-
와이파이보다 100배 빠른‘라이파이’속도·보안 다 잡았다
라이파이(Li-Fi)는 LED 불빛처럼 눈에 보이는 빛인 가시광선 대역(400~800 THz)을 활용한 무선통신 기술로, 기존 와이파이(Wi-Fi)보다 최대 100배 빠른 속도(최대 224Gbps)를 제공한다. 사용할 수 있는 주파수 할당의 제약이 없고 전파 혼신 문제도 적지만, 누구나 접근이 가능해서 보안에는 상대적으로 취약하다. 한국 연구진이 기존 광통신 소자의 한계를 뛰어넘어 송신 속도와 보안을 동시에 향상시킬 수 있는 라이파이의 새로운 플랫폼을 제시했다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 국가과학기술연구회(NST, 이사장 김영식) 산하 한국표준과학연구원(KRISS, 원장 이호성) 임경근 박사와 협력해, 차세대 초고속 데이터 통신으로 주목받는 ‘라이파이(Li-Fi)’ 활용을 위한 ‘온-디바이스 암호화 광통신 소자’ 기술을 개발했다고 24일 밝혔다.
조힘찬 교수팀은 친환경 양자점(독성이 적고 지속 가능한 소재)을 이용해 고효율 발광 트라이오드 소자를 만들었다. 연구팀이 개발한 소자는 전기장을 이용해 빛을 발생시키는 장치이다. 특히, ‘투과 전극에 존재하는 아주 작은 구멍(핀홀)’ 영역에 전기장이 집중되고 전극 너머로 투과되는데, 이 소자는 이를 이용하여 두 가지 입력 데이터를 동시에 처리할 수 있다.
이 원리를 이용해 연구팀은 ‘온-디바이스 암호화 광송신 소자’라는 기술을 개발했다. 이 기술의 핵심은 기기 자체에서 정보를 빛으로 바꾸면서 동시에 암호화까지 한다는 점이다. 즉, 복잡한 별도의 장비 없이도 보안이 강화된 데이터 전송이 가능하다.
외부양자효율(EQE)은 전기를 얼마나 효율적으로 빛으로 변환하는지를 나타내는 지표로, 상용화를 위한 기준은 일반적으로 약 20% 수준이다. 이번에 개발된 소자는 17.4%의 EQE를 기록했으며, 휘도(luminance) 또한 스마트폰 OLED 화면의 최대 밝기인 2,000nit를 크게 웃도는 29,000nit로, 10배 이상의 높은 밝기를 구현했다.
또한, 연구팀은 이 소자가 어떻게 정보를 빛으로 바꾸는지를 더 정확히 이해하기 위해, ‘과도 전계 발광 분석’이라는 방법을 사용하여, 아주 짧은 시간(수백 나노초 = 10억 분의 1초 단위) 동안 전압을 순간적으로 인가했을 때, 소자에서 발생하는 발광 특성을 분석했다. 이 분석을 통해 수백 나노초 단위에서 소자 내 전하들의 이동을 분석해 단일 소자 내에서 구현되는 이중채널 광변조의 작동 메커니즘을 규명했다.
KAIST 조힘찬 교수는 “이번 연구는 기존의 광통신 소자의 한계를 뛰어넘어 송신 속도를 높이면서도 보안능력을 향상할 수 있는 새로운 통신 플랫폼을 제시했다”라고 언급했다.
이어 “추가 장비 없이도 보안을 강화하면서, 암호화와 송신을 동시에 구현하는 이번 기술은 향후 보안이 중요한 다양한 분야에서 폭넓게 응용될 수 있을 것”이라고 덧붙였다.
KAIST 신소재공학과 신승민 박사과정이 제1 저자로 참여하고, 조힘찬 교수, KRISS 임경근 박사가 공동 교신 저자로 참여한 이번 연구는 국제학술지 `어드밴스드 머터리얼즈(Advanced Materials)'에 5월 30일 자 출판됐으며, inside front cover 논문으로 선정됐다.
※ 논문명: High-Efficiency Quantum Dot Permeable electrode Light-Emitting Triodes for Visible-Light Communications and On-Device Data Encryption
※ DOI: https://doi.org/10.1002/adma.202503189
한편, 이번 연구는 한국연구재단, 국가과학기술연구회(NST) 및 한국산업기술진흥원의 지원을 받아 수행됐다.
2025.06.24
조회수 937
-
21개 화학반응 동시 분석..AI 신약 개발 판 바꾼다
임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다.
*광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다.
우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일 밝혔다. 이번 연구는 다수의 반응물을 동시에 투입해 진행하는 비대칭 촉매 반응을 고해상도 불소 핵자기공명분광기(19F NMR)를 활용해 정밀 분석한 세계 최초의 기술로, 신약 개발 및 촉매 최적화 등 다양한 분야에 획기적인 기여가 기대된다.
* 인공지능 기반 자율합성: 인공지능(AI)을 활용해 화학 물질 합성 과정을 자동화하고 최적화하는 첨단 기술로, 미래 실험실의 자동화 및 지능형 연구 환경을 구현할 핵심 요소로 주목받고 있다. AI가 실험 조건을 예측·조절하고 결과를 해석해 후속 실험을 스스로 설계함으로써 반복 실험 수행 시 인간 개입을 최소화해 연구 효율성과 혁신성을 크게 높인다.
현재 자율합성 시스템은 반응 설계부터 수행까지는 자동화가 가능하지만, 반응 결과 분석은 전통적 장비를 활용한 개별 처리 방식에 의존하고 있어 속도 저하와 병목 현상이 발생하며 고속 반복 실험에는 적합하지 않다는 문제점이 제기돼 왔다.
또한, 1990년대에 제안된 다기질 동시 스크리닝 기법은 반응 분석의 효율을 극대화할 전략으로 주목받았지만, 기존 크로마토그래피 기반 분석법의 한계로 인해 적용 가능한 기질 수가 제한적이었다. 특히 원하는 광학 이성질체만 선택하여 합성하는 비대칭 합성 반응에서는 10종 이상의 기질을 동시에 분석하는 것이 불가능에 가까웠다.
이러한 한계를 극복하기 위해, 연구팀은 다수의 반응물을 하나의 반응 용기에 투입하여 동시에 비대칭 촉매 반응을 수행한 뒤 불소 작용기를 생성물에 도입하고, 자체 개발한 카이랄 코발트 시약을 적용해 모든 광학 이성질체를 명확하게 정량 분석할 수 있는 불소 핵자기공명분광기(19F NMR) 기반 다기질 동시 스크리닝 기술을 구현했다.
