본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B4%91%EC%A0%84%EC%9E%90
최신순
조회순
고도로 응축된 빛-물질의 새로운 플랫폼 구현
우리 대학 국내외 연구자들과 협업을 통해 고도로 구속된 빛이 전파될 수 있는 새로운 플랫폼을 2차원 물질 박막을 통해 구현했다고 18일 밝혔다. 이 연구 결과는 향후 강한 빛-물질 상호작용에 기반한 차세대 광전자 소자 개발에 기여할 것으로 예상된다. 원자 한 층으로 이루어진 2차원 물질들이 여러 겹으로 쌓이게 되면 기존의 2차원 물질과 다른 특성을 보이게 된다. 이러한 방식으로 만들어진 결정을 반데르발스 결정이라고 한다. 포논-폴라리톤은 전기를 띠는 물질 속 이온의 진동이 전자기파에 결합된 형태를 말하며, 전자기장이 입사광의 파장에 대비해 극도로 응축된 형태를 띈다. 특히, 고전도도를 가지는 금속 위에 놓여진 반데르발스 결정에 생성되는 포논-폴라리톤은 응축성이 극대화된다는 결과가 최근 보고됐다. 금속 위의 유전체에서 빛의 응축성이 극대화되는 것은 폴라리톤 결정 속 전하가 영상 전하 영향으로 금속에 반사돼 `영상 포논-폴라리톤' 이라는 새로운 형태의 폴라리톤이 생성되기 때문이다. 영상 포논-폴라리톤의 형태로 전파되는 빛은 강한 빛-물질 상호작용을 유도할 수 있다는 장점이 있으나 금속 표면이 거칠 경우 생성이 억제돼, 영상 포논-폴라리톤에 기반한 광소자의 실현 가능성은 제한적인 것으로 평가받아왔다. 이러한 한계점을 돌파하고자, 첨단 제작 기술과 측정기술을 보유한 다섯 연구팀이 협업을 통해 단결정 금속 위 영상 포논 폴라리톤 측정에 성공했다. 우리 대학 전기및전자공학부 장민석 교수 연구팀은 높은 민감도를 가지는 주사 근접장 현미경(Scanning near-field optical microscope, SNOM)을 통해 단결정 금 위 63nm(나노미터) 두께의 육각형 질화붕소(hexagonal boron nitride, h-BN)에서 전파되는 쌍곡 영상 포논-폴라리톤(hyperbolic image phonon polariton, HIP)을 측정했다. 이 측정 결과를 통해 유전체 속에서 전파되는 영상 포논-폴라리톤은 중적외선 빛이 100배 응축된 형태임을 확인했다. 장민석 교수와 메나브데 세르게이(Sergey Menabde) 연구교수는 수-파장을 진행하는 HIP의 이미지를 얻었으며, 육각형 질화붕소(h-BN) 결정에서 전파되는 강한 구속 상태의 고차 HIP 신호를 세계 최초로 관측하는데 성공했다. 이 결과를 통해 연구진은 반데르발스 결정에서 포논-폴라리톤이 전파 수명 손실 없이 고응축 상태에 이를 수 있다는 것을 보였다. 이 실험 결과는 원자 수준으로 평편한 금 단결정이 육각형 질화붕소(h-BN)이 올라갈 기판으로 사용됐기 때문에 얻을 수 있었던 결과로 평편한 금 단결정은 표면 산란을 억제하며, 극도로 작은 전압 손실(ohmic loss)를 보유하기 때문에 중적외선 대역에서 영상 포논-폴라리톤이 손실없이 전파되기 위한 최적의 환경을 제공한다. 연구진에 의해 측정된 영상 포논-폴라리톤은 저손실 유전체에서 전파되는 포논-폴라리톤 대비 2.4배 응축된 형태와 비슷한 전파 수명을 지니기 때문에, 약 두 배의 성능 지표를 가진다. 실험에 사용된 원자 수준의 평편도를 가지는 금 단결정은 남덴마크대학교(University of South Denmark) 나노광학센터(Center for Nano Optics) 연구소의 모텐슨(N. Asger Mortensen) 교수 연구팀이 화학적으로 제작했다. 중적외선 파장 대역에는 수많은 유기물질의 흡수 스펙트럼이 위치하기 때문에 센서에 사용될 가능성이 높다. 하지만 현재의 상용화된 센서는 낮은 민감도를 가지고 있어, 유기물질은 매우 고농도의 상태에서만 검출된다. 하지만 고응축 상태의 포논-폴라리톤의 강한 빛-물질 상호작용을 이용할 시 한개의 유기 분자도 검출 할 수 있을 것으로 예상되며, 금 단결정에 전파되는 포논-폴라리톤의 긴 전파 수명 또한 검출 기능을 향상할 것으로 예측된다. 