본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%A0%EC%97%90%EB%84%88%EC%A7%80
최신순
조회순
4.55V 고전압 리튬이온전지 전해액 기술 개발
전기차 시대의 가속화에 따라 1회 충전에 긴 주행거리를 가능하게 하는 고용량, 고에너지밀도 이차전지 개발과 더불어 빠르게 충전을 할 수 있는 고속 충전 기술 개발의 중요도가 커지고 있다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 고전압 조건에서 리튬이온전지의 높은 효율과 에너지를 유지하고 고속 충전이 가능한 전해액 설계 기술을 개발했다고 6일 밝혔다. 개발된 전해액은 점도가 낮으면서 고전압에 안정적인 용매를 사용하였으며 안정적인 전극-전해질 계면 반응을 확보할 수 있는 첨가제 기술을 통해 리튬이온전지의 수명 특성을 획기적으로 향상시켰다. 최남순 교수 연구팀은 상용 리튬이온전지에 사용되고 있는 카보네이트 계열의 용매 대신 점도가 낮고 고전압 조건에서 안정적으로 작용할 수 있는 용매 조성 기술과 전극계면 보호 기술을 적용해 기존 연구 결과보다 현저하게 향상된 *가역 효율 (99.9% 이상)을 달성했다. ☞ 가역 효율 : 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움. 또한, 첫 사이클 방전 기준 용량 대비 200 사이클에서의 방전 기준 용량까지를 용량 유지율 측정하였는데 개발된 전해액 기술은 고온 (45도)에서 4.5 V의 충전 전압 조건에서 89.9%의 높은 용량 유지율을 보였으며 4.53 V의 충전 전압 조건에서도 77.0%의 높은 용량 유지율을 보였다. 개발 전해액 조성의 경우 기존 상용 최고 수준 기술 대비 약 10~15% 이상의 높은 용량 유지율을 보여줬다. 뿐만 아니라, 4.55 V의 혁신적인 충전 전압 조건에서도 200회 사이클 후 61.7%의 높은 용량 유지율을 보여주는 등 우수한 수명 특성을 보여줬다. 이번 연구에서 개발된 전해액 설계 기술은 리튬 코발트 산화물 양극을 사용해 4.5 V 이상의 고전압 그리고 1.5C (45분 충전)의 빠른 충전 조건에서 극대화된 성능을 얻었다는 점에서 그 의미가 크다. 여기에 더해 60도 고온 저장에서도 저장 성능이 향상됨도 확인했다. 특히 고에너지밀도 리튬이온전지용 전해액 기준 프레임을 제시한 바, 이는 리튬이차전지 전해액 설계에서 새로운 기준이 될 것이라고 연구진은 설명했다. 이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 “높은 산화안정성 및 저점도 특성을 가지는 용매 적용에 따른 고전압 안정성 및 고속 충전 특성 향상과 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과에 의해 기존에 보고된 리튬이온전지용 전해액 기술 개발의 한계를 뛰어넘는 기술을 개발하게 됐다ˮ라고 말했다. 또한, “상용 리튬이온전지에서 사용하는 수준의 높은 로딩의 리튬 코발트 산화물 양극을 사용하여 전지의 수명 특성을 극대화했기 때문에 산업에의 빠른 적용 및 향후 고에너지밀도 전지 시스템 설계에 있어 이정표로 작용할 수 있을 것이다”라고 전했다. 최남순 교수는 "개발된 전해액 기술은 상용 용매로 사용되고 있는 카보네이트 유기용매의 부족한 고전압 내구성을 에스테르 용매로 획기적으로 극복하였으며 이를 통해 배터리 충전과정에서 가스 발생을 최소화하는 고전압 전해액 시스템을 구축했다ˮ라고 말했다. 또한, "이러한 고전압 용매 조성과 전해액 첨가제 조합 기술은 리튬이온전지의 한계 에너지밀도를 끌어올리기 위한 전해액의 고전압화를 위한 돌파기술이라는 점에서 그 의미가 크다고 하겠다ˮ라고 연구의 의미를 강조했다. 이번 연구에서 생명화학공학과 최남순 교수와 김세훈, 이정아 연구원은 리튬이온전지의 고전압 구동을 위한 새로운 전해액 조성 기술을 개발하고 이에 대한 효과를 검증하였으며 작동 메커니즘을 규명하였다. 경상국립대학교 나노신소재융합공학과 (나노·신소재공학부 고분자공학 전공) 이태경 교수와 이동규, 손준수 연구원은 전해액 용매 및 첨가제의 작동 메커니즘을 계산화학을 통해 구체화하는 연구를 진행하였다. 이번 연구는 저명한 국제 학술지 `에이시에스 에너지 레터즈 (ACS Energy Letters)'에 1월 12일자로 발간되었으며 커버 논문으로 선정되었다 (논문명 : Designing Electrolytes for Stable Operation of High-Voltage LiCoO2 in Lithium-Ion Batteries). 이번 연구 수행은 삼성 에스디아이 (Samsung SDI)의 지원을 받아 수행됐다.