연구팀은 19F NMR의 우수한 분해능과 민감도를 활용해, 21종 기질의 비대칭 합성 반응을 단일 반응 용기에서 동시에 수행하고 생성물의 수율과 광학 이성질체 비율을 별도의 분리 과정 없이 정량 측정하는 데 성공했다.
김현우 교수는 “여러 기질을 한 반응기에 넣고 비대칭 합성 반응을 동시에 수행하는 것은 누구나 할 수 있지만, 생성물 전체를 정확하게 분석하는 것은 지금까지 풀기 어려운 과제였다”며, “세계 최고 수준의 다기질 스크리닝 분석 기술을 구현함으로써 AI 기반 자율합성 플랫폼의 분석 역량 향상에 크게 기여할 수 있을 것으로 기대된다”고 말했다.
이어 “이번 연구는 신약 개발에 필수적인 비대칭 촉매 반응의 효율성과 선택성을 신속히 검증할 수 있는 기술로, AI 기반 자율화 연구의 핵심 분석 도구로 활용될 전망이다”라고 밝혔다.
이번 연구에는 우리 대학 화학과 김동훈 석박통합과정 학생(제1 저자), 최경선 석박통합과정 학생(제2 저자) 가 참여했으며, 화학 분야 세계적 권위의 국제 학술지 미국화학회지(Journal of the American Chemical Society) 에 2025년 5월 27일 자 온라인 게재됐다.
※ 논문명: One-pot Multisubstrate Screening for Asymmetric Catalysis Enabled by 19F NMR-based Simultaneous Chiral Analysis
※ DOI: 10.1021/jacs.5c03446
이번 연구는 한국연구재단 중견연구자 지원사업, 비대칭 촉매반응 디자인센터, KAIST KC30 프로젝트의 지원을 받아 수행됐다.
2025.06.16
조회수 1645
-
이제 고해상도 분광기가 스마트폰에 쏙 들어간다
색은 빛의 파장이 인간의 눈에 인식되는 방식으로, 단순한 미적 요소를 넘어 물질의 성분이나 상태 같은 중요한 과학적 정보를 담고 있다. 분광기는 빛을 파장별로 분해해 물성을 분석하는 광학 장비로, 재료 분석, 화학 성분 검출, 생명과학 연구 등 다양한 과학 및 산업 분야에서 폭넓게 사용되고 있다. 기존의 고분해능 분광기는 크고 복잡해 일상 전반에 사용이 어려웠으나, 우리 연구진이 개발한 초소형 고해상도 분광기 덕분에 앞으로는 스마트폰이나 웨어러블 기기 속에서도 빛의 색 정보를 활용할 수 있을 전망이다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 이중층 무질서 메타표면*을 이용한 복원 기반 분광기 기술을 개발하는 데 성공했다고 13일 밝혔다.
*이중충 메타표면: 두 겹의 무질서한 나노 구조층을 통해 빛을 복잡하게 산란시켜, 파장별로 고유하고 예측 가능한 스페클 패턴을 만들어내는 혁신적 광학 소자
기존의 고분해능 분광기는 수십 센티미터 수준으로 폼 팩터가 크고, 정확도를 유지하기 위한 복잡한 교정 과정이 필요하다. 이는 근본적으로 무지개가 색을 분리하듯 빛의 파장을 빛의 진행 방향으로 분리하는 전통적인 분산 부품의 작동 원리에서 기인한다. 이 때문에, 빛의 색 정보가 일상 전반에 유용하게 활용될 수 있음에도 분광 기술은 실험실이나 산업 제조 현장 수준으로 그 활용성이 제한되고 있다.
연구팀은 빛의 색 정보를 빛의 진행 방향으로 일대일 대응시키는 회절격자나 프리즘을 사용하는 기존의 분광 패러다임에서 벗어나 설계된 무질서 구조를 광학 부품으로 활용하는 방식을 고안했다. 이때, ‘복잡한 무작위적 패턴(스페클*)’을 정확하게 구현하기 위해 수십-수백 나노미터 크기의 구조체를 활용해 빛의 전파 과정을 자유롭게 조절할 수 있는 메타표면을 활용하였다.
* 스페클: 여러 파면의 빛이 간섭해 만들어지는 불규칙한 밝기의 광 패턴
구체적으로, 이중층 무질서 메타표면을 구현해 파장 특이적인 방식으로 스페클 패턴을 생성하고, 카메라로 측정된 무작위 패턴을 보고 그 빛의 정밀한 색 정보(파장)를 복원 해내는 방식을 개발했다.
그 결과, 단 한 장의 영상 촬영만으로 손톱보다 작은(1cm 미만) 장치에서 1 나노미터(nm) 수준의 고해상도로 가시광-적외선 (440~1,300nm) 범대역의 빛을 정확하게 측정하는 신개념 분광기 기술을 개발하는 데 성공했다.
이번 연구에 제1 저자로 참여한 이동구 연구원은 “이번 기술은 상용 이미지 센서에 직접 통합된 방식으로 구현돼, 앞으로는 모바일 기기에 내장된 형태로 일상에서도 빛의 파장 정보를 손쉽게 취득하고 이용할 수 있을 것으로 기대된다”라고 밝혔다.
장무석 교수는 “R(빨강), G(초록), B(파랑) 3가지 색 성분으로만 구분해서 인식되는 기존 RGB 삼색 기반 머신 비전 분야에서 한계를 뛰어넘는 기술로 활용 분야도 다양하다”며, “음식 성분 분석, 농작물 상태 진단, 피부 건강 측정, 환경 오염 감지, 바이오·의료 진단 등 실험실 수준의 기술을 일상 수준의 머신 비전 기술로 지평을 넓힌 기술로 다양한 활용 연구가 기대된다” 라고 말했다.
이어 “또한, 파장과 공간 정보를 고해상도로 동시에 기록하는 초분광 영상이나, 여러 파장의 빛들을 정밀하게 원하는 형태로 제어하는 3D 광집속 기술, 아주 짧은 시간 동안 일어나는 현상을 포착하는 초고속 이미징 기술 등 다양한 첨단 광학 기술로 확장도 가능하다”라고 밝혔다.
해당 연구 결과는 KAIST 바이오및뇌공학과 이동구 박사과정, 송국호 박사과정이 공동 제1 저자, 장무석 교수가 교신저자로 참여했으며 국제 학술지 `사이언스 어드밴시스 (Science Advances)' 2025년 5월 28일 온라인판에 게재됐다.
