본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%82%98%EB%85%B8%EC%84%A0
최신순
조회순
오일권 교수, 귀금속 촉매 대체할 친환경 물 분해 촉매 개발
우리 대학 기계공학과 오일권 교수 연구팀이 값비싼 백금 등의 귀금속 촉매를 대체할 수 있는 니켈-코발트 기반의 친환경 물 분해 기술을 개발했다. 물 분해 기술은 수소를 친환경적으로 생산할 수 있다. 연구팀이 개발한 원천기술을 통해 수소의 대량 생산 및 수소에너지 상용화에 기여할 것으로 기대된다. 배석후 박사과정이 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월호 표지논문에 게재됐다. 현재 가장 많이 사용되는 수소에너지의 발전 방식은 물을 전기 분해시켜 수소를 생산하는 방법이다. 이 방식은 공해 없이 순수한 수소를 생산할 수 있다. 하지만 비용이 많이 들어 상용화에 어려움이 있다. 특히 산소가 발생하는 플러스(+) 전극에는 이리듐 및 루테늄 산화물 기반의 귀금속 촉매가 필요하고, 수소가 발생하는 마이너스(-) 전극에는 백금이 필요하다. 따라서 이를 대체할 수 있는 값싼 재료의 촉매를 개발하는 것이 상용화를 앞당길 수 있는 길이다. 연구팀은 문제 해결을 위해 플러스 전극에 사용되는 이리듐 및 루테늄 산화물 기반의 촉매를 대체할 수 있는 니켈-코발트 금속 기반의 화합물 촉매를 제작하는 데 성공했다. 니켈-코발트 금속 화합물 촉매는 가격이 저렴하지만 이리듐 및 루테늄 산화물 촉매에 비해 높은 전압을 필요로 하는 등 상대적으로 낮은 성능으로 인해 사용되지 못했다. 연구팀은 문제 해결을 위해 수열합성을 이용했다. 수열합성은 고온, 고압 상태에서 물 혹은 수용액에 금속 등을 녹여 물질을 합성하는 기술이다. 연구팀은 니켈-코발트 전구체가 녹아 있는 용액을 바탕으로 수열합성을 진행했다. 이를 통해 니켈-코발트 촉매의 낮은 성능 문제를 해결하는 동시에 촉매의 표면적을 넓히는 데 성공했다. 또한 추가적인 수열합성을 통해 촉매 외부층을 전도성이 높은 탄소층으로 둘러싸면서 전극과 나노선 복합체 사이의 전하 전달 능력을 극대화시킨 이중 나노선 형태의 촉매를 제작했다. 외부층을 전도성이 높은 탄소층으로 구성했기 때문에 탄소 직물로 만들어진 전극 기판과 상승효과(Synergy)를 내면서 단일 니켈-코발트계 금속 촉매에 비해 30% 낮은 전압과 2.7배 높은 단위 면적당 촉매 활성도를 보였다. 기존의 나노선은 원뿔 모양으로 종횡비가 커 나노선 전체로 전달되는 전압이 일정하지 않았다. 이 때문에 나노선 전체가 촉매 반응에 참여하지 못하는 현상이 발생했으나, 연구팀의 촉매는 탄소층으로 둘러싸여 있기 때문에 전자의 활발한 이동이 가능했고 이는 일정한 전압 전달로 이어졌다. 연구팀은 “연이은 수열합성을 통해 비교적 간단한 공정으로 이상적인 이중 구조의 나노선 촉매를 제작하는 데 성공했다”며 “기존의 값비싼 귀금속 촉매에 비해 훨씬 저렴하면서도 성능은 거의 차이가 없다”고 말했다. 오 교수는 “생산 과정이 간단하고 대량 생산이 가능하며 성능 또한 기존 귀금속 촉매에 뒤지지 않는다 ”며 “이번 연구를 통해 물을 수소같은 화학에너지로 변환하는 기술의 상용화에 기여할 수 있을 것이다”고 말했다. 