-
인공장기 생체 단백질 모방 금속 필름 개발
오랜 기간에 걸쳐 생체 구조체를 형틀로 삼아 다양한 무기물을 증착 및 성장시킴으로써 생체 모방 재료를 합성하는 연구들이 이루어져 왔는데, 이를 생체 형틀법이라고 한다. 이런 생체 형틀법은 생체에 있는 특정 구조체에 사용되어 오랜 시간 동안 에너지, 광학, 마이크로로봇, 의료 분야 등에 응용되어 왔다. 특히 생체 구조체를 사용하고 모방했다는 점에서 인체 내 활용이 용이하여 인공장기나 상처 치유 분야로 많이 연구되었다.
우리 대학 신소재공학과 장재범, 김일두 교수 연구팀이 생체 형틀법을 이용해 세포외 기질을 구성하는 여러 단백질 중 원하는 특정 단백질만을 선택해 해당 단백질 구조체를 모방한 금속 필름을 합성하고 전기 전달 특성을 확인하는 것에 성공했다고 16일 밝혔다.
세포외 기질이란 세포 밖에 존재하며 세포의 분화, 성장, 이동에 중요한 역할을 수행할 뿐만 아니라 생체 조직과 기관(organ)의 구조적·기계적 특성 유지에 필수적인 생체 구조물이다. 이러한 세포외 기질은 여러 단백질을 포함하며, 그 단백질 구조체를 원하는 형태로 변형하거나 최근에는 세포외 기질을 3D 프린팅을 위한 바이오잉크로 사용할 만큼 세포외 기질을 다루는 많은 기술 개발이 진행되고 있다. 따라서 세포외 기질은 생체 형틀법을 통해 다양한 구조의 재료 합성에 이용될 수 있지만, 현재까지 관련된 연구는 많이 이뤄지지 않았다.
연구팀은 2022년 항체(Antibody)를 활용한 신개념 생체 형틀법인 `항체 유도 생체 형틀‘을 개발해 최초로 다세포 생물 내부에 있는 특정 단백질 구조체를 모방한 금속 구조체를 합성하는 데 성공했다. 이번 연구에서는 이전 연구를 세포외 기질로 확장해 세포를 지탱하는 구조체를 구성하는 단백질 중 피브로넥틴(fibronectin)을 표적 단백질로 삼아 그물형 금속 필름 제작에 성공했다.
연구팀은 이에 더 나아가 합성한 그물형 금속 필름에 추가적 처리를 통해 금속을 통한 전기 전달이 가능하도록 만들었다. 이를 기반으로 물을 전기 분해하여 수소를 생산하거나, 또는 수소와 금속간 화학적 반응을 통해 수소를 검출할 수 있는 센서로 활용할 수 있었다.
해당 기술은 다양한 생물의 세포외 기질에도 적용 가능할 것으로 예상되어 더 큰 규모나 더 복잡한 생체 모방 재료 합성도 가능할 것으로 생각된다. 또한, 원하는 형태로 세포외 기질을 패턴화 및 정렬함으로써 본 기술로 전기 회로 제작도 가능할 것으로 생각된다.
우리 대학 신소재공학과 송창우 박사과정, 안재완 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 10월 18일 자로 온라인 공개되었으며, 전면 표지 논문(Front Cover)으로 선정됐다. (논문명 : Metallization of Targeted Protein Assemblies in Cell-Derived Extracellular Matrix by Antibody-Guided Biotemplating).
제1 저자인 송창우 박사과정은 "이번 연구는 기존에 개발한 항체 유도 생체 형틀법을 세포외 기질로 확장함으로써 합성된 생체 모방 재료가 더 다양한 분야에 활용 가능하다는 것을 보였다ˮ 라며 "이를 기반으로 조직 수준의 세포외 기질 및 원하는 형태로 변형된 세포외 기질을 이용해 조직 공학(Tissue engineering) 및 생체 조직 제조(Biofabrication)으로 활용 범주를 넓힐 수 있을 것이다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 과학난제도전 융합연구개발사업, 웨어러블 플랫폼소재 기술센터, 우수신진연구사업 등의 지원을 받아 수행됐다.