※논문명 : Reconstructive spectrometer using double-layer disordered metasurfaces
※DOI: 10.1126/sciadv.adv2376
이번 연구는 삼성미래기술육성사업과 과학기술정보통신부 한국연구재단이 주관하는 우수신진연구자사업, 선도연구센터지원사업(ERC), 바이오·의료기술개발사업 사업의 지원을 받아 수행됐다.
2025.06.13
조회수 1416
-
세계 최초‘좌우회전 빛 구별 반도체’소재로 양자광학 혁신
기존 광센서가 측정할 수 없었던 빛의 방향성 정보를 정밀하게 구별할 수 있다면, 빛의 편광 정보를 활용하는 양자 반도체, 스핀 광소자, 라이다(LiDAR), 바이오 센서 등의 핵심 소재로 활용될 수 있다. 기존에는 복잡한 필터나 유기성 민감한 재료를 써야만 이 좌우회전 빛을 구분할 수 있었으나, KAIST 연구진이 복잡한 장치 없이 특정 방향의 원형편광(Circularly Polarized Light, CPL)에 선택적으로 잘 반응하는 편광 감지 센서를 개발하는데 성공했다.
우리 대학 신소재공학과 염지현 교수 연구팀이 셀레늄(Se) 나노결정의 원자수준 카이랄성 제어를 이용해, 자외선부터 단파장 적외선까지 감지가능한 광대역 원형편광(CPL) 검출 반도체 소재를 세계 최초로 개발했다.
이 기술은 원형편광(CPL)을 실온에서 고감도로 감지할 수 있는 필름형 소재로, 빛으로 암호화된 정보를 해독하거나 양자비트(qubit)를 제어하는 등 양자 컴퓨팅과 스핀트로닉스, 광센서 기술의 핵심 소재로 주목받고 있다.
카이랄성(Chirality)은 좌우 비대칭성을 의미하며, 분자 수준뿐 아니라 광학, 의약, 생명현상 전반에 걸쳐 매우 중요한 물리적 특성이다. 특히 빛의 스핀 각운동량을 탐지하는 데 중요한 원형편광(CPL)을 구별하는 기술이다.
기존에 CPL 센서가 습기나 자외선에 약하고 열화되기 쉬운 문제로 상용화에 큰 한계가 있다는 점을 염두에 두고, 염지현 교수 연구진은 자연적으로 비대칭 결정 구조(카이랄성)를 갖는 무기 소재인 셀레늄에 주목했다.
셀레늄은 고유한 카이랄성 구조를 가지고 있으며, 성능 안정성을 반영구적으로 늘릴 수 있다. 하지만, 자연적으로는 원자 구조가 오른쪽과 왼쪽 방향성이 섞여서 존재하며, 한 쪽 방향성으로 제어하는 것은 매우 어려워 현실적인 활용에 큰 어려움이 있었다.
연구팀은 셀레늄(Se)을 나노 크기 막대 형태의 ‘셀레늄 나노로드’로 만들면서, 그 격자 구조가 왼쪽 또는 오른쪽 방향의 비대칭성(카이랄성)을 갖도록 제어할 수 있는 ‘카이랄성 전이 기술’을 개발했다.
연구진은 제작한 셀레늄 나노필름 소자가 자외선(180 nm)부터 단파장 적외선(2500 nm)에 이르기까지 넓은 파장 영역에서 CPL을 감지할 수 있음을 확인했으며, 광응답 비대칭성 지수(gres)*가 최대 0.4에 달하는 즉, 추가적인 편광 필터 없이 편광 방향을 정밀하게 구분하는 우수한 성능을 기록했다.
*광응답 비대칭성 지수: 0는 좌우 빛을 전혀 구별못함이며, ±0.1은 미세한 구별 가능, ±0.4은 이상좌/우 원형편광을 매우 뚜렷하게 구별 가능하여 고성능 센서로 인정
또한, 13개월 이상 공기 중에서 성능 변화 없이 안정적으로 동작함을 실험적으로 확인하며 무기물 기반 광소자의 장기 안정성 측면에서도 매우 우수함을 입증했다.
기존에는 고가의 투가전자현미경(TEM) 장비를 통해 격자 카이랄성을 분석할 수 있었던 반면, 이번에 개발한 2차원 라만 광활성(2D ROA) 매핑 기법은 셀레늄 나노필름이 지닌 카이랄 구조(좌/우 비대칭성)가 필름 전체에 어떻게 분포되어 있는지를 지도처럼 시각화하고 정량 분석할 수 있는 새롭고 강력한 분석 기술이다.
염지현 교수는 “이번 연구는 반도체 광소재 분야에서 카이랄성 구현 및 분석의 새로운 방법론을 제시한 것”이라며 “빛의 원형편광 정보를 선택적으로 읽고 구분할 수 있는 만큼, 빛 기반의 양자 정보 처리나 저전력 반도체 기술 개발에도 응용될 수 있으며, 본 연구에 사용된 셀레늄 나노필름 합성 공정은 상온 환경에서 이루어지며, 유해 화학물질이나 고온 열처리가 불필요한 친환경 공정으로, 상온에서도 안전하게 실험이 가능하다” 라고 말했다.
이어 “양자광학, 보안광학, 생체 진단 및 이미지 센서 등 다양한 분야에 실제 응용 가능한 기반기술로 확장할 수 있을 것”이라고 말했다.
이번 연구는 부경대학교 나노융합공학전공 권준영 조교수(前 KAIST 박사후연구원)가 제1 저자로 참여했으며, KAIST 신소재공학과 김경민교수 팀과 공동연구로 진행되었다. 국제 학술지 네이처 커뮤니케이션(Nature Communication)에 5월 3일 자로 온라인 게재되었다.
※ 논문명: Enantioselective Se lattices for stable chiroptoelectronic processing media https://doi.org/10.1038/s41467-025-59091-9
이번 연구는 과학기술정보통신부 한국연구재단의 우수신진연구사업 등의 지원을 받아 수행되었다.
2025.05.28
조회수 1801
-
암 조직 ‘3D·가상염색’ 혁신기술로 절개 없이 관찰 가능
기존에 암 조직을 얇게 절단하여 염색한 뒤 관찰하던 전통 방식에서 벗어나, 우리 대학과 국제공동연구진이 첨단 광학 기술을 활용해 절개없이 암 조직의 3차원 구조를 인공지능 기반 딥러닝 알고리즘을 접목시켜 실제처럼 가상 염색 영상으로 구현하는 기술을 성공하여 향후 차세대 비침습 병리 진단의 혁신을 기대할 수 있게 됐다.