이번 연구는 기계기술연구소 김지은 박사, EEWS 대학원 박정영 교수가 참여했고, 미래창조과학부 리더연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 선정된 표지논문(front cover) 이미지 그림2. 탄소층이 코팅된 니켈-코발트 이중 나노선 촉매 입자의 미세구조 사진 그림3. 이중 나노선 구조의 전기화학적 촉매로써의 작용 모습 그림4. 이중 나노선 형상의 촉매 제작 과정을 나타낸 모식도
2017.01.19
조회수 16011
감도 1000배 높은 금나노선 탐침 개발
우리 학교 화학과 김봉수 교수 연구팀(제1저자 강미정 박사)은 단결정 금 나노선을 이용해 만든 세계에서 가장 가는 나노탐침으로 쥐의 신경신호를 측정하는데 성공했다. 굵기가 100nm(나노미터, 10억분의 1미터)에 불과한 이 나노탐침은 기존보다 1,000배 이상 뛰어난 감도를 나타냈으며 1mm 이하의 극히 정밀한 간격으로 뇌신경 신호 측정이 가능하다. 기존 신경탐침은 삽입 시 조직 손상이 커서 검출신호가 약한 반면 개발된 탐침은 손상을 최소화해 신경 신호가 상대적으로 크다. 뇌에서 발생하는 전기적 신경신호를 정확하게 수집·분석하는 신경탐침은 뇌 연구에서 가장 핵심적인 요소다. 신경탐침은 조직손상을 최소화해야하며 우수한 전기적 감도를 가져야한다. 연구팀은 탐침의 재료인 금에 열을 가해 증기상태로 만든 다음 온도가 낮은 기판으로 운반한 후 기판에서의 응결에 의해 단결정 금 나노구조가 생성되는 원리를 이용해 금 나노선을 개발했다. 만들어진 금 나노선은 결함이 없는 단결정구조이기 때문에 전기전도성이 높으면서도 강하고 유연한 특성을 보였다. 김 교수 연구팀은 개발된 나노탐침을 간질을 유발하는 약물을 투여한 쥐의 뇌에 삽입해 신경신호를 측정한 결과 간질을 일으키는 뇌의 특정 영역을 정확히 찾을 수 있었다. 또 낯선 쥐의 침입에 의한 신경신호의 변화도 탐지해냈다. 김봉수 교수는 “뇌 신경 세포를 손상시키지 않으면서 단일 신경세포로부터의 신호를 높은 감도로 포착할 수 있다”며 “정밀한 뇌신경 3차원 지도 작성에 유용할 뿐 아니라 치매, 파킨슨병 등의 전기치료에도 도움이 될 것”이라고 말했다. 연구결과는 나노분야 국제학술지 ‘ACS 나노(ACS Nano)’ 12일자 온라인 판에 게재됐다. □ 금나노선 합성 방법석영관으로 이루어진 가열로 내에서 금 slug를 가열하여 형성시킨 금 vapor가 수송 기체에 의해 사파이어 기판에 도달하여 나노선으로 성장함 □ 금나노선 성장사파이어 기판에 도달한 금 vapor가 half-octahedral seed를 형성하고, 그 seed에 금 vapor가 결합하여 나노선으로 성장함 □ 금나노선 탐침 제작방법텅스텐 팁으로 기판 위에 수직 성장된 나노선 중 하나를 집어낸 뒤, 텅스텐 팁은 절연층으로 코팅함 □ 신경신호 감도 비교금 나노탐침과 텅스텐 마이크로탐침을 쥐 뇌에 삽입하여 측정한 신경신호 비교. 금 나노탐침에서 스파이크 형태의 신경 신호가 뚜렷하게 관찰됨 □ 행동실험낯선 쥐의 침입에 의한 신경신호의 변화를 금 나노탐침과 텅스텐 마이크로탐침으로 측정. 금 나노탐침에서만 뚜렷한 신호 변화가 측정됨 □ 약물실험세 개의 금 나노탐침 또는 텅스텐 마이크로탐침을 쥐 뇌에 삽입한 후, 쥐에 간질을 유발하는 약물을 주사하여 발작 상태를 보일 때 측정한 신경신호. 세 개의 금 나노탐침은 세 영역의 신호를 구분하여 간질 중심을 찾아낼 수 있는 반면 세 개의 텅스텐 마이크로탐침은 세 영역의 신호를 구분하지 못함