2024.02.06
조회수 5246
세계 최고 전기차 이차전지 수명 획기적 연장
전기차 시대의 가속화에 따라 1회 충전에 긴 주행거리를 가능하게 하거나 전 세계 평균 기온에 속하는 넓은 온도 범위(-20~60도)에서 충전과 방전을 할 수 있는 고용량, 고에너지밀도 이차전지 개발의 중요도가 커지고 있다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 넓은 온도 범위에서 리튬금속 전지의 높은 효율과 에너지를 유지하는 세계 최고 수준의 전해액 기술을 개발했다고 4일 밝혔다. 개발된 전해액은 기존에 보고되지 않은 새로운 *솔베이션 구조를 형성했으며 안정적인 전극-전해질 계면 반응을 확보할 수 있는 첨가제 기술을 통해 리튬금속 전지의 수명 특성을 획기적으로 향상시켰다. ☞ 솔베이션 구조 : 일반적으로 염(이온성 화합물) 농도가 낮은 전해액에서는 양이온이 전하를 띠지 않은 용매에 의해 둘러싸여 동심원의 껍질(Shell)을 형성하는데 이를 솔베이션 구조라고 함. 이러한 솔베이션 구조 개선 기술은 염 농도를 증가시키지 않고 배터리의 작동 온도 범위를 넓히는 매우 중요한 인자임. 최남순 교수 연구팀은 기존에 보고된 전해액 내 리튬 이온의 이동이 제한적이고 구동할 수 있는 온도 범위의 한계가 있는 전해액들과는 달리 넓은 온도 범위(-20~60도)에서 안정적으로 작용할 수 있는 용매 조성 기술과 전극계면 보호기술을 적용해 기존 연구 결과보다 현저하게 향상된 *가역 효율 (영하 20도 300회 99.9%, 상온 200회 99.9%, 고온 45도 100회 99.8%)을 달성했다. ☞ 가역 효율 : 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움. 또한, 완전 충전-완전 방전조건에서 첫 사이클 방전 기준 용량 80%가 나오는 횟수까지를 배터리 수명으로 보고 있는데 개발된 전해액 기술은 상온(25도)에서 200회 충·방전 후에 첫 번째 사이클의 방전용량 대비 85.4%의 높은 방전용량 유지율을 보였다. 또한, 고온(45도)에서 100회 충·방전 후 91.5% 발현, 저온(영하 20도) 구동에서도 300회 충·방전 후 72.1% 발현하는 등 완전 충전-완전 방전조건에서 기존 상용 기술 대비 약 20% 높은 용량 유지율을 보여줬다. 이번 연구에서 개발된 새로운 솔베이션 구조를 가지는 전해액(partially and weakly solvating electrolyte; PWSE) 기술은 리튬 코발트 산화물 양극을 사용해 영하 20도에서 60도의 넓은 온도 범위에서 극대화된 성능을 얻었다는 점에서 그 의미가 크다. 여기에 더해 60도와 80도 고온 저장에서도 저장 성능이 유지됨도 확인했다. 특히 리튬금속 전지용 전해액 기준 프레임을 제시한바, 이는 리튬이차전지 전해액 시장에서 게임 체인저가 될 것이라고 연구진은 설명했다. 이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 "새로운 솔베이션 구조에 의한 리튬 이온의 이동도 향상과 구동 온도 범위의 확장 그리고 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과에 의해 기존에 보고된 리튬금속 전지용 전해액 기술 개발의 한계를 뛰어넘는 기술을 개발하게 됐다ˮ라고 말했다. 최남순 교수는 "개발된 전해액 기술은 기존에 보고된 전해액들과는 달리 리튬이온을 끌어당기는 힘이 다른 두 개의 용매를 사용하여 리튬이온이 잘 이동하게 하고 전극 표면에서도 원하지 않는 부반응을 감소시키는 새로운 솔베이션 구조를 형성해 리튬금속 전지 구동 온도 범위를 넓힌 획기적인 시도ˮ라며 "이러한 솔베이션 구조 개선 기술과 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과는 고에너지 밀도 리튬금속 전지에서의 난제들을 효과적으로 해결하고 전해액 설계에 있어서 새로운 방향을 제시했다ˮ라고 연구의 의미를 강조했다. 생명화학공학과 최남순 교수와 김세훈, 이정아, 김보근, 변정환 연구원과 경상국립대학교 나노신소재융합공학과 이태경 교수, UNIST 에너지화학공학과 강석주 교수, 백경은 연구원, 이현욱 교수, 김주영 연구원 진행한 이번 연구는 국제 학술지 `에너지 & 인바이론멘탈 사이언스 (Energy & Environmental Science)'에 9월 13일 字로 온라인 공개됐다 (논문명 : Wide-temperature-range operation of lithium-metal batteries using partially and weakly solvating liquid electrolytes). 한편 이번 연구 수행은 솔베이 스페셜티 폴리머즈 코리아 (Solvay Specialty Polymers Korea)의 지원과 ㈜후성으로부터 첨가제 합성 지원을 받아 수행됐다.