물리학과 박용근 교수 연구팀이 연세대 강남세브란스병원 신수진 교수팀, 미국 메이오클리닉(Mayo Clinic) 황태현 교수팀, 토모큐브 인공지능 연구팀과의 공동연구를 통해, 별도의 염색 없이도 암 조직의 3차원 구조를 생생하게 보여줄 수 있는 혁신적인 기술을 개발했다고 26일 밝혔다.
200여년간 사용되어 온 기존 병리학에서는 암 조직을 현미경으로 관찰하던 방식은 3차원으로 이루어진 암 조직의 특정 단면만을 보여주기 때문에, 세포간의 입체적 연결 구조나 공간적 배치를 파악하는데 한계가 있었다.
이에 연구팀은‘홀로토모그래피(Holotomography, HT)’라는 첨단 광학 기술을 활용해 조직의 3차원 굴절률 정보를 측정하고, 여기에 인공지능 기반 딥러닝 알고리즘을 접목시켜 마치 가상의 염색(H&E)* 이미지 생성하는데 성공했다.
* H&E(Hematoxylin & Eosin): 병리 조직을 관찰할 때 가장 널리 사용되는 염색법으로, 세포의 핵은 헤마톡실린(Hematoxylin)으로 파란색, 세포질은 에오신(Eosin)으로 분홍색으로 염색된다.
연구팀은 이 기술이 생성한 영상이 실제 염색된 조직 영상과 매우 유사하다는 점을 정량적으로 입증했으며, 다양한 장기와 조직에서도 일관된 성능을 보여줌으로써 차세대 병리 분석 도구로서의 범용성과 신뢰성을 입증했다.
또한, 토모큐브사의 홀로토모그래피 장비를 활용해 한국과 미국의 병원 및 연구기관과 공동으로 기술 실현 가능성을 검증함으로써, 이 기술이 실제 병리 연구 현장에 본격적으로 도입될 수 있음을 보여주었다.
박용근 교수는 “이번 연구는 병리학의 분석 단위를 2차원에서 3차원으로 확장한 매우 의미 있는 성과”라며, “앞으로 미세 종양 환경 내에서 암 종양의 경계나 주변 변역 세포들의 공간 분포를 분석할 수 있는 등 다양한 생의학 연구와 임상 진단에 널리 활용될 수 있을 것”이라고 전했다.
이번 연구는 박주연 석박사통합과정 학생이 제1 저자로 참여했으며, 세계적 학술지 네이처 커뮤니케이션즈(Nature Communications)에 5월 22일자로 온라인 게재되었다.
(논문명: Revealing 3D microanatomical structures of unlabeled thick cancer tissues using holotomography and virtual H&E staining. https://doi.org/10.1038/s41467-025-59820-0)
본 연구는 한국연구재단 리더연구사업, 한국산업기술진흥원의 글로벌산업기술협력센터사업, 보건산업진흥원의 지원을 받았다.
2025.05.26
조회수 1854
-
운동 중 고혈압 감지, KAIST 웨어러블 광혈압계 개발
기존 커프 방식으로 혈압을 측정할 때 팔을 압박하는 불편함이 있으며, 측정 전 최소 10분의 안정이 필요했다. 최근 스마트워치에 적용된 혈압 측정 기술 역시 고혈압이나 운동 중 정확도가 떨어지고, 연속 측정이 어렵다는 단점이 있다. KAIST 연구진이 단순 휴식 상태 뿐만 아니라 계단 오르기 등 운동 중 고혈압 감지까지도 정확하게 연속 측정이 가능한 혈압 모니터링 기술을 개발했다.
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 수십 개의 세분화된 파장의 빛을 사용해 혈관 내 혈류 변화를 광학적으로 측정하는 혁신 방법인 초분광 PPG(광용적맥파, Photoplethysmography) 기술을 활용해 운동 상태에서의 연속 혈압 모니터링에 활용될 수 있는 웨어러블 혈압 센서를 개발하는 데 성공했다.
최근 스마트워치에서 세 가지 파장을 갖는 PPG 센서를 이용해 혈압 측정 기술을 탑재했지만, 고혈압 상태 및 운동 상태에서의 낮은 정확도와 연속적인 측정이 불가하다는 문제가 있다.
연구팀은 빛의 파장을 분석해 주는 고해상도의 초박형 마이크로분광기를 포함한 초분광 PPG 모듈을 통해 다양한 파장의 PPG 신호를 동시에 측정하고, 연속적이고 정밀한 시간차를 계산해 안정적으로 혈압을 추정할 수 있는 방식을 고안했다.
연구팀이 개발한 웨어러블 초분광 PPG 센서는 연속적으로 혈압을 모니터링할 수 있을 뿐만 아니라 심박수, 호흡률과 같은 다른 생리적 매개변수도 동시에 측정해 운동 전후의 혈압 변화를 세밀하게 분석할 수 있다.
이번 연구 결과는 운동 중 혈압 변화를 연속적으로 추적해 운동으로 유발되는 고혈압을 감지할 수 있다. 연구팀은 운동 중 회복기의 혈압 추정 정확도가 0.75 정도였던 다른 감지 방식보다 높은 0.95의 연관성 지표(최소 –1, 최대 1, 수치가 1에 가까울수록 예측이 실제값과 거의 일치)를 나타내는 등 높은 신뢰성을 증명했다.
KAIST 정기훈 교수는 "이번 연구는 운동 중 측정된 고혈압 실험을 통해 얻은 새로운 데이터를 기반으로, 웨어러블 초분광 PPG 센서가 운동 중의 혈압 측정과 회복기 혈압 추적에서 중요한 역할을 할 수 있음을 증명한 사례에 해당하며, 초분광 PPG 기술은 향후 개인 맞춤형 디지털 헬스케어 분야에 크게 기여할 것”이라고 연구의 의미를 설명했다.
KAIST 바이오및뇌공학과 박정우 박사 후 연구원이 주도한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스 (Advanced Science)’에 4월 25일에 게재됐다.