2023.11.17
조회수 4020
-
난치성 악성 위암의 분자병태생리 기전 최초 규명
우리 대학 바이오및뇌공학과 김필남 교수, 최정균 교수 연구팀은 연세대학교 세브란스 병원 정재호 교수 연구팀과 공동연구를 통해 종양 미세환경의 물리적 인자[세포기질의 강성도 증가]가 암세포의 악성화를 촉진하는 분자후성유전학적 원인을 최초로 규명함으로써 향후 새로운 항암치료전략 수립에 중요한 통찰과 방향을 제시했다.
지금까지 종양연구가 대부분 암세포 자체의 돌연변이나 내부 신호전달 경로에 집중되어 진행되었다면 이번 연구는 암세포가 위치한 종양의 미세환경적 요인이 악성화에 어떤 영향을 주는지를 규명해 종양학 연구의 새로운 패러다임을 제공하고 있다. 최근에 암면역치료의 임상적 성공에 힘입어 *종양미세환경의 면역세포에 대한 관심과 연구가 증가하고 있으나 종양미세환경의 물리적 요인이 암세포의 악성화 및 치료반응에 어떤 영향을 주는지에 대한 연구는 거의 없었다.
연구팀은 생체재료를 활용해 인간의 종양미세환경과 유사한 위암실험모델을 개발하고, 이를 이용하여 단단해진 미세환경에 의한 위암세포의 악성화 메커니즘을 규명했다. 암을 유발하는 단백질로 잘 알려진 YAP (Yes-associated protein)의 DNA 가 단단해진 조직내에서 후성유전학적 변화인 DNA 탈메틸화가 유도되어 악성화가 촉진됨을 밝혔다. 이와 더불어, 본 연구팀은 단단하게 변성된 미세환경을 다시 물렁한 조직으로 변화할 경우, 악성화된 위암 세포에서 역전현상이 일어나 악성화가 약화되고 항암제에 반응하는 세포로 변화함을 확인했다.
이번 연구 결과는 치료가 어려운 난치성 *미만형 위암의 악성화를 촉진하는 원인을 규명함으로써 임상적으로 가장 어려운 scirrhous cancer 의 새로운 치료 가능성을 제시하고, 위암 뿐만 아니라 다양한 암종의 유사한 표현형의 암에 대한 치료 확장성에 기여할 것으로 기대한다.
*종양미세환경: 종양내에 존재하는 암세포, 암의 형성 및 진행에 직/간접적으로 영향을 미치는 주변 조직세포 (면역세포, 섬유아세포, 혈관세포 등) 및 이를 구성하고 있는 *세포외기질물질(Extracellular Matrix) 를 총칭해서 종양미세환경이라고 한다.
*세포외기질: 세포와 세포사이를 연결하고 지탱해주는 지지체의 역할을 하는 물질로 콜라겐과 같은 단백질이 이에 속한다. 세포외기질은 단순한 지지체가 아니라, 이것의 물리적, 화학적 특성이 세포의 운명, 특성 등에 직접적으로 영향을 미친다. 특히, 병적요인으로 인해서 조직 섬유화와 같은 변성이 일어나고 이러한 변성이 암과 같은 질병의 악화의 원인이 된다고 알려져 있다.
*미만성 위암: 위암은 조직학적으로 크게 장형암과 미만 위암으로 분류된다. 장형암의 경우 헬리코박터 감염이나 만성 위축성 위염에 속발하는 위암으로 일반적으로 미만성에 비해 양호한 예후를 보인다. 미만성 위암은 장형암에 비해 암 덩어리를 잘 형성하지 않으며 작은 악성 세포들이 위벽에 퍼져서 침윤과 전이를 잘하며 조기 발견도 어렵다. 40세 미만에서 호발하며 악성도가 매우 높아 치료가 어려운 암으로 알려져 있다.
바이오및뇌공학과 장민정 박사가 제1 저자로 참여한 이번 연구는 국제학술지인 `네이처 바이오메디컬엔지니어링’ 12월 7일 字 온라인 판에 실렸다. (논문명: Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer)
이번 연구성과는 한국연구재단 과학기술 분야 기초연구사업인 중견연구자지원사업 및 보건복지부 연구중심병원 R&D 사업의 지원을 통해 수행됐다.
