본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B0%80%EC%8A%A4+%EC%84%BC%EC%84%9C
최신순
조회순
실내 조명 활용해 최고 수준 이산화질소 감지 가능
우리 연구진이 기존까지 전무했던 녹색빛을 가스 센서에 조사하여 상온에서 최고 수준의 이산화질소 감지 성능을 보이는 것을 확인했다. 이를 통해 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다. 우리 대학 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소(NO2)를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다. 금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300 oC 이상 가열이 필요해 상온 측정에 한계가 있었다. 이를 극복하기 위한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받고 있으나, 기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다. 김일두 교수 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 크게 높였으며, 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가하였다. 특히 실내조명에 사용되는 백색광을 조사해 최고 수준의 이산화질소 가스 감지 반응성(0.8 ppm NO2, 감도 = 75.7)을 달성하는 데에 성공했다. 연구진은 가시광선의 흡수가 어려운 인듐 산화물(In2O3) 나노섬유*에 비스무스(Bi) 원소**를 첨가하여 청색광을 흡수할 수 있도록 중간 밴드 갭***을 형성시켰고, 금(Au) 나노입자를 추가적으로 결착하여 국소 표면 플라즈몬 공명** 현상을 통해 가시광 중 가장 풍부한 녹색광 영역에서의 활성도를 극대화했다. 비스무스와 금 나노입자 첨가 효과와 나노섬유가 갖는 넓은 비표면적 특성을 통해 상온에서 이산화질소 반응성을 기존 센서 대비 52배(0.4 ppm NO2 감도 기준) 증가시켰다. *인듐 산화물 나노섬유: 인듐 산화물은 전기 전도 특성을 지닌 금속 산화물로, 이를 전기방사 공정을 통해 나노섬유 형상으로 제작함 **비스무스(Bi) 원소: 원자번호 83번의 원소로, 주기율표에서는 질소(N), 인(P), 비소(As), 안티모니(Sb)와 함께 15족(질소 족)에 속하는 원소 ***밴드 갭(Band gap): 전자(electron)가 속박 상태에서 자유롭게 벗어나는 데 필요한 에너지 차를 의미하며 물질의 전기적, 광학적 성질을 결정하는 중요 요인 중 하나 ***국소 표면 플라즈몬 공명(LSPR): 빛에 의해 나노입자 표면의 전하 수송체를 들뜬 상태로 만들고 금속산화물로 이동시켜 가스와의 산화-환원 반응을 촉진하는 원리 이번 연구의 연구책임자인 신소재공학과 김일두 교수는 “자동차 배기가스 및 공장 매연 등에서 배출되는 대표적인 대기 환경 유해가스인 이산화질소 가스를 우리 주변에서 일반적으로 접근할 수 있는 녹·청색광(430~570 nm) 영역의 가시광을 활용해 상온에서 초고감도로 감지가 가능한 신소재를 개발했다”라며 “가스 센서의 소비전력 및 집적화 문제를 해결할 수 있어, 향후 실내조명 및 기기와의 결합을 통한 가스 센서의 상용화에 큰 역할을 할 것으로 기대한다”라고 밝혔다. 신소재공학과 졸업생 박세연 박사(現 펜실베니아 대학교 박사 후 연구원), 신소재공학과 김민현 박사과정이 공동 제1 저자로 주도한 이번 연구는 재료 분야 국제권위 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’에 3월 4일 온라인 공개됐으며 6월 13일 24호 전면 속표지(Inside Front Cover) 논문으로 발표 예정이다. (논문명 : Dual-Photosensitizer Synergy Empowers Ambient Light Photoactivation of Indium Oxide for High-Performance NO2 Sensing) 한편 이번 연구는 한국연구재단 중견연구자지원 사업, 중소벤처기업부와 중소기업기술정보진흥원(TIPA)의 소재부품장비 전략협력기술개발사업의 지원을 받아 수행됐다.