※ 논문명: 웨어러블 초분광 광 혈류 측정 센서를 활용한 운동 유발 고혈압 진단, Wearable Hyperspectral Photoplethysmography allows Continuous Monitoring of Exercise-induced Hypertension, https://doi.org/10.1002/advs.202417625
이 연구는 한국보건산업진흥원 한국형 ARPA-H 사업, 한국연구재단 글로벌 중견연구사업등의 지원을 받아 수행했다.
2025.05.08
조회수 1738
-
세계 최초 초저잡음 중적외선 광원을 초소형 칩 상에서 구현
브릴루앙 레이저(Brillouin laser)는 물질 내 빛과 음파의 상호작용을 통해 매우 안정적이고 잡음이 적은 레이저 빛을 만들어 내는 광원이다. 그동안 이 기술은 가시광선이나 근적외선 영역에서만 구현되었으며, 중적외선 영역에서는 기술 부족으로 구현이 어려웠다. 국제 공동 연구진이 초소형 저잡음 브릴루앙 레이저를 해당 파장 영역에서 세계 최초 개발하여 더욱 정밀한 분자물리·화학 연구 및 다양한 차세대 응용 기술의 기반을 마련하였다.
우리 대학 물리학과 이한석 교수 연구팀이 호주국립대 최덕용 교수, 예일대 피터 라키치 교수, 한국원자력연구원 고광훈 박사, 닝보대학교 롱핑 왕 교수 연구팀과 국제공동연구를 통해 중적외선 파장 대역에서 주파수 흔들림이 매우 작은 브릴루앙 레이저를 초소형 반도체 칩 위에 최초로 구현하는 데 성공했다고 31일 밝혔다.
칩 상에서 저잡음 브릴루앙 레이저를 구현하는 기술은 이미 잘 알려져 있었으나, 중적외선 파장 대역에서는 레이저 구현에 필수적인 낮은 광 손실의 고성능 광소자가 없다는 점이 문제였다.
일반 산화규소 유리와 같이 가시광선과 근적외선에서 투명해 광소자 제작에 사용되었던 많은 물질이 중적외선 파장에서는 빛을 강하게 흡수해 이용 불가하고, 중적외선의 특징인 빛과 분자 사이 강한 상호작용으로 인해 여러 광 손실이 추가 발생해 고성능 광소자를 제작하기 어려웠다.
연구팀은 중적외선에서 높은 투과도를 보이지만 가공이 까다로운 칼코겐화합물 유리를 독창적인 기법으로 성형해 초고품질 광공진기를 제작하는데 성공했다. 또한, 중적외선 광소자에 고유한 표면 흡착 분자에 의한 광손실을 정량분석하고 억제하는 기술을 최초로 구현해 중적외선 파장 광 손실이 기존 세계기록 대비 30분의 1에 불과한 고성능 광소자 칩을 개발할 수 있었다.
브릴루앙 레이저의 발진을 위해 필요한 최소 동작 전력은 광 손실의 제곱에 비례해 줄어들기에, 해당 광소자를 이용해 기존보다 최소 동작 전력을 1,000배 이상 낮춰 최초로 중적외선 파장에서 해당 현상을 구현할 수 있었다.
중적외선 대역에 상용화된 광파라메트릭 레이저(optical parametric oscillator laser)나 양자폭포레이저(quantum cascade laser)는 주파수 선폭이 1 메가헤르츠(MHz)가량으로 넓어 이를 이용한 분석 정밀도에 한계가 있었는데, 개발된 레이저 소자는 이보다 만분의 일 정도 작은 선폭의 고순도 중적외선광을 생성할 수 있다.
공동연구팀 관계자는 중적외선 파장 대역의 소형 저잡음 레이저 개발이 분자 과학의 응용범위를 넓히고 정밀도를 개선하기 위한 필수적 요소라고 언급하며, 이를 분자의 특성을 더욱 세밀하게 분석하거나 빛을 이용해 화학 반응을 정밀하게 제어하는 등에 활용할 수 있을 것으로 기대했다.
연구를 주도한 교신저자 물리학과 이한석 교수는 "개발된 레이저 소자를 현재 활발하게 연구되고 있는 칩 크기 양자폭포레이저 및 중적외선 광검출기와 결합한다면 화학, 생물학 및 재료학에 사용되는 거대한 중적외선 측정 장비들을 획기적으로 소형화해 좀 더 다양한 분야에 활용할 수 있을 것ˮ이라 내다봤다.
또 다른 교신저자인 최덕용 교수는 “칼코겐화합물 유리가 뛰어난 중적외선 광학 특성에도 불구하고 가공이 어려워 칩 상에서 널리 사용되지 않았는데, 본 연구에서 이를 이용한 고성능 광소자를 실증함으로써 본격적으로 많은 중적외선 연구에 사용될 수 있을 것”이라고 평했다.
물리학과 고기영 박사과정 학생과 석대원 박사과정 학생(현재 박사후연구원)이 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이쳐 커뮤니케이션스(Nature Communications)' 지난 3월 19자로 게재됐다. (논문명: A mid-infrared Brillouin laser using ultra-high-Q on-chip resonators, DOI: 10.1038/s41467-025-58010-2)
한편 이번 연구는 삼성미래기술육성사업, 정보통신기획평가원 (IITP), 그리고 한국연구재단 (NRF)의 지속적인 지원을 받아 수행됐다.
2025.03.31
조회수 2675
-
외계행성 감지 중적외선 광검출기 혁신, 환경·의료 개척
미국 항공우주국(NASA)의 제임스웹 우주망원경(JWST)은 중적외선 스펙트럼을 활용해 외계 행성 대기의 수증기, 이산화황 등 분자 성분을 정밀하게 분석하고 있다. 이처럼 각 분자가 ‘지문’처럼 고유한 패턴을 나타내는 중적외선 분석의 핵심은, 아주 약한 빛의 세기까지 정밀하게 측정할 수 있는 고감도 광검출기 기술이다. 최근 KAIST 연구진이 중적외선 스펙트럼의 넓은 영역을 감지할 수 있는 혁신적 광검출기 기술을 개발하며 주목을 받고 있다.
우리 대학 전기및전자공학부 김상현 교수팀이 상온에서 안정적으로 동작하는 중적외선 광검출기 기술을 개발하고, 이를 통해 초소형 광학 센서 상용화에 새로운 전환점을 마련했다고 27일 밝혔다.
이번에 개발된 광검출기는 기존 실리콘(Silicon) 기반 CMOS 공정을 활용해 저비용 대량 생산이 가능하며, 상온에서 안정적으로 동작하는 것이 특징이다. 특히 연구팀은 이 광검출기를 적용한 초소형·초박형 광학 센서를 이용해 이산화탄소(CO2) 가스를 실시간으로 검출하는 데 성공, 환경 모니터링 및 유해가스 분석 등 다양한 응용 가능성을 입증했다.