2014.08.27
조회수 12191
금 나노선 세포 주사기 개발
- 유전자를 세포 핵 안으로 직접, 원하는 순간에, 원하는 양만큼만 정교하게 전달- 우리 학교 연구팀이 금 나노선을 이용해 유전자를 살아있는 세포의 핵에 직접 전달할 수 있는 나노 주사기를 개발했다. 우리 학교 화학과 김봉수 교수와 생명화학공학과 이상엽 특훈교수 공동 연구팀이 단결정 금 나노선에 유전자를 부착해 세포의 핵에 정교하게 찌른 후 전기 신호로 유전자를 전달하고 유전형질을 발현시키는데 성공했다. 연구결과는 나노 분야 세계적 권위지인 ‘나노 레터스(Nano Letters)’ 5월 2일자 온라인 판에 게재됐다. 인체는 약 100조 개의 세포로 이뤄진 대단히 복잡한 시스템이다. 각각의 세포는 주변 세포와 유기적으로 신호를 교환함으로써 인간의 고차원 생명활동을 수행한다. 생명현상을 이해하기 위한 첫 단계는 하나의 세포에서 일어나는 현상 및 세포 간의 신호 전달을 정확하게 밝혀내는 것이며, 이는 생물학, 바이오 연료전지, 신약 개발 분야 등에서 매우 중요하다. 단일 세포에 생활성(bioactive) 분자를 선택적으로 전달하는 기술은 세포 내 생체현상을 세밀히 규명하고 질병 치료법을 개발하는데 필수적이다. 세포에 주사기를 꽂고 물질을 전달할 때 세포를 다치지 않게 하는 것이 무엇보다도 중요한데 이를 위해 다양한 나노소재를 이용한 전달 방법이 연구되고 있다. 연구팀은 직경이 100나노미터 정도로 매우 가는 금 나노선에 DNA를 붙이고 이를 정확하게 세포핵에 찌른 후 외부에서 전기 신호를 보내 원하는 만큼의 유전자를 정확히 전달하는 나노주사기를 개발했다. 금 나노선 주사기로 DNA를 세포 핵 안으로 제대로 전달하면 세포는 DNA로부터 정보를 받아 단백질을 만들어낸다. 연구팀은 녹색 형광을 내는 단백질을 만드는 DNA를 세포 핵 안으로 전달한 뒤 세포에서 녹색 형광이 나오는 것을 관찰함으로써 DNA가 성공적으로 전달된 것을 확인했다. 금 나노선 나노주사기는 지금까지 보고된 DNA 전달 주사기 중 가장 가늘어서 세포에 상처를 전혀 주지 않고도 핵 안에 정교하게 삽입할 수 있다. 이 주사기를 이용하면 DNA를 세포의 핵 안으로 직접 정확히 전달함으로써 전달 효율을 크게 높일 수 있고 매우 정교한 유전물질 조절이 가능하다. 김봉수 교수는 이번에 개발한 금 나노선 주사기에 대해 “이 주사기는 세포 내부의 원하는 위치에, 원하는 시간에, 원하는 양만큼 유전 물질이나 단백질 등을 정교하게 전달해 원하는 대로 유전현상 및 세포현상을 조절 및 연구하는데 대단히 유용하다”며 “특히, 유전자 치료요법, 표적형 약물 전달 개발, 세포 내 신호전달의 연구에서 선도적 역할을 할 수 있을 것”이라고 말했다. 한편, KAIST 화학과 김봉수 교수와 이상엽 교수가 공동으로 주도한 이번 연구는 강미정 박사과정 학생과 유승민 박사가 참여했다.