2024.06.10
조회수 3134
강한 빛을 쏘아 나노 촉매 제조해 황 기반 가스 검출센서 구현 성공
우리 대학 신소재공학과 김일두 교수 연구팀과 전기및전자공학부 최성율 교수 연구팀이 공동연구를 통해 강한 빛(400 나노미터~900 나노미터 파장)을 금속산화물 나노 시트에 짧게 조사해, 0.02초 만에 다성분계 금속 합금 나노입자 촉매를 합성하고, 이를 극미량의 황 기반 생체지표(biomarker) 가스를 감지할 수 있는 가스 센서 플랫폼에 성공적으로 적용했다고 18일 밝혔다. 이 가스 센서 플랫폼은 사람의 날숨에 포함된 다양한 질병과 관련된 미량의 생체지표 가스를 선택적으로 감지해 관련된 특정 질병을 실시간 모니터링할 수 있는 기술이다. 날숨만으로 각종 질병 여부를 파악하는 비침습적 호흡 지문 센서 기술은 핵심 미래 기술이다. 날숨 속 특정 가스들의 농도변화를 검사해 건강 이상 여부를 판단할 수 있다. 날숨 가스의 성분에는 수분 외에도 구취의 생체지표 가스인 황화수소(hydrogen sulfide), 메틸머캅탄(methyl mercaptan), 디메틸설파이드(dimethyl sulfide)의 3종 황 화합물이 포함된다. 그중에서 황화수소는 구취, 메틸머캅탄 가스는 잇몸병 환자에게서 높은 농도로 배출되는 생체지표 가스로서 상기 3종 황화합물 가스를 선택적으로 감지하는 것이 매우 중요하다. 공동연구팀은 이번 연구에서 전자(electron)가 속박 상태에서 자유롭게 벗어나기 위해 필요한 에너지 차를 의미하는 밴드 갭(band gap, 물질의 전기적, 광학적 성질을 결정하는 요인)이 커 빛 흡수율이 낮은 백색 산화물 나노소재에서의 광열효과를 극대화하는 전략을 최초로 제시했다. 일반적으로 소재의 밴드갭이 커질수록 빛 흡수율이 낮아지며, 유리와 같이 밴드 갭이 매우 큰 물질은, 빛이 투과되어 투명하게 보이게 된다. 연구팀은 주석산화물(SnO2)이 10 나노미터 이하의 나노 결정립들로 구성된 나노 시트 형상을 나타낼 때, 흡수된 빛에너지가 열에너지로 효과적으로 전환됨을 최초로 관찰하였다. 또한, 높은 기공 구조와 나노 시트 내 다수의 결함을 통해 열 전도도를 인위적으로 낮춰 발생 된 열이 소재 외부로 잘 빠져나가지 않게 했다. 대면적 제논 램프(Xenon lamp)의 빛이 조사된 부분은 소재의 온도가 1,800oC 이상까지 급격하게 상승하는 것을 적외선 센서 시스템을 통해 확인했다. 공동연구팀은 이를 활용해 금속산화물의 상을 제어함과 동시에 다성분계 금속 나노입자 촉매를 대기 중에서 0.02초 만에 광열 합성하는 데 성공했다. 합성한 다성분계 입자 촉매들이 결착된 금속산화물 나노 시트를 센서 소재로 활용해 세계 최고 수준의 황 기반 가스 감지 성능을 구현했다. 특히, 백금(Pt)과 3성분계 백금-루테늄-이리듐(PtRuIr) 촉매가 각각 결착된 주석산화물의 경우 1ppm(백만분의 일) 수준의 황화수소 (H2S)와 디메틸 설파이드 (C2H6S)가스에 대해 약 3,165배, 6,080배의 세계 최고 수준의 저항 변화비 특성을 나타냄을 확인했다. 추가로, 연구팀은 미세전자기계시스템(MEMS) 기반 휴대용 가스 센서를 개발했다. MEMS 센서는 센서부 크기가 0.1밀리미터 크기로 작아서, 1g의 감지 소재로 8천여 개 정도의 센서를 제작할 수 있다. 연구팀은 MEMS 가스 센서 어레이화와 모바일 기기와의 연동을 통해 초저전력(< 10 mW), 초소형 생체지표 검출 가스 센서 플랫폼을 개발했다. 우리 대학 최성율 교수와 김일두 교수는 "강한 빛을 1초도 안되는 짧은 시간동안 간편하게 조사하는 방식과 소재의 광열효과를 극대화하는 합성기법은 금속산화물의 상(phase) 조절과 촉매 기능화를 초고속, 대면적으로 가능하게 하는 새로운 공정 플랫폼이 될 것으로 기대된다ˮ고 밝혔다. 특히, "램프 조사 횟수에 따라 단일원자 촉매의 대기 중 합성도 성공해, 세계 최고 수준의 가스 감지 성능 결과를 유도했다는 측면에서 매우 의미가 있는 연구 결과이며 매일같이 호흡 가스를 분석해 질병을 조기 모니터링하는 자가 진단 호흡 센서기기의 상용화에 효과적으로 적용될 수 있는 기술이 될 것이다ˮ고 밝혔다. 이번 연구는 공동 제1 저자인 김동하 박사(우리 대학 신소재, 현 MIT 박사후 연구원)와 차준회 박사(KAIST 전기및전자공학부)의 주도하에 진행됐으며, 최성율 교수(KAIST 전기및전자공학부)와 김일두 교수(KAIST 신소재)가 교신저자로 참여했다. 이번 연구 결과는 나노 및 화학 분야의 권위적인 학술지이자 Cell지의 자매지인 `켐(Chem)' 4월호에 표지 논문으로 선정됐으며, ‘광열램핑(Flash-Thermal Lamping) 합성’으로 켐 프리뷰(Chem Preview)로도 소개되었다. 본 연구는 한국연구재단 중견연구자지원 사업, 과학기술정보통신부와 산업통상자원부 사업, 한국연구재단 미래소재디스커버리 사업의 지원을 받아 수행됐다.
2022.04.19
조회수 10337
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1