기존 중적외선 광검출기는 상온에서의 높은 열적 잡음(Thermal noise)으로 인해 일반적으로 냉각 시스템이 요구된다. 이러한 냉각 시스템은 장비의 크기와 비용을 증가시켜, 센서의 소형화 및 휴대용 기기 응용을 어렵게 만든다. 또한, 기존 중적외선 광검출기는 실리콘 기반 CMOS 공정과 호환되지 않아 대량생산이 어렵고 상용화가 제한됐다.
이에 연구팀은 실리콘과 같은 주기율표 4족 원소인 저마늄(Germanium) 반도체를 기반으로 한 광학 플랫폼을 활용해, 넓은 대역의 중적외선 검출 성능을 확보하면서도 동시에 상온에서 안정적으로 동작할 수 있는 새로운 형태의 도파로형(waveguide-integrated) 광검출기를 개발했다.
‘도파로’란 빛을 특정한 경로로 손실 없이 효과적으로 유도하는 구조물을 의미한다. 온-칩(on-chip) 상에서 다양한 기능의 광학 회로를 구현하기 위해서는 도파로형 광검출기를 포함해 도파로를 기반으로 하는 광학 소자의 개발이 필수적으로 요구된다.
이번 기술은 기존에 광검출기 동작에 일반적으로 활용되는 밴드갭 흡수 원리와는 다르게 볼로미터 효과(Bolometric effect)*를 활용해 중적외선 스펙트럼 영역 전체를 대응할 수 있기 때문에 다양한 종류의 분자들의 실시간 센싱에 범용적으로 활용될 수 있다.
*볼로미터 효과(Bolometric effect): 빛을 흡수하면 온도가 올라가고, 그 온도 변화에 따라 전기적인 신호가 달라지는 원리
연구팀이 개발한 상온 동작 및 CMOS 공정 호환 중적외선 도파로형 광검출기는 기존 중적외선 센서 기술이 가진 냉각 필요성, 대량 생산의 어려움, 높은 비용 문제를 해결하는 혁신적인 기술로 평가된다.
이를 통해 환경 모니터링, 의료 진단, 산업 공정 관리, 국방 및 보안, 스마트 디바이스 등 다양한 응용 분야에 적용 가능하며, 차세대 중적외선 센서 기술의 핵심적인 돌파구를 제공할 것으로 기대된다.
김상현 교수는 “이번 연구는 기존 중적외선 광검출기 기술의 한계를 극복한 새로운 접근 방식이며, 향후 다양한 응용 분야에서 실용화될 가능성이 매우 크다”고 밝혔다. 또한, “특히 CMOS 공정과 호환되는 센서 기술로, 저비용 대량생산이 가능해 차세대 환경 모니터링 시스템, 스마트 제조 현장 등에서 적극 활용될 것”이라고 덧붙였다.
이번 연구 결과는 심준섭 박사(現 하버드대학교 박사후 연구원)가 제1 저자로 참여해 국제 저명 학술지인 ‘빛, 과학과 응용(Light: Science & Applications, JCR 2.9%, IF=20.6)’에 2025년 3월 19일 자 발표됐다. (논문제목: Room-temperature waveguide-integrated photodetector using bolometric effect for mid-infrared spectroscopy applications, https://doi.org/10.1038/s41377-025-01803-3)
한편, 해당 연구는 한국연구재단의 지원을 받아 진행됐다.
2025.03.27
조회수 3030
-
빛을 전기로, 에너지전환 핵심, 핫홀을 잡다
빛이 금속 나노 구조체에 닿으면 순간적으로 생성되는 플라즈모닉 핫전하(plasmonic hot carrier)는 광에너지를 전기 및 화학에너지 같은 고부가가치 에너지원으로 변환하는 중요한 매개체이다. 이 중 핫홀(hot hole)은 광전기화학 반응에 효율을 증폭시키지만 피코초(1조분의 1초) 수준의 극초단 시간 내에 열적으로 소멸되어 실용적인 응용이 되기 어려웠다. 한국 연구진이 핫홀을 더 오래 유지하고 흐름을 증폭시키는 기술을 개발하면서 차세대 고효율 광에너지 전환 기술의 상용화를 앞당기는 성과를 거두었다.
우리 대학 화학과 박정영 석좌교수 연구팀은 인하대 신소재공학과 이문상 교수 연구팀과 공동연구를 통해, 핫홀(hot hole) 흐름을 증폭시키고 이를 실시간으로 국소 전류 분포 맵핑을 하여 광전류 향상 메커니즘을 성공적으로 규명했다고 12일 밝혔다.
연구팀은 금속 나노 그물망을 특수한 반도체 소재(p형 질화갈륨) 기판 위에 배치한 나노 다이오드 구조를 만들어 기판 표면이 핫홀 추출을 촉진하도록 설계했다. 그 결과, 핫홀 추출 방향과 동일한 질화갈륨 기판에서는 다른 방향의 질화갈륨 기판보다 핫홀의 흐름 증폭 효과가 약 2배 증가시키는 데 성공했다.
또한, 광전도성 원자힘 현미경(Photoconductive Atomic Force Microscopy, pc-AFM) 기반의 광전류 맵핑 시스템을 활용해 나노미터(머리카락 두께의 10만 분의 1) 수준에서 핫홀의 흐름을 실시간 분석했다. 핫홀의 흐름이 주로 금 나노 그물망에 빛이 국소적으로 집중되는 ‘핫스팟’ 에서 강하게 활성화되지만, 질화갈륨 기판의 성장방향을 바꿈에 따라 핫스팟 이외의 영역에서도 핫홀의 흐름이 활성화되는 현상을 확인했다.
이 연구를 통해 연구진은 빛을 전기 및 화학 에너지로 변환하는 효율적인 방법을 찾았으며, 이를 활용하면 차세대 태양전지, 광촉매, 수소 생산 기술 등이 크게 발전할 것으로 기대된다.
박정영 교수는 “나노 다이오드기법을 이용하여 핫홀의 흐름을 처음으로 제어할 수 있었고 이를 이용하여 다양한 광전소자 및 광촉매 응용에 혁신적인 기여를 할 수 있을 것이다. 예를 들면 태양광을 이용한 에너지 변환 기술(태양전지, 수소 생성 등)에 획기적인 발전을 기대할 수 있으며 실시간 분석 기술을 개발하여 초소형 광전소자(광센서, 나노 반도체 소자) 개발에 응용이 가능”하다고 말했다.