2020.12.10
조회수 42322
-
김필남 교수, 악성 뇌종양의 내성 발생 원리 밝혀
〈 김 필 남 교수 〉
우리 대학 바이오및뇌공학과 김필남 교수 연구팀이 3차원 체외 종양 모델을 제작해 악성 뇌종양의 약물 저항성(내성) 발생 원리를 밝혔다.이번에 제작된 뇌종양 3차원 모델은 실제로 중요한 영향을 미치는 종양의 미세환경(tumor microenvironment)을 고려해 제작함으로써 실질적 암 치료에 적용 가능할 것으로 기대된다.
이번 연구는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Reports)’ 4월 26일자 온라인 판에 게재됐다. (논문명: Strategies of Mesenchymal Invasion of Patient-derived Brain Tumors: Microenvironmental Adaptation)
악성 뇌종양은 주변 조직으로 침윤하는 특성이 매우 강해 치료하기 힘든 질병 중 하나이다. 수술을 통해 종양을 절제해도 주변 조직에 넓게 침윤한 잔여 세포들이 재발하는 경우가 많다.
따라서 악성 뇌종양의 치료 효율 및 생존율을 높이기 위해서는 남아있는 침윤 세포를 표적으로 한 치료법을 개발해야 한다.
그러나 종양의 악성화 및 침윤 특성의 주요 원인인 주변 미세환경(tumor microenvironment)을 고려하지 않은 항암제 개발이 주로 이뤄졌기 때문에 종양의 침윤 및 약물 저항의 원리를 밝히기 어려웠다.
연구팀은 문제 해결을 위해 체외에서 종양 주변 미세환경의 특성을 반영한 3차원 암 모델을 구현했다. 이는 뇌종양 미세환경의 주요 구성요소인 과함유 히알루론산(hyaluronic acid) 기질과 백색질 경로(white matter tract)를 모사한 생체모방체외종양 모델이다.
연구팀은 체내에 존재하는 악성 뇌종양의 특성을 체외에서도 유사하게 유지시켜 환자를 대체할 수 있는 종양 모델로 활용 가능함을 확인했다.
연구팀은 뇌종양 세포가 침윤하는 데 중요한 역할을 하는 히알루론산 합성 단백질을 억제하는 약물을 투입했다. 초기에는 뇌종양 침윤이 억제됐지만 시간이 흐르며 미세환경 적응(microenvironmental adaptation) 과정에서 뇌종양이 새 기전을 통해 약물에 대한 내성이 생기는 현상을 발견했다.
이 모든 과정을 체외 종양 모델을 통해 진행함으로써 동물실험을 대체하여 다양한 항암제를 조합하고 검증할 수 있어 실질적인 암 치료에 도움이 될 것으로 기대된다.
연구팀이 제시한 3차원 체외 암 모델은 기존 약물의 저항 원인을 규명하는 기반이 될 것으로 예상된다. 또한 추후 정밀 암 치료를 위한 핵심 기반 기술로 환자맞춤 약물 검증 및 신약 발굴 모델 등으로 다각적 활용이 가능할 것으로 기대된다.
김 교수는 “뇌종양의 체외 종양모델로서 공학적 기술 기반의 3차원 미세환경 암 모델을 제시했다”며 “이를 바탕으로 뇌종양 환자 개별 치료의 가능성을 높여 생존율 개선에 힘이 되겠다”고 말했다.
바이오및뇌공학과 차정화 박사과정 학생이 1저자로 참여한 이번 연구는 한국연구재단 신진연구자지원사업 및 보건복지부 중개중점 연구사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 악성 뇌종양 주변 미세환경
그림2. 환자 대체치료용 3차원 체외뇌암모델의 모식도
그림3. 환자유래 뇌종양 세포의 미세환경 적응 과정에 의한 약물 저항 메커니즘
2016.05.11
조회수 13664
-
단백질 분해조절 효소 정보 담은 바이오마커 발굴 시스템 개발
- Mol Cell Proteomics지 게재, “바이오마커 개발의 새로운 패러다임 제시” -
단백질의 분해를 조절하는 효소와 기질에 대한 관계정보를 담은 바이오마커* 발굴 시스템(E3Net)이 국내 연구진에 의해 개발되어, 고부가가치의 새로운 바이오마커 개발에 가능성이 열렸다.