2013.05.15
조회수 11944
"리튬이온 이차전지용 고성능 나노선"개발
- 내연기관 출력과 맞먹는 고성능 리튬 이차전지 개발 길 열려 - 전기자동차 상용화를 위한 가장 큰 걸림돌인 배터리 문제를 해결하는 데 한 걸음 더 나아가게 됐다. 우리학교 신소재공학과 김도경 교수팀은 ‘리튬망간산화물 미세나노선’ 을 개발하는 데 성공했다고 15일 밝혔다. 이 물질은 기존의 리튬이온 이차전지용 양극물질에 비해 100배 이상의 출력밀도를 나타내며, 제조기법이 단순하고 공정비용도 저렴해 앞으로 전기자동차용 배터리 분야에 폭넓게 이용될 수 있을 것으로 기대된다. 일반적으로 리튬이온 이차전지는 전기자동차용 배터리에 적용되기에는 충분히 높은 출력밀도를 가지지 못한다. 김 교수팀은 10nm(나노미터, 10억분의 1m) 미만 굵기의 미세나노선 구조를 대량 합성해 양극물질에 적용함으로써, 기존 리튬이온 이차전지보다 100~200배가량 높은 출력밀도를 나타내는 데 성공했다. 이는 엔진으로 사용되는 내연기관의 출력밀도에 근접한 수준이다. 하지만, 지금까지 개발된 리튬이온 이차전지는 내연기관의 출력밀도에 훨씬 미치지 못해 중량이 많이 나갔다. 또한, 값비싼 원료와 공정법을 이용하는 등 리튬이온 이차전지는 전기자동차에 사용하는 데에 있어서 극복해야 할 한계를 안고 있었다. 이번 연구에서는 10nm 미만의 미세한 나노선이 가지는 구조적 유연함을 이용해 기존 리튬망간산화물이 지니고 있었던 ‘얀-텔러 뒤틀림(Jahn-Teller distortion)" 현상을 극복할 수 있음을 보여주었다. 높은 출력밀도를 보인 리튬망간산화물 미세 나노선 제조에 관한 연구는 산업적 응용이 조기에 가능할 것으로 예상되며, 국가 과학기술 경쟁력 제고 측면에 기여할 것으로 기대된다. 한편, 이번 연구 결과는 나노기술(NT) 분야의 가장 권위 있는 학술지인 "나노 레터스(Nano Letters)"지 8월 26일자 온라인 판에 게재됐고, 현재 국내특허 출원 중이다. <용어설명> ○리튬이온 이차전지 : 이차 전지의 일종으로서, 에너지 밀도가 높고 기억 효과가 없으며, 사용하지 않을 때에도 자연방전이 일어나는 정도가 낮음. ○출력밀도(Power density) : 단위 무게당 출력되는 전력의 정도. ○얀-텔러 뒤틀림(Jahn-Teller distortion) 현상 : 리튬이온전지의 충전과 방전 시 양극물질의 구조가 뒤틀려져 성능이 급격히 저하되는 현상 ○리튬망간산화물 : 리튬이온전지에 이용되는 양극재료 중의 하나. 현재 상용화되는 리튬 코발트 산화물에 비하여 원자재 가격이 저렴하며, 친환경적이다.
2010.09.15
조회수 16094
김봉수 교수팀, 초탄성 무결점 금속나노선 개발
화학과 김봉수 교수팀은 차세대 3차원 메모리 소자의 대량생산이 가능한 새로운 초탄성․무결점 금속 나노선(nanowire)을 개발했다. 이는 촉매없이 금속 나노선을 기판위에 손쉽게, 원하는 형태로 성장(epitaxial growth)시킬 수 있는 원천기술이다. 교육과학기술부(장관 안병만)는「21세기 프론티어연구개발사업」나노소재기술개발사업단(단장 서상희 박사)의 지원을 받은 KAIST 김봉수 교수 연구팀이 초탄성․무결점의 단결정 금속 나노선을 개발 하는데 성공했다고 18일 밝혔다. 지난 2004년 MIT 선정 10대 유망기술에 선정된 바 있는 나노선(nanowire)은 단면 지름이 수십에서 수 나노미터(1nm = 10억분의 1m) 정도인 극미세선으로, 트랜지스터, 메모리, 센서 등 첨단 전기전자 소자를 개발하는데 핵심적인 미래기술이다. 기존의 반도체 나노선은 정렬된 성장(epitaxial growth)이 가능했으나 금, 팔라듐 등 금속 나노선의 경우에는 적절한 촉매가 없어서 이러한 정렬된 성장을 실현하기 어려웠다. KAIST 김봉수 교수 연구팀은 증기의 양, 온도, 압력 등을 최적으로 조절함으로써, 촉매 없이 금, 팔라듐, 및 금팔라듐 합금 나노선을 원하는 대로 방향성 있게 성장시키는 데 세계 최초로 성공하였다. 