화학과 이현화 박사와 텍사스 오스틴 대학 화학공학과 박유진 박사후연구원이 제1 저자로, 인하대학교 신소재공학과 이문상 교수와 KAIST 화학과 박정영 교수가 공동 교신저자로 참여한 이번 연구성과는 국제학술지‘사이언스 어드밴시스(Science Advances)’에 3월 7일 자로 온라인 게재됐다.
(논문 제목: Reconfiguring hot-hole flux via polarity modulation of p-GaN in plasmonic Schottky architectures)
DOI : https://www.science.org/doi/10.1126/sciadv.adu0086
한편, 이 연구과제는 한국연구재단(NRF)의 지원을 받았다.
2025.03.12
조회수 3114
-
췌장 등 생체조직 고해상도 홀로토모그래피 성공
기존 광학 기술은 두꺼운 생체 조직을 관찰할 때, 조직 내부에서 발생하는 빛의 산란으로 인해 광학적 수차(aberration)가 생기고, 이로 인해 영상 품질이 저하되는 한계가 있었다. 우리 연구진이 디지털 수차 보정 기술을 개발하여 두꺼운 생체 조직의 3차원 영상을 정밀하게 관찰할 수 있는 기술을 개발했다.
우리 대학 물리학과 박용근 교수 연구팀이 별도의 염색 없이 두꺼운 생체 조직의 3차원 영상을 고해상도로 관찰할 수 있는 디지털 수차 보정 기술을 개발했다고 5일 밝혔다.
연구팀은 광학적 메모리 효과(optical memory effect)*를 활용해 두꺼운 생체 조직을 실시간으로 고해상도로 관찰하는 기술을 개발했다. 이 기술은 기존 적응형 광학(adaptive optics) 기술보다 더욱 강력한 보정 효과를 제공하여, 생체 조직 내부의 구조를 보다 선명하게 포착할 수 있다.
☞광학적 메모리 효과: 빛이 기울어질 때, 산란된 빛도 함께 기울어지는 현상으로, 생체 조직과 같은 복잡한 산란 매질에서도 관찰 가능함.
새롭게 개발된 기법을 적용한 결과, 연구진은 생체 조직 내부의 세포 구조를 더욱 세밀하게 관찰할 수 있었으며, 마이크로미터 크기의 시료에서 발생하는 동적 변화를 실시간으로 포착하는 데 성공했다.
이번 연구는 조직 병리학, 신약 개발, 생물학 연구 등 다양한 분야에서 활용될 수 있는 새로운 이미징 기술을 제시했으며, 기존 기술이 극복하지 못한 심층 조직 이미징의 한계를 뛰어넘는 성과로 평가괸다. 이를 통해 생명과학 및 의료 분야에서 큰 기여를 할 것으로 기대된다.
박용근 교수는 “이번 연구는 기존 이미징 기술의 한계를 극복하는 새로운 접근 방식으로, 홀로토모그래피 기반 비침습적 생체 이미징 및 진단 연구에 큰 영향을 미칠 것이다. 앞으로는 생체 조직의 더욱 정밀한 3차원 이미징을 통해 세포 수준에서의 다양한 생명현상을 이해하는 연구를 지속할 계획”이라고 말했다.
물리학과 오철민 석박사통합과정 학생이 제1 저자인 이번 연구 결과는 지난 2월 17일 국제 학술지 ‘네이처 커뮤니케이션즈(Nature communications)’에 온라인 게재됐으며, 해당 기술은 다양한 생명과학 분야에서의 적용 가능성을 인정받고 있다.
(논문명: Digital aberration correction for enhanced thick tissue imaging exploiting aberration matrix and tilt-tilt correlation from the optical memory effect) DOI: 10.1038/s41467-025-56865-z
이번 연구는 한국연구재단 리더연구사업 및 한국산업기술진흥원 글로벌산업기술협력센터사업의 지원을 받아 수행됐다.
2025.03.05
조회수 3363
-
KAIST, 조선시대 ‘일월오봉도’ 색소없이 완벽 구현하다
일반적으로 색깔을 표현하기 위해서는 가시광선 내의 특정 파장의 빛을 흡수하는 화학 색소가 필요하다. 그런데 우리 연구진이 화학 색소를 사용하지 않아 친환경적이며, 변색이나 퇴색 없이 컬러 그래픽을 영구 보존할 수 있는 초정밀 컬러 그래픽으로 조선시대 ‘일월오봉도’를 구현하는데 성공했다.
우리 대학 생명화학공학과 김신현 교수 연구팀이 반구 형태의 미세구조를 이용해 화학 색소를 전혀 사용하지 않고 고해상도의 컬러 그래픽을 구현하는 기술을 개발했다고 26일 밝혔다.
영롱한 파란색을 띄는 몰포 나비나 피부색을 바꾸는 팬서 카멜레온은 화학 색소 없이도 발색하는데, 이는 물질을 이루는 규칙적인 나노구조가 빛의 간섭 현상을 통해 가시광선의 빛을 반사해 나타나는 구조색이다. 구조색은 물질이 아니라 구조에 따라 색깔이 달라지기 때문에 한가지 소재로도 다양한 색깔을 나타낼 수 있다.
그러나 구조색 발색을 위한 규칙적인 나노구조는 인공적으로 구현하기 위한 기술적 난이도가 높고, 다양한 색 표현이 어려울 뿐만 아니라 다양한 색을 정교하게 패턴으로 나타내기 매우 어렵다.
김신현 교수 연구팀은 규칙적인 나노구조 대신 부드러운 표면을 갖는 반구 형태의 미세구조만을 이용해 다양한 구조색을 높은 정밀도로 패턴화할 수 있는 새로운 기술을 개발했다.
뒤집어진 반구 형태의 미세 구조체에 빛이 입사할 때 측면으로 입사한 빛은 곡면을 따라 전반사돼 재귀반사가 일어나게 된다. 이때 반구의 직경이 10마이크로미터 내외(머리카락 굵기의 10분의 1 수준) 일때 재귀반사가 일어나는 서로 다른 경로의 빛이 가시광선 영역에서 간섭해 구조색이 나타난다.
