본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B8%B0%EC%B4%88%EA%B3%BC%ED%95%99%EC%A7%80%EC%9B%90%EC%97%B0%EA%B5%AC%EC%9B%90
최신순
조회순
김희탁 교수, 스펀지 구조 응용해 결착력 강화된 수소연료전지 개발
〈 김 희 탁 교수 〉 우리 대학 생명화학공학과 김희탁 교수와 한국화학연구원(원장 이규호) 홍영택 박사 공동 연구팀이 스펀지의 구조를 이용해 계면 결착력을 획기적으로 강화시킨 수소연료전지를 개발했다. 이번 연구 성과는 재료과학분야 국제학술지인 ‘어드밴스트 머티리얼즈(Advanced Materials)’ 11월 10일자 온라인 판에 게재됐다. 수소연료전지는 공기 중 산소와 연료탱크 내 수소로 구동되는 발전장치로서 차세대 친환경 운송수단인 수소연료전지차의 핵심 기술이다. 그러나 수소연료전지는 내연기관에 대비해 가격이 비싸 보급이 어렵고, 고가의 불소계 멤브레인을 이용하기 때문에 가격을 낮추기에도 한계가 있었다. 가격을 낮추기 위해 저가의 탄화수소계 멤브레인이 제안됐지만 탄화수소계 멤브레인은 전극과의 계면 결착력이 낮아 전극과 멤브레인 간 계면이 탈리(분자, 이온 등에서 원자가 떨어지는 현상)돼 수명이 급감하는 문제가 있다. 연구팀은 문제 해결을 위해 탄화수소계 멤브레인 표면에는 스펀지 계면 구조를 도입하고, 전극 표면에는 고분자 층을 삽입해 물리적인 맞물림 계면을 구현했다. 이는 스펀지 계면구조와 전극 표면 고분자 층이 서로 3차원적으로 얽혀 고정돼 강한 계면 결착력이 발생하는 원리이다. 연구팀은 전극과 멤브레인 사이의 계면 결착력을 기존에 비해 37배 증가시켰고 탄화수소계 연료전지의 수명은 약 20배 연장하는 데 성공했다. 특히 스펀지 계면구조는 공정성이 높은 스프레이 코팅이나 딥 코팅 법을 이용해 제조가 가능해 산업적으로도 큰 의미를 가질 것으로 기대된다. 연구팀은 한국기초과학지원연구원의 김환욱 박사와 협력해 구조의 시각적 분석을 진행했고 이대길 교수 연구팀과는 수치 해석을 통해 계면결착 원리를 규명했다. 김희탁 교수는 “물리적 맞물림 구조를 통해 연료전지의 계면 탈리 문제를 해결할 수 있음을 증명했다”고 말했다. 홍영택 박사는 “이번 연구가 기존의 우수한 탄화수소계 멤브레인들을 연료전지에 쉽게 적용할 수 있는 계기가 돼 연료전지 가격을 낮추는 데 크게 기여할 것이다”고 말했다. 이번 연구는 한국화학연구원 주요사업과 한국연구재단 기후변화대응기술사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 스펀지 계면구조의 개념도 그림2. 스펀지 계면구조가 적용된 탄화수소계 연료전지의 막-전극 접합체 장기구동 후 SEM 이미지 그림3. 스펀지 계면구조 제조 공정 및 공정 단계에 따른 탄화수소계 멤브레인
2016.11.21
조회수 16898
손상된 DNA의 돌연변이 유발 메커니즘 규명
- DNA 손상을 용인하는 특수 복제효소 Rev1의 조절 메커니즘 밝혀 -- “암 치료 및 예방에 크게 기여할 것” - 우리 학교 화학과 최병석 교수는 생체정보를 저장하는 DNA가 손상돼 회복하고 복제하는 과정에서 돌연변이가 발생하는 메커니즘을 규명했다. 연구결과는 분자세포생물학분야 세계적 학술지 ‘분자세포생물학(Journal of Molecular Cell Biology)’ 6월호 표지논문으로 실렸다. 산업의 급격한 발전으로 현대인들의 유전자는 예전에 비해 훨씬 다양하게 위협받고 있다. 오존층의 파괴로 인해 자외선에 그대로 노출되는 것은 물론 담배연기를 비롯한 수많은 발암물질의 공격은 우리 몸속의 DNA를 손상시킨다. 하루에도 수 만 번 끊임없이 일어나는 DNA의 손상을 효과적으로 회복시켜주지 못하면 암 등 치명적인 질병이 발생한다. 손상된 DNA가 회복반응에 의해 복구되지 않은 상태에서 자기복제가 일어나면 정상적인 복제를 담당하는 폴리머라제는 손상부위에 도달하면 DNA 합성을 정지하게 되고 세포의 죽음을 초래 한다. 인체는 이 같은 비상사태를 맞이해 복제담당 폴리머라제를 잠깐 쉬게 하고 손상된 DNA 부위를 그냥 지나치는 능력이 있는 특수한 복구담당 폴리머라제들을 동원해 손상부위를 통과하고 DNA 합성을 다시 시작한다. 이때 DNA는 많은 오류가 발생돼 심각한 돌연변이를 유발시킨다. 즉, 열악한 상황에 놓인 세포가 복제를 진행하지 못해 죽음을 맞기 보다는 생존을 위해 매우 부정확한 DNA 복제일지라도 선수를 교체하면서까지 복제를 진행하게 된다. 지금까지 학계에서는 Rev1 단백질이 이러한 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능은 명확하게 밝혀내지 못했다. 연구팀은 핵자기공명 분광법(NMR)과 X-ray를 이용해 DNA 복제과정에서 중추적인 역할을 하는 단백질(Polκ과 Rev1, Rev1과 Rev3/Rev7) 각각의 복합구조를 밝혀냈다. 이를 통해 ▲DNA가 손상 시 돌연변이가 유발되는 메커니즘 ▲DNA 복제효소간의 상호작용 ▲손상부위를 통과한 합성된 DNA가 더 연장되는 메커니즘을 분자수준에서 규명했다. 암의 직접적인 발병 원인이 DNA의 손상인 만큼 이에 대한 메커니즘을 밝혀내고 응용하면 개인별로 암의 원인을 제거할 수 있어 부작용 없는 맞춤형 항암제를 개발할 수 있을 것으로 전망된다. 최병석 교수는 이번 연구에 대해 “판코니 빈혈 환자들에게 암이 많이 발생되는 문제를 조사해보니 DNA복제 시 회복 기능이 고장 나 있더라”며 “손상된 DNA의 회복과 복제 과정에 대한 메커니즘 규명을 통해 암을 예방하고 치료하는데 크게 기여할 것”이라고 말했다. 이번 연구는 KAIST 화학과 최병석 교수와 류디난 박사의 주도로 수행됐고, KAIST 화학과 이지오 교수, 고준상 박사, 임경은 박사과정, 기초과학지원연구원 류경석 박사와 황정미 박사가 참여했다. 그림1. Polκ/Rev1/Rev7/Rev3 단백질 복합체 구조 그림2. Rev1, Polκ와 Rev7와 Rev3를 상호형질 주입된 세포의 공초점 현미경 영상 그림3. 논문표지
2013.06.03
조회수 16610
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1