2023.10.04
조회수 4926
급속 충전이 가능한 고에너지 하이브리드 리튬전지 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 급속 충전이 가능한 고에너지·고출력 하이브리드 리튬 이온 전지를 개발했다고 21일 밝혔다. 연구팀은 고분자 수지 배향의 변화를 통해 넓은 표면적의 다공성 탄소 중공 구조체를 합성했고, 이를 기반으로 하는 음극 및 양극 소재를 개발해 고성능 하이브리드 리튬 이온 전지를 구현했다. 현재 리튬이온 배터리는 대표적인 상용화 에너지 저장 장치로 스마트 전자기기부터 전기 자동차까지 전반적인 전자 산업에 필수적인 요소로 자리 잡고 있어 `제2의 반도체'로 불린다. 그러나 느린 전기화학적 반응 속도, 전극 재료의 한정 등의 특성에 의한 낮은 출력 밀도, 긴 충전 시간, 음극 및 양극 비대칭성에 따른 큰 부피 등의 근본적인 한계로 인해 고성능 전극 재료 및 차세대 에너지 저장 소자의 개발이 필요하다. 이러한 문제를 해결하기 위해 최근 활발하게 연구 중인 하이브리드 전지는 배터리용 음극과 축전기용 양극을 결합해 높은 저장 용량과 빠른 충·방전 속도의 장점을 모두 가지고 있기에 기존 리튬이온 배터리를 대체할 수 있는 차세대 에너지 저장 장치로 주목받고 있다. 하지만 고에너지 및 고출력 밀도의 하이브리드 전지를 구현하기 위해서 배터리용 음극의 전기 전도성 및 이온 확산 속도 개선, 축전기용 양극의 에너지 저장 용량 증가, 서로 다른 이온 저장 메커니즘에 따른 두 전극의 최적화 과정이 필요하다. 이에 강 교수 연구팀은 고분자 수지의 배향 변화를 통해 넓은 표면적을 가진 다공성 탄소 구조체를 합성할 수 있는 새로운 합성법을 제시했고, 이를 기반으로 음극 및 양극 소재를 개발해 고에너지·고출력의 하이브리드 리튬이온 에너지 저장 장치를 성공적으로 구현했다. 연구팀은 레졸시놀-폼알데하이드(Resorcinol-Formaldehyde) 수지 합성 과정에 멜라민(Melamine)을 첨가해 수지의 배향을 선형에서 꼬인 형태로 변화시켰다. 꼬인 형태의 수지가 탄화(carbonization)될 경우 더 많은 마이크로 기공이 형성됐으며, 기존 선형 구조의 수지로 생성된 탄소 구조체보다 12배 넓은 표면적을 가진 탄소 구조체가 생성됐다. 이 과정을 통해 생성된 탄소 구조체는 축전기용 양극 재료로 사용됐으며, 넓은 표면적으로 많은 이온이 표면에 흡착될 뿐만 아니라 중공 구조 및 메조 기공을 통해 이온이 빠르게 확산할 수 있어 높은 용량과 속도 특성을 보이는 것을 연구팀은 확인했다. 그뿐만 아니라 연구팀은 꼬인 형태의 수지 구조체 내에 높은 에너지 저장 용량을 가진 저마늄(Ge) 전구체를 삽입하는 합성방식을 통해 분자 수준 크기의 저마늄 입자가 삽입된 탄소 중공 구조체를 합성해 이를 배터리용 음극 재료로 사용했다. 다공성 탄소 구조체 내 삽입된 분자 수준 크기의 저마늄 입자의 경우 충·방전시 큰 부피 팽창으로 인한 성능 저하 현상을 억제할 뿐만 아니라 내부까지 빠르게 리튬 이온이 확산할 수 있어 높은 수명 특성 및 속도 특성을 가지는 것을 확인했다. 연구팀은 개발된 음극과 양극을 완전셀로 구성해 고성능 하이브리드 리튬 이온 전지를 구현했다. 이 하이브리드 리튬 이온 전지는 기존 상용화된 리튬이온 배터리에 필적하는 에너지 밀도와 축전기의 출력 밀도 특성을 모두 가지는 것을 확인했으며, 차세대 에너지 저장 장치로 수 초에서 수 분의 급속 충전으로도 활용 가능해 전기 자동차, 드론, 스마트 전자기기 등에 적용 가능할 것으로 예상된다. 우리 대학 신소재공학과 김기환 박사과정이 제1 저자로 참여한 이번 연구 결과는 나노 분야의 국제 저명학술지 `ACS 나노'에 4월 4일 字 게재됐다. (논문명 : Coiled Conformation Hollow Carbon Nanosphere Cathode and Anode for High-Energy Density and Ultrafast Chargeable Hybrid Energy Storage) 강 교수는 "전극기준으로 높은 에너지 밀도 (285 Wh/kg)를 가지며, 고출력 밀도(22,600W/kg)에 의한 급속 충전이 가능한 하이브리드 리튬 이온 전지는 현 에너지 저장 시스템의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다ˮ라며 "전기 자동차를 포함한 모든 전자기기의 활용 범위를 확대해 적용될 수 있을 것이다ˮ고 말했다. 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드 인터페이스 기반 미래소재연구단의 지원을 받아 수행됐다.
2022.04.22
조회수 9066
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1