장민석 교수 연구팀은 영상 포논-폴라리톤과 영상 그래핀 플라즈몬 사이의 유사성을 밝혀내기도 했다. 두 전파 모드는 모두 극도로 응축된 전자기장을 보이고, 짧아진 폴라리톤 파장에 무관하게 전파 수명이 일정했다. 이 측정 결과는 유전 박막으로 이루어진 저차원 폴라리톤에 대비해 영상 폴라리톤이 강점을 가진다는 것을 시사한다. 연구를 주도한 장민석 교수는 "이번 연구결과는 영상 폴라리톤, 특히, 영상 포논-폴라리톤의 장점을 잘 보여준다. 특히 영상 포논-폴라리톤이 갖는 저손실성과 강한 빛-물질 상호작용은 차세대 광전자 소자 개발에 응용될 수 있을 것으로 보인다. 연구팀의 실험 결과가 향후 메타표면, 광스위치, 광 센서 등의 고효율 나노광학 소자의 실용화를 앞당기는 데 도움이 되기를 바란다ˮ고 연구의 의의를 설명했다. 메나브데 세르게이 연구교수가 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 7월 13일 字 게재됐다. (논문명: Near-field probing of image phonon-polaritons in hexagonal boron nitride on gold crystals) 한편 이번 연구는 삼성미래기술육성센터와 한국연구재단의 지원을 받아 진행되었으며, 한국과학기술연구원, 일본 문부과학성, 덴마크 빌룸(Villum) 재단의 지원을 받았다.
2022.07.18
조회수 6939
신병하 교수, 홀 효과 한계 보완한 새 반도체 분석기술 개발
〈 신병하 교수, 배성열 박사과정 〉 우리 대학 신소재공학과 신병하 교수와 IBM 연구소의 오키 구나완(Oki Gunawan) 박사 공동 연구팀이 반도체 특성 분석의 핵심 기술인 홀 효과(Hall effect)의 한계를 넘을 수 있는 새로운 반도체 정보 분석 기술을 개발했다. 이번 연구는 140년 전에 처음 발견된 이래로 반도체 연구 및 재료 분석의 토대가 된 홀 효과 측정에 대한 새로운 발견으로 향후 반도체 기술 개발에 이바지할 수 있을 것으로 기대된다. 신병하 교수와 오키 구나완 박사가 교신 저자로, 배성열 박사과정이 2 저자로 참여한 이번 연구 결과는 국제 학술지‘네이처(Nature)’ 10월 07일 자 온라인판에 게재됐으며 11월 07일 정식 게재됐다. (논문명: Carrier-Resolved Photo Hall Effect) 1879년 에드윈 홀(Edwin Hall)이 발견한 홀 효과는 물질의 전하 특성(유형, 밀도, 이동성 또는 속도)에 대한 중요한 정보를 제공한다. 이는 반도체 소자를 이해하고 설계하는 데 필요한 가장 기본적인 특성들이다. 이러한 이유로 홀 효과는 지난 100년이 넘는 시간 동안 가장 일반적인 반도체 특성 분석 기법의 하나며 전 세계의 반도체 연구기관에서 보편적으로 사용되고 있다. 그러나 현재까지의 분석 기법으로는 홀 효과를 통해 다수 운반체(Majority carrier)와 관련한 특성만 파악할 수 있고, 태양 전지와 같은 소자의 구동 원리 파악에 필수인 소수 운반체(Minority carrier) 정보는 얻을 수 없다는 한계를 가지고 있었다. 연구팀은 문제 해결을 위해 ‘포토 홀 효과(Carrier-Resolved Photo-Hall" (CRPH))’ 기술을 개발했다. 이 기술을 사용하면 한 번의 측정으로 다수 운반체 및 소수 운반체에 대한 많은 정보를 동시에 추출할 수 있다. 기존 홀 측정에서는 세 가지 정보를 얻을 수 있었다면 연구팀의 새로운 기술은 실제 작동 조건을 포함한 여러 광도에서 광여기 전하의 농도, 다수 운반체 및 소수 운반체의 전하 이동도, 재결합 수명, 확산 거리 등 최대 일곱 개의 중요한 정보를 얻을 수 있다. 연구팀의 이 기술은 태양 전지, 발광 다이오드와 같은 광전자 소자 분야에서 사용 가능한 신소재 개발 및 최적화에 핵심적인 역할을 할 것으로 기대된다. 신 교수는 “지난 2년간의 연구가 좋은 결심을 맺게 되어 기쁘고, 이 기술을 통해 새로운 광소자 물질의 전하 수송 특성을 이해하고 더 나은 소자를 개발하는 데 큰 도움이 되리라 믿는다”라고 말했다. 이번 연구는 한국연구재단 기후변화대응기술개발사업, 산업통상자원부와 한국에너지기술평가원(KETEP) 에너지기술개발사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 포토 홀 효과 개념도