또한, 어떠한 물질이라도 기판 위에 씨앗 결정을 형성하기만 하면 잘 정렬된 나노선으로 성장시킬 수 있다는 사실을 밝혔다. ※ 질병을 일으키는 병원균의 DNA 농도에 따라 금나노선에 부착되는 금입자의 갯수가 달라짐(이 금입자의 갯수로 부터 병원균의 갯수를 검출) (스케일바 : 20 nm) KAIST 화학과 김봉수 교수는 “이 기술을 한 단계 더 발전시켜 기판 위에 씨앗을 원하는 위치에 놓을 수 있다면, 나노선의 위치 및 방향을 마음대로 제어할 수 있게 되기 때문에, 차세대 3차원 메모리 소자의 대량생산이 가능해져 세계 메모리 산업에서 선도적 위치를 차지할 수 있을 것으로 기대된다.”고 밝혔다. 한편 이번 연구결과는 나노 분야의 세계적 권위지인 나노레터스(Nano Letters)지 1월 6일자 온라인 속보판에 소개되었으며, 현재 미국 및 독일 등에 특허 출원중이다. [그림 1] 사파이어 기판 위에 수직으로 성장한 완전 단결정 금 나노선 이번에 개발된 기술을 통해 성장된 나노선은 초탄성(超彈性)․무결점 뿐만 아니라 완벽히 깨끗한 표면을 가지고 있다는 특징이 있어, 나노크기의 탄성에너지 저장장치, 나노안테나, 질병진단용 메디컬 센서 등 새로운 기술분야에 다양하게 응용가능하다. [그림 2] 금 나노선을 이용한 질병진단 센서 (예)
2010.01.18
조회수 21543
장기주 교수, 불순물도핑없는 반도체나노선 양전하 생성원인규명
물리학과 장기주(張基柱, 56) 교수팀이 게르마늄-실리콘 나노선에서 불순물 도핑 없이도 양전하가 생성되는 원인을 최근 규명했다. 이 연구는 KAIST 박지상, 류병기 연구원, 연세대 문창연 박사와 함께 나노미터(nm=10억분의 1m)단위의 직경을 가진 코어-쉘(core-shell) 구조의 게르마늄-실리콘 나노선의 전기전도 특성을 조사해 이뤄졌다. 이번 연구결과는 나노과학기술 분야 최고 권위지인 ‘나노 레터스(Nano Letters)" 온라인판에 게르마늄-실리콘 코어-쉘 나노선의 양전하 정공 가스를 일으키는 결함(Defects Responsible for the Hole Gas in Ge/Si Core−Shell Nanowires)라는 제목으로 지난 17일 게재됐다. 반도체 기술이 소형화의 한계에 직면하면서 탄소나노튜브, 그래핀(graphene), 반도체 나노선 등 나노 소재를 이용한 새로운 반도체 소자 연구가 널리 수행되고 있다. 특히 실리콘 및 게르마늄 나노선은 기존 반도체 기술과 접목이 가능하기 때문에 큰 기대를 모으고 있다. 반도체 나노선의 소자 응용은 불순물을 첨가하여 양전하 혹은 음전하를 띤 정공(hole)이나 전자 운반자를 만들어 전류가 흐를 수 있게 해야 한다. 그러나 나노선의 직경이 작아져 나노미터 수준이 되면 불순물 첨가가 어려워 전기전도의 조절이 매우 어려워진다. 이에 반해 게르마늄 나노선을 얇은 실리콘 껍질로 둘러싼 코어-쉘(core-shell) 구조를 갖는 나노선을 만들면 불순물을 도핑하지 않아도 게르마늄 코어에 정공이 만들어지고 전하 이동도는 크게 증가한다. 연구진은 제일원리 전자구조 계산을 통해 게르마늄 코어와 실리콘 쉘의 밴드구조가 어긋나 있고, 이러한 이유로 게르마늄 코어의 전자가 실리콘 쉘에 있는 표면 결함으로 전하 이동이 가능하여 코어에 양공이 생성됨을 최초로 규명했다. 또한 반도체 나노선을 만드는 과정에서 촉매로 쓰이는 금(Au) 원자들이 실리콘 쉘에 남아 게르마늄 코어의 전자를 빼앗는다는 사실도 처음 밝혔다. 張 교수는 “이번 연구 결과는 그동안 수수께끼로 남아있던 게르마늄-실리콘 나노선의 양전하 생성 원인과 산란과정을 거치지 않는 정공의 높은 전하 이동도에 대한 이론적 모델을 확립하고, 이를 토대로 불순물 도핑 없는 나노선의 소자 응용과 개발에 크게 기여할 것으로 기대된다.” 고 말했다. * 용어설명○ 제일원리 전자구조 계산 : 실험 데이터 없이 순전히 양자이론에 기초하여 물질의 전자구조와 물성을 기술하는 최고급(state-of-the-art) 전자구조 계산방법. (그림1) 실리콘 나노선 및 게르마늄-실리콘 코어-쉘 나노선의 원자구조. (그림2) 게르마늄-실리콘 코어-쉘 나노선의 전자의 상태밀도 분포.