※ 바이오마커(Biomarker) : 유전자, 단백질 등에서 유래된 특이한 패턴의 분자적 정보로, 유전적․후천적 영향으로 발생한 신체의 변화를 감지할 수 있는 생물표지인자
우리학교 바이오및뇍 이관수 교수(49세)가 주도하고, 한영웅 박사과정생, 이호동 박사 및 박종철 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 선도연구센터지원사업(NCRC), 신기술융합형성장동력사업 및 교육과학기술부의 KAIST 미래형 시스템 헬스케어 연구개발사업의 지원으로 수행되었고, 단백질체 연구 분야의 권위 있는 학술지인 ‘Molecular and Cellular Proteomics"지 4월호(4월 1일자)에 게재되었다. (논문명: A system for exploring E3-mediated regulatory networks of cellular functions)이관수 교수 연구팀은 전 세계 바이오 관련 DB(데이터베이스)와 논문(약 2만 편)으로부터 정보를 추출해 단백질 분해를 조절하는 효소(E3 효소)와 기질*들 간의 네트워크를 집대성하여, 이와 관련된 세포의 기능과 질병을 분석하는 ‘E3Net’ 시스템을 개발하였다.
※ 기질(substrate) : 효소와 특이적으로 결합하여 화학반응을 일으키는 분자로, 소화작용은 우리의 몸속에서 일어나는 효소와 기질간의 반응의 대표적인 사례
세포는 시시각각 변하는 환경에 대응하여 필요한 단백질들을 생산, 폐기 및 재활용하는 정교한 시스템을 가지고 있는데, 만일 이 과정에서 오류가 생기면 ‘질병’으로 이어질 수 있다.
따라서 단백질 분해를 조절하는 E3 효소와 기질 간의 관계를 파악하면 관련 질병을 치료하거나 예방할 수 있게 된다. 특히 E3 효소는 단백질 분해의 80%를 담당하는 것으로 알려져 수많은 질병이 관련되어 있을 것으로 예측되고 있다.
그러나 E3 효소와 기질 간의 정보들이 개별 논문과 DB에 흩어져 있어, 단백질 분해 조절과 관련된 세포의 기능과 질병의 특성을 종합적․체계적으로 분석할 수 없었다.
이 교수팀은 모든 E3 효소(2,201개)와 기질(4,896개) 및 그 조절관계(1,671개)에 대한 정보를 통합하여 E3 효소 조절 네트워크 내에 존재하는 관련된 세포의 기능과 질병을 시스템적으로 분석할 수 있는 E3Net을 구축하는데 성공하였다.
이 네트워크는 지금까지 구축된 조절정보를 모두 합친 것보다 무려 10배에 이르는 방대한 양으로, E3 효소가 독자적으로 또는 협력해서 조절하는 세포의 기능과 관련 질병을 정확히 파악할 수 있는 토대가 마련된 첫 사례로서 의미가 크다.
연구팀은 E3Net을 이용하면 각각의 질병과 관련된 단백질들의 분해조절을 담당하는 E3 효소들을 찾을 수 있고, 분해조절 원리와 세포기능 네트워크를 함께 파악하여 질병의 발생 원인이나 환자에 적합한 맞춤형 치료방법을 제공할 수 있는 바이오마커를 발굴할 수 있을 것으로 기대한다.
실제 연구팀은 E3Net을 활용해 암, 뇌심혈관 질환 및 당뇨병 등 현대인의 대표적 질환과 관련된 E3 바이오마커 후보 수십 개를 새롭게 발견하는 등 눈에 띄는 성과를 거두었고, 현재 이를 검증할 후속 연구를 계획하고 있다. 이관수 교수는 “이번 연구결과로 E3 효소와 관련된 단백질 분해조절의 네트워크가 구축되고, 이 네트워크에 존재하는 세포의 기능과 질병의 특이성을 시스템적으로 분석할 수 있게 됨에 따라, E3 효소와 관련된 세포의 기능 연구와 질병 연구에 새로운 전기가 마련되었다”고 연구의의를 밝혔다.
2012.05.01
조회수 19966