2019.11.14
조회수 13292
박정영, 정유성 교수, 합금 촉매의 화학반응 실시간 관찰 성공
〈 박 정 영, 정 유 성 교수〉 우리 대학 EEWS 대학원 박정영, 정유성 교수 연구팀이 합금 촉매 표면에서 벌어지는 화학 반응 과정을 실시간으로 관찰해 합금 촉매의 반응성 향상과 직결된 반응 원리를 규명했다. 연구팀의 관찰 결과는 차세대 고성능 촉매 설계에 활용할 수 있는 반응성 향상 원리의 기반이 될 것으로 기대된다. GIST 물리․광과학과 문봉진 교수 연구팀과 공동으로 수행한 이번 연구 결과는 종합 과학 분야 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 7월 13일자 온라인 판에 게재됐다. (논문명 : Adsorbate-driven reactive interfacial Pt-NiO1-x nanostructure formation on the Pt3Ni(111) alloy surface, 백금-니켈 합금 표면위의 촉매 활성도가 높은 금속-산화물 경계 나노구조물 형성의 실시간 관찰) 합금 촉매는 단일 금속 또는 금속 산화물 촉매에 비해 뛰어난 성능을 보여 연료전지반응이나 탄소계열 공업화학반응 등에 이용되고 있다. 하지만 합금 촉매 반응의 결과에 대한 근본적인 원리는 자세히 밝혀지지 않아 촉매 연구 과정에서 발생하는 예상치 못한 결과를 설명하기 어려웠다. 연구팀은 문제 해결을 위해 기존의 표면 직접 관찰 기기의 한계점을 크게 개선한 ‘상압 주사 터널링 전자 현미경’과 ‘상압 X-선 광전자분광기’를 활용해 백금-니켈 합금 촉매 표면의 역동적인 변화 과정을 관찰했다. 이를 통해 실제 반응 환경에서 백금-니켈 합금 촉매의 반응성 향상 이유가 금속-산화물 계면 나노구조의 표면 형성으로부터 시작됨을 밝혀냈다. 또한 일산화탄소 산화반응 과정에서 백금 혹은 니켈 산화물 단일 촉매에 비해 금속-산화물 계면 나노구조가 갖는 비교적 낮은 활성화 에너지는 촉매 반응 원리 상 반응성 향상에 보다 유리한 화학 반응 경로를 제시할 수 있음을 확인했다. 이 결과는 밀도범함수 이론을 바탕으로 한 양자역학 모델링 계산 결과를 통해 입증됐다. 박정영 교수는 “초고진공 환경을 기반으로 한 기존의 표면 과학이 풀지 못한 실제 반응 환경에서의 합금 촉매 반응 과정을 직접 관찰한 첫 연구사례이다”며 “합금 촉매의 계면이 촉매 향상도를 높일 수 있고, 현재 진행 중인 촉매전자학 연구와도 밀접한 관계를 가지고 있다. 다양한 종류의 실제 반응 환경에 근접한 촉매 표면 반응을 연구할 계획이다.”고 말했다. 이론적 원리 규명 연구를 주도한 정유성 교수는 “직접 관찰과 양자 계산을 통해 합금 촉매의 주된 활성 자리가 계면임을 규명한 연구로, 다양한 합금 촉매의 설계 및 최적화에 중요한 단서가 될 것이다”고 말했다. 상압 표면 분석을 주도한 GIST 문봉진 교수는“이 연구는 외부의 분자들과 쉴 새 없이 반응하면서 움직이는 마치 살아서 숨쉬고 있는 원자의 움직임과 반응성을 동시에 측정한 완벽한 표면물리연구이다”고 말했다. 이번 연구는 기초과학연구원 및 한국연구재단, GIST 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 주사 터널링 전자 현미경을 이용한 실시간 표면 관찰 이미지 그림2. 시간에 따른 표면 직접 관찰 이미지
2018.07.16
조회수 12842
윤동기 교수, 붓으로 DNA의 모양을 조절하는 기술 개발