2009.12.30
조회수 19584
김봉수 교수 연구팀, 그래핀을 이용한 플렉서블 전계방출 디스플레이(FED)용 이미터 전극 개발
-『Advanced Materials』온라인판 11월 5일자 게재 - 우리대학 화학과 김봉수 교수 연구팀이 新소재 그래핀 위에 코발트 게르마늄 나노선을 성장시켜 ‘차세대 플렉서블 전계방출 디스플레이’용 이미터 전극을 개발했다. ‘차세대 플렉서블 전계방출 디스플레이(FED)"용 고효율 · 고내구성 이미터(Emitter) 전극 기술이 개발되어, 향후 초박형(超薄形) 두루마리 컴퓨터 · TV, 3차원 디스플레이 등 다양한 분야에 응용될 것으로 기대된다. ‘꿈의 디스플레이로’로 불리는 전계방출 디스플레이(Field Emission display, FED)는 LCD보다 얇게, 브라운관 화질보다 선명하게 화면을 구현할 수 있고, 전력소모가 LCD의 1/4, PDP의 1/6밖에 안 들며 내부에 수은 등 공해 물질이 전혀 없는 친환경 디스플레이다. 특히 휘도가 아주 높아서 차세대 3차원 디스플레이를 구현할 수 있다. FED는 상하 기판 사이에 진공으로 채워진 구조로 되어있으며, 상판(양극판)에는 형광체가 도포되어 있고, 하판(음극판)에는 미세한 마이크론 크기의 전자발사체(Emitter) 들이 무수히 형성되어 있다. 우수한 FED를 만들기 위해서는 고효율․안정한 구조의 이미터가 무엇보다 중요한 데, 지금까지 이미터 재료로서 주로 연구되던 탄소나노튜브(CNT)는 깜빡거림 및 내구성 등의 문제점을 가지고 있었다. 김봉수 교수 연구팀은 새로운 이미터 재료로 최근 新소재로 각광받고 있는 그래핀과 단결정 코발트 게르마늄 합금을 활용하여, ‘플렉서블’하면서 ‘효율적인’ 전계 방출 디스플레이 개발의 새로운 전기(轉機)를 마련했다. 그래핀은 흑연에서 얇은 한 층을 떼어낸 것으로 투명하고 수 nm이하의 초박형 제작이 가능하며, 뛰어난 전기전도성과 열전도성을 지니고 있어 고성능 투명전극으로 적합하다. 금번 연구팀은 큰 종횡비를 가지고 화학적 및 열적 내구성이 매우 우수한 단결정 코발트 게르마늄 합금 나노선을 최초로 개발했고, 이를 다층 그래핀 위에 수직으로 성장시키는 데 성공했다. 이 구조는 탄소나노튜브(CNT)에 필적하는 뛰어난 전계방출 특성을 보이면서 보다 우수한 내구성을 가지는 것으로 나타났다. 김봉수 교수는 "투명하고 구부릴 수 있는 그래핀 전극 위에 코발트 게르마늄 합금 나노선을 결합시켜 개발된 고효율 전계 방출 이미터는, 초박형 두루마리 컴퓨터·TV 및 3차원 디스플레이 등의 다양한 응용이 가능하여 차세대 디스플레이 시장을 선도할 수 있는 핵심 원천기술이 될 것이다.“라고 밝혔다. 한편, 이번 연구결과는 신소재 분야의 세계적 학술지인 "어드밴스드 머티리얼즈 (Advanced Materials)"지 온라인판 11월 5일자에 게재되었고, 현재 국·내외 특허 출원 중이다.