구조색은 반구의 크기에 따라 조절 가능하며, 팔레트에서 물감을 섞듯 서로 다른 크기의 반구를 배열함으로써 발현 가능한 색을 무한히 늘릴 수 있다.
연구팀은 다양한 크기의 반구형 미세구조를 정밀하게 패턴화하기 위해 반도체 공정에 사용되는 양성 감광성 고분자*를 광식각법**을 통해 미세기둥 형태로 패턴화한 다음 온도를 올려 감광성 고분자의 리플로우***를 유도함으로써 반구형 미세구조를 형성했다.
*양성 감광성 고분자((positive photoresist): 자외선에 노출된 영역이 현상액에 쉽게 용해되는 감광성 재료
**광식각법(photolithography): 반도체 공정에서 주로 사용되는 패턴 형성법
***리플로우(reflow): 고온에서 고분자 구조 내에 흐름이 발생하여 형상이 곡면 형태로 변하는 현상
이러한 방식을 이용하면 원하는 크기와 색깔을 갖는 반구형 미세구조를 원하는 위치에 미리 설계한 방식대로 단일 단계에 형성할 수 있으며, 임의의 컬러 그래픽을 색소 없이 단일 물질만을 이용해 재현해 낼 수 있다.
색의 영구 보존이 가능한 초정밀 컬러 그래픽 기술은 빛의 입사 각도나 시야 각도에 따라 변색이 가능하며, 패턴의 한쪽 방향으로만 색깔을 보이며, 반대편으로는 투명한 야누스 형태의 특징을 갖는다. 이러한 구조색 그래픽은 최신 LED 디스플레이에 준하는 높은 해상도를 가지며 손톱 크기에 복잡한 컬러 그래픽을 담을 수 있고, 이를 대면적 스크린에 프로젝션도 가능하다.
연구를 주도한 김신현 교수는 “새롭게 개발한 무색소 컬러 그래픽 구현 기술이 향후 예술과 접목해 새로운 형태의 예술 작품을 표현하는 참신한 방법이 될 수 있으며 광학 소자 및 센서, 위변조 방지 소재, 심미성 포토카드 등을 포함한 광범위한 분야에 적용할 수 있을 것으로 기대된다”고 말했다.
우리 대학 손채림 석사가 제1 저자로 참여한 이번 연구 결과는 재료 분야의 권위있는 국제학술지‘어드밴스드 머터리얼즈(Advanced Materials)’ 2월 5일 자에 게재됐다. (논문명: Retroreflective Multichrome Microdome Arrays created by Single-Step Reflow, 단일 단계 리플로우 공정을 이용한 재귀반사형 다색 미세돔 배열 설계, DOI:10.1002/adma.202413143)
이번 연구는 한국연구재단의 미래융합파이오니어사업 및 중견연구자지원사업의 지원을 받아 수행됐다.
2025.02.26
조회수 3957
-
펨토초보다 짧은 순간 전이상태 분자구조를 밝히다
즈웨일 교수(1999년 노벨화학상)가 창출한 펨토화학을 통해 화학반응 중 일어나는 분자구조 변화를 실시간에서 관측할 수 있는 길이 열렸지만, 엄밀한 의미에서 에너지에 따른 전이상태 (Transition-State) 구조 변화를 직접 관측한 예는 매우 드물다. KAIST 연구진은, 광분해 화학반응 전이상태의 분자구조 변화를 분광학 기법*으로 정확하게 측정하는데 세계 최초로 성공했다.
*분광학 기법: 빛과 분자의 상호작용을 통해 양자역학적 분자구조를 정확하게 알아냄
우리 대학 화학과 김상규 교수 연구팀이 화학반응의 전이상태 (Transition-State) 구조를 실험적으로 밝히는 데 성공했다고 4일 밝혔다.
화학반응 속도론이 개발되면서, 가장 중요한 핵심으로 자리잡은 개념이 ‘전이상태 (Transition-State)’다. 전이상태 이론(Transition State Theory, 이하 TST) 에서는 반응물과 생성물 중간에 위치한 전이상태의 분자구조 및 동역학적 특성에 의해 반응속도, 생성물의 상대적 수율, 에너지 분포 등이 결정된다. TST는 지난 1세기 동안, 모든 환경에서의 연소, 유기, 생화학 반응 등에 널리 응용 되어온 가장 보편적인 반응속도론이다.
그러나, 전이상태는 펨토초(10-15 second)보다 더 짧은 시간 동안만 존재하므로, 전이상태를 직접 실험적으로 관찰하는 것은 매우 어려운 일이며 항상 도전적인 과제로 남아있었다.
김상규 교수 연구팀에서 관측한 전이상태는 특별한 의미를 갖는다. 분광학적 기법을 통해, 분자가 전이상태로 접근하면서 가지는 구조 변화를 매우 정확하게 측정할 수 있었던 첫 번째 예라는 점이다.
분광학 기법으로 측정된 정확한 전이상태 분자구조 변화에 따라 관찰된 반응속도의 급격한 변화를 통해서, 분자구조와 화학반응성 간 긴밀한 상관관계도 아울러 증명되었다.
김상규 교수는 “복잡한 분자의 화학반응에서 전이상태에 접근하면서 급격하게 변화하는 분자구조를 분광학 및 반응동역학 기법으로 밝힌 것은 처음이며, 향후 많은 이론 및 실험적 연구를 촉진할 것으로 기대된다. 특히, 전이상태 구조는 특정 화학반응을 선택적으로 빠르게 할 수 있는 고효율 촉매 설계에 가장 근원적인 정보를 제공할 것이다.”라고 말했다.
이번 연구 결과는 김정길 박사 (제 1 저자), 강민석 박사과정 학생, 윤준호 박사(現 LG화학)가 공동 저자로 2025년 1월 ‘네이처 커뮤니케이션즈(Nature Communications, Vol. 16, 210) 에 대표적(Featured) 연구 성과로 발표됐다.
또한 매우 이례적으로 분광학 분야 최고 권위자인 MIT의 로버트 필드(Robert Field) 교수 및 이스라엘 벤구리온 대학 바라밴 (Baraban) 교수가 공동작성한 하이라이트 커멘트(Nature Communications, 16, 76)를 통해, 이번 연구 결과가 가지는 독창성과 시사성, 중요성 및 향후 실험물리화학 분야에서의 임팩트가 강조됐다.
한편 이번 연구는 한국연구재단의 중견연구사업 및 기초과학 4.0 중점연구소 (자연과학연구소)에서 지원받아 수행됐다.
2025.02.04
조회수 4120