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 일상생활에서 흔히 쓰이는 화장용 붓을 이용해 일정한 지그재그 형태를 갖는 DNA 기반의 나노 구조체 제작 기술을 개발했다. 차윤정 박사과정 학생이 1저자로 참여한 이번 연구 성과는 재료분야 저명 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’ 11월 15일자 온라인 판에 게재됐고 액정(liquid crystal) 분야 핫 토픽으로 선정됐다. 기존에도 DNA를 빌딩블록으로 사용해 다양한 나노 구조체를 만드는 기술은 많이 존재했다. 그러나 이 방식은 복잡한 설계과정이 필요하고 특히 염기서열이 조절된 값비싼 DNA를 이용해야 하는 단점이 있다. 연구팀은 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 지그재그 형태의 나노 구조체를 구현했다. 연구팀은 화장품 가게에서 구매한 화장용 붓으로 연어에서 추출한 DNA를 물감처럼 이용해 그림 그리듯 기판에 한 방향으로 문질렀다. 수 센티미터 크기의 붓을 이용해 지름이 약 2 나노미터인 DNA 분자들을 붓질 방향으로 나란히 정렬시켰다. 얇게 퍼진 진한 상태의 DNA 필름이 공기 중에 노출돼 건조되며 이 때 기판의 바닥에서 잡아주는 힘 때문에 팽창력이 작용한다. 이 팽창력은 DNA의 탄성력과 상호작용해 일렬로 향하던 DNA의 분자에 파도모양의 기복이 생기면서 일정한 지그재그 패턴이 형성된다. 형성된 DNA 지그재그 패턴은 생물체에서 추출한 저렴한 DNA를 사용했기 때문에 그 내부정보(sequence)까지는 조절되지 않았지만, DNA 물질의 구조적 정교함은 변하지 않아 아주 일정한 구조체가 된다. 이렇게 정밀하게 구조가 조절된 DNA 막 위에 다른 물질을 바르면 DNA 구조에 따라 정밀하게 그 물질이 정렬하기 때문에 다양한 분야에 이용 가능하다. 예를 들어 액정 디스플레이에 사용되는 다른 액정을 정렬시킬 수 있고 금속 입자, 반도체 물질 역시 정렬이 가능하다. 이러한 기능을 통해 새로운 개념의 광전자 소자로의 응용에 기여할 수 있을 것으로 기대된다. 윤 교수는 “DNA 뿐 아니라 자연계에 존재하는 단백질, 근육 세포, 뼈의 구성물질 등 다양한 생체 물질을 광전자 분야에 사용할 수 있다는 점에서 큰 의의를 갖는다”고 말했다. 이번 연구는 한국연구재단의 나노소재 원천기술개발사업 및 미래유망융합기술 파이오니아 사업을 통해 수행됐다. □ 그림 설명 그림1. 규칙적인 DNA 지그재그 구조체의 이미지와 내부 분자의 배향을 설명하는 모식도 그림2. 정렬되지 않던 DNA(좌)가 붓질 및 건조시킨 후 정렬된 과정(우) 그림3. 마이크로 채널 기판을 이용한 DNA 지그재그 구조체의 제어 그림4. DNA 지그재그 구조체 표면 위에 형성된 액정 물질의 배향제어 모식도 및 편광 현미경 이미지
2016.12.01
조회수 15163
나노촉매의 활성도를 효과적으로 높일 수 있는 원리 규명
박정영 교수 - Nano Letters 발표,“활성도는 높이고 소모는 줄이는 신개념 촉매물질 개발 가능”- 나노촉매*에 산화막을 형성하여 활성도를 자유자재로 제어할 수 있는 기술이 국내 연구진에 의해 개발됨에 따라, 활성도를 극대화하고 소모를 최소화하는 새로운 촉매물질 개발에 가능성이 열렸다. * 나노촉매(Nanocatalysts) : 표면적이 높은 산화물 지지체에 나노미터(10억분의 1미터) 크기의 금속입자가 분산되어 있는 구조로, 표면에서 기체 반응을 원활하게 하는 재료 우리 학교 EEWS대학원 박정영 교수(42세)가 주도하고 캄란 카디르 박사과정생(Kamran Qadir, 제1저자), 울산과기대 주상훈 교수, 한양대 문봉진 교수 및 UC버클리대 가보 소모자이 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)과 WCU육성사업 및 지식경제부 둥의 지원으로 수행되었고, 나노분야의 권위 있는 학술지인 ‘Nano Letters’ 온라인 속보(10월 15일)에 게재되었다.