본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B1%B0%EB%8C%80%EC%96%B8%EC%96%B4%EB%AA%A8%EB%8D%B8
최신순
조회순
박종세 교수팀, 2024 IISWC 다수 상 동시 석권
우리 대학 전산학부 박종세 교수 연구팀이 지난 9월 15일부터 9월 17일까지 캐나다 밴쿠버에서 열린 ‘2024 IEEE 국제 워크로드 특성화 심포지엄(IEEE International Symposium on Workload Characterization, 이하 IISWC 2024)’에서 최우수 논문상(Best Paper Award)과 최우수 연구 기록물 상(Distinguished Artifact Award)’을 동시에 수상했다고 26일 밝혔다. 박 교수 연구팀은 ‘초거대 언어모델 추론 서비스 제공을 위한 HW/SW 공동 시뮬레이션 인프라(LLMServingSim: A HW/SW Co-Simulation Infrastructure for LLM Inference Serving at Scale)’ 논문으로 두 상을 동시에 수상했다. IISWC는 컴퓨터 시스템 워크로드 특성화 분야에서 권위를 자랑하는 국제 학회이며, 개최시마다 최우수 논문상과 최우수 연구 기록물 상을 하나씩 수여하는데 올해에는 박 교수팀의 논문이 두 상을 모두 단독으로 수상했다. 이번 수상 연구는 대규모 거대언어모델(LLM) 추론 서비스를 위한 하드웨어와 소프트웨어 통합 시뮬레이션 인프라를 최초 개발한 점, 향후 LLM 추론 연구의 지속적인 발전을 위해 오픈소스로 공개한 코드의 완성도와 사용자 편의성 측면에서 높은 평가를 받았다. 이번 연구에서 연구팀은 챗GPT와 같은 LLM 추론 서비스를 실행하는 대규모 시스템을 여러 가지 하드웨어와 소프트웨어를 추가해 시뮬레이션할 수 있는 시뮬레이션 인프라를 제안했다. 이를 통해 GPU(그래픽처리장치), NPU(신경망처리장치)와 PIM(지능형메모리반도체)과 같은 다양한 하드웨어뿐만 아니라 반복 수준 스케쥴링, KV 캐시 페이징과 같은 초거대 언어모델 추론을 위한 소프트웨어적 요소를 모두 함께 시뮬레이션할 수 있었다. 이번 연구는 KAIST 전산학부 박종세 교수팀의 조재홍, 김민수, 최현민, 허구슬 학생들이 주도했다. 상을 받은 KAIST 전산학부 박종세 교수는 “이번 연구를 통해, LLM 클라우드 상에서 다양한 AI 반도체와 시스템 소프트웨어의 성능을 종합적으로 평가해 볼 수 있는 오픈소스 도구(Tool)을 공개할 수 있게 되어 기쁘고, 앞으로도 생성형 AI를 위한 클라우드 시스템 연구를 지속해 나갈 것이다”라고 소감을 전했다. 이번 연구 결과는, 챗GPT와 같이 LLM을 활용하는 단순한 챗봇 AI를 넘어, 생성형 AI(Generative AI)로 대표되는 미래 AI 산업에서 이종 AI 반도체 기반 클라우드 시스템을 구축하는 등 다양한 분야에 활용될 수 있을 것으로 기대된다. 한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 인공지능반도체대학원지원사업, 및 하이퍼엑셀의 지원을 받아 수행됐다.
2024.10.11
조회수 1355
기업 의사결정을 거대언어모델로 최초 해결
기업 내외의 상황에 따라 끊임없이 새롭게 결정해야 하는 기업 의사결정 문제는 지난 수십 년간 기업들이 전문적인 데이터 분석팀과 고가의 상용 데이터베이스 솔루션들을 통해 해결해 왔는데, 우리 연구진이 최초로 거대언어모델을 이용하여 풀어내어 화제다. 우리 대학 전산학부 김민수 교수 연구팀이 의사결정 문제, 기업 데이터베이스, 비즈니스 규칙 집합 세 가지가 주어졌을 때 거대언어모델을 이용해 의사결정에 필요한 정보를 데이터베이스로부터 찾고, 비즈니스 규칙에 부합하는 최적의 의사결정을 도출할 수 있는 기술(일명 계획 RAG, PlanRAG)을 개발했다고 19일 밝혔다. 거대언어모델은 매우 방대한 데이터를 학습했기 때문에 학습에 사용된 바 없는 데이터를 바탕으로 답변할 때나 오래전 데이터를 바탕으로 답변하는 등 문제점들이 지적되었다. 이런 문제들을 해결하기 위해 거대언어모델이 학습된 내용만으로 답변하는 것 대신, 데이터베이스를 검색해 답변을 생성하는 검색 증강 생성(Retrieval-Augmented Generation; 이하 RAG) 기술이 최근 각광받고 있다. 그러나, 사용자의 질문이 복잡할 경우 다양한 검색 결과를 바탕으로 추가 정보를 다시 검색하여 적절한 답변을 생성할 때까지 반복하는 반복적 RAG(IterativeRAG)라는 기술이 개발됐으며, 이는 현재까지 개발된 가장 최신의 기술이다. 연구팀은 기업 의사결정 문제가 GPT-3.5 터보에서 반복적 RAG 기술을 사용하더라도 정답률이 10% 미만에 이르는 고난도 문제임을 보이고, 이를 해결하기 위해 반복적 RAG 기술을 한층 더 발전시킨 계획 RAG(PlanRAG)라는 기술을 개발했다. 