피커(우) - 실제 피아노가 시청자 바로 앞에 놓인 것과 같은 소리를 들을 수 있다.
그림4. 사운드 볼이 형성 및 이동하면서 소리가 TV에서 튀어나오는 것과 같은 느낌을 받는다.
2012.10.10
조회수 17243