(논문명: Intrinsic Relation between Catalytic Activity of CO Oxidation on Ru Nanoparticles and Ru Oxides Uncovered with Ambient Pressure XPS) 우리가 일상생활에서 사용하고 있는 제품의 대부분(80% 이상)은 촉매를 이용해 만들어질 정도로, 촉매는 우리 생활에서 꼭 필요하고 중요한 물질이다. 특히 전 세계 연구자들은 인류가 직면한 중요 이슈인 에너지문제와 환경문제 등을 근본적으로 해결하기 위해 친환경적인 화학공정에 사용될 새로운 나노촉매 물질을 집중적으로 개발하고 있다. 현재 실생활에서 주로 사용되는 촉매는 나노입자와 산화물로 이루어져 있다. 그 중 나노입자는 촉매의 표면적을 최대한 넓혀 촉매의 활성도를 높이는 역할을 한다. 활성도가 높은 촉매를 효과적으로 제조하기 위해서는 나노입자의 표면 산화막이 중요한 요인으로 알려져 왔다. 그러나 이를 과학적으로 입증하기 위해서는 촉매가 반응하는 환경에서 나노입자의 산화상태를 정확히 측정해야 하지만, 그 동안 많은 분석이 진공에서 이루어져와서 이를 정확히 보여주기가 힘들었다. 즉 촉매가 반응하는 환경에서 측정이 이루어지기 위해서는 상압측정이 필요하다. 최근에 개발된 상압 엑스선 광전자 분광법으로 이러한 상압에서 표면의 성분과 산화상태의 연구가 가능하게 되었다. 지금까지 연구자들이 무엇 때문에 정확히 측정하지 못했을까요? 박정영 교수 연구팀은 상압 엑스선 광전자 분광법*으로 나노입자의 산화상태를 촉매환경에서 측정하는데 성공하였다. * 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy) : 엑스선을 물질에 쬐었을 때 나오는 광전자의 운동에너지를 조사하여 물질의 성분과 산화상태 등을 연구하는 표면분석법 박 교수팀은 2.8나노미터와 6나노미터 크기의 루테늄 나노입자 2개를 콜로이드 합성법*으로 제작하고, 랭뮤르 블라짓 기법**으로 나노입자 한 층을 표면에 증착시켰다. 연구팀은 나노입자의 산화상태를 온도와 압력을 바꿔가며 측정하였고, 크기가 큰 루테늄 나노입자가 얇은 산화막을 가진다는 결과를 도출하였다. * 콜로이드 합성법 : 금속염과 안정제가 함께 용해되어 있는 용매에 환원제를 투입 또는 혼합하여 나노입자를 제작하는 방법. 제작 과정의 여러 인자를 바꿈으로써 입자의 크기와 모양, 성분의 제어가 가능하다. * * 랭뮤르 블라짓(Langmuir-Blodgett) 기법 : 금속나노입자를 단층으로 제작하는 기법. 나노입자가 용액 위에 떠 있을때, 표면압력을 조절하여 나노입자 사이의 평균 간격을 조절할 수 있다. 또한 연구팀은 측정결과를 바탕으로 산화상태가 촉매의 활성도에 미치는 영향을 확인하여, 크기가 큰 루테늄 나노입자의 얇은 산화막이 촉매의 활성도를 높일 수 있고, 산화상태를 바꾸면 활성도도 제어할 수 있다는 사실을 입증하였다. 박정영 교수는 “나노입자의 산화막이 촉매환경에서 만들어지고 촉매활성도에도 직접적인 관계가 있음을 규명한 이번 연구는 활성도가 높은 촉매물질을 만드는데 응용되어 환경오염에 주요한 원인이 될 수 있는 촉매물질의 소모를 획기적으로 줄이는데 기여할 것으로 기대한다”고 연구의의를 밝혔다. 루테늄(Ru) 나노입자의 촉매환경 도중 산화상태조사 : 루테늄 나노입자에서 일어나는 촉매반응 (일산화탄소 산화반응)을 보여줌 (왼쪽). 방사광 가속기에 설치된 상압 엑스선 광전자 분광법을 이용하여 촉매환경에서 루테늄 나노입자의 산화상태가 분석이 됨 (아래). 루테늄 나노입자의 산화막의 두께가 나노입자의 크기에 관계가 되고 이는 촉매의 활성도에 직접적으로 영향을 줌 (오른쪽)
2012.11.08
조회수 18832
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1