계획 RAG(PlanRAG)는 기존의 RAG 기술들과 다르게 주어진 의사결정 문제, 데이터베이스, 비즈니스 규칙을 바탕으로 어떤 데이터 분석이 필요한지에 대한 거시적 차원의 계획(plan)을 먼저 생성한 후, 그 계획에 따라 반복적 RAG를 이용해 미시적 차원의 분석을 수행한다. 이는 마치 기업의 의사결정권자가 어떤 데이터 분석이 필요한지 계획을 세우면, 그 계획에 따라 데이터 분석팀이 데이터베이스 솔루션들을 이용해 분석하는 형태와 유사하며, 다만 이러한 과정을 모두 사람이 아닌 거대언어모델이 수행하는 것이 커다란 차이점이다. 계획 RAG 기술은 계획에 따른 데이터 분석 결과로 적절한 답변을 도출하지 못하면, 다시 계획을 수립하고 데이터 분석을 수행하는 과정을 반복한다. 김민수 교수는 “지금까지 거대언어모델 기반으로 의사결정 문제를 푼 연구가 없었던 관계로, 기업 의사결정 성능을 평가할 수 있는 의사결정 질의응답(DQA) 벤치마크를 새롭게 만들었다. 그리고 해당 벤치마크에서 GPT-4.0을 사용할 때 종래의 반복적 RAG에 비해 계획 RAG가 의사결정 정답률을 최대 32.5% 개선함을 보였다. 이를 통해 기업들이 복잡한 비즈니스 상황에서 최적의 의사결정을 사람이 아닌 거대언어모델을 이용하여 내리는데 적용되기를 기대한다”고 말했다. 이번 연구에는 김 교수의 제자인 이명화 박사과정과 안선호 석사과정이 공동 제1 저자로, 김 교수가 교신 저자로 참여했으며, 연구 결과는 자연어처리 분야 최고 학회(top conference)인 ‘NAACL’ 에 지난 6월 17일 발표됐다. (논문 제목: PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers) 한편, 이번 연구는 과기정통부 IITP SW스타랩 및 ITRC 사업, 한국연구재단 선도연구센터인 암흑데이터 극한 활용 연구센터의 지원을 받아 수행됐다.
2024.06.19
조회수 2498
2.4배 가격 효율적인 챗GPT 핵심 AI반도체 개발
오픈AI가 출시한 챗GPT는 전 세계적으로 화두이며 이 기술이 가져올 변화에 모두 주목하고 있다. 이 기술은 거대 언어 모델을 기반으로 하고 있다. 거대 언어 모델은 기존 인공지능과는 달리 전례 없는 큰 규모의 인공지능 모델이다. 이를 운영하기 위해서는 수많은 고성능 GPU가 필요해, 천문학적인 컴퓨팅 비용이 든다는 문제점이 있다. 우리 대학 전기및전자공학부 김주영 교수 연구팀이 챗GPT에 핵심으로 사용되는 거대 언어 모델의 추론 연산을 효율적으로 가속하는 AI 반도체를 개발했다고 4일 밝혔다. 연구팀이 개발한 AI 반도체 ‘LPU(Latency Processing Unit)’는 거대 언어 모델의 추론 연산을 효율적으로 가속한다. 메모리 대역폭 사용을 극대화하고 추론에 필요한 모든 연산을 고속으로 수행 가능한 연산 엔진을 갖춘 AI 반도체이며, 자체 네트워킹을 내장하여 다수개 가속기로 확장이 용이하다. 이 LPU 기반의 가속 어플라이언스 서버는 업계 최고의 고성능 GPU인 엔비디아 A100 기반 슈퍼컴퓨터보다 성능은 최대 50%, 가격 대비 성능은 2.4배가량 높였다. 이는 최근 급격하게 생성형 AI 서비스 수요가 증가하고 있는 데이터센터의에서 고성능 GPU를 대체할 수 있을 것으로 기대한다. 이번 연구는 김주영 교수의 창업기업인 ㈜하이퍼엑셀에서 수행했으며 미국시간 7월 12일 샌프란시스코에서 진행된 국제 반도체 설계 자동화 학회(Design Automation Conference, 이하 DAC)에서 공학 부문 최고 발표상(Engineering Best Presentation Award)을 수상하는 쾌거를 이뤘다. DAC은 국제 반도체 설계 분야의 대표 학회이며, 특히 전자 설계 자동화(Electronic Design Automation, EDA)와 반도체 설계자산(Semiconductor Intellectual Property, IP) 기술 관련하여 세계적인 반도체 설계 기술을 선보이는 학회다. DAC에는 인텔, 엔비디아, AMD, 구글, 마이크로소프트, 삼성, TSMC 등 세계적인 반도체 설계 기업이 참가하며, 하버드대학교, MIT, 스탠퍼드대학교 등 세계 최고의 대학도 많이 참가한다. 세계적인 반도체 기술들 사이에서 김 교수팀이 거대 언어 모델을 위한 AI 반도체 기술로 유일하게 수상한 것은 매우 의미가 크다. 이번 수상으로 거대 언어 모델의 추론에 필요한 막대한 비용을 획기적으로 절감할 수 있는 AI 반도체 솔루션으로 세계 무대에서 인정받은 것이다. 우리 대학 김주영 교수는 “미래 거대 인공지능 연산을 위한 새로운 프로세서 ‘LPU’로 글로벌 시장을 개척하고, 빅테크 기업들의 기술력보다 우위를 선점하겠다”라며 큰 포부를 밝혔다.
2023.08.04
조회수 5629
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1