2009.11.13
조회수 18404
박찬범 교수팀, 펩타이드 자기조립기술을 이용하여 전도성고분자 나노선/나노튜브 개발
- 화학분야 저명 국제학술지 안게완테 케미지 최근호 게재 우리대학 신소재공학과 박찬범(40) 교수와 유정기(28) 연구원이 자연계의 펩타이드 자기조립기술을 이용, 전도성고분자 나노선과 나노튜브 소재를 개발했다. 관련 논문은 독일에서 발간되는 세계적인 학술지인 안게완테 케미(Angewandte Chemie)지 최근호 (6월 15일자)에 게재됐으며, 나노기술과 생명과학분야의 창의적인 융합을 통해 새로운 나노소재를 개발하는데 크게 기여했다는 평가를 받았다. 펩타이드나 단백질은 20여가지 아미노산의 조합을 통해 다양한 3차원 구조를 형성할 수 있으며, 이들은 기존의 재료에서는 볼 수 없었던 매우 우수한 물성과 다양한 기능을 가지는 장점이 있다. 朴 교수 연구팀은 두 개의 아미노산으로 구성된 매우 단순한 펩타이드 (peptide)를 수만 개 이상 스스로 조립시켜 머리카락의 약 천분의 일 정도 두께를 가진 긴 나노선을 형성하고, 여기에 대표적인 전도성 고분자 물질인 폴리아닐린 (polyaniline)을 얇게 코팅하여 누드김밥처럼 코어(Core)/쉘(Shell) 구조를 가진 전도성 나노선을 제조했다. 코어/쉘 형태의 나노선은 일반 전선과는 반대로, 바깥쪽으로만 전류가 흐르는 특성을 가지고 있다. 朴 교수팀은 이렇게 형성된 전도성 나노선의 펩타이드 코어부분을 선택적으로 제거하여 폴리아닐린으로만 구성된 전도성 나노튜브 (채널직경 약 1/5000 mm)를 제조하는 데 성공했다. 화학물질들이 레고(Lego) 장난감처럼 스스로 조립하여 3차원 구조체를 만드는 것은 모든 생명현상의 근간이 될 뿐만 아니라, 최근 들어서는 나노소재를 개발하는 주요기술들 중의 하나로 각광받고 있다. 특히 朴 교수팀의 연구에서 사용한 펩타이드는 알츠하이머병 등 각종 퇴행성 신경질환의 발병과도 밀접한 연관성을 가진 섬유상 구조의 아밀로이드 플라크(amyloid plaque)로부터 유래되어 펩타이드의 자기조립 현상에 관한 연구는 의학적 측면에서도 중요성이 매우 크다. 전도성 고분자를 나노크기의 구조로 제조할 경우 그 전기적 특성이 대폭 향상되기 때문에 이번에 개발된 전도성 고분자 나노선/나노튜브 소재는 차세대 태양전지, 각종 센서/칩 개발 등에 응용이 가능할 것으로 예상되며, 향후 나노-바이오 융합분야에서 국가 과학기술 경쟁력 제고에 기여할 것으로 기대된다. 朴 교수팀은 2008년도부터 교육과학기술부의 ‘국가지정연구실사업’으로부터 지원을 받아 다양한 형광색상(RGB)을 가진 나노튜브, 연잎처럼 물에 젖지 않는 펩타이드 소재, 식물의 광합성을 모방한 인공광합성 재료 등 새로운 기능을 가진 바이오소재를 개발하기 위한 연구를 수행해 왔으며, 해외 저명학술지들로부터 크게 주목받는 연구 성과들을 발표하고 있다 (http://biomaterials.kaist.ac.kr).
2009.06.16
조회수 19449
김상욱교수팀, 분자조립 나노기술을 이용한 나노선(Nanowire)제작기술 개발
- 관련논문 5월7일(목)자 나노레터스지 온라인판 게재 - 세계를 변화시킬 10대 기술 중 하나인 나노선 제작의 새로운 기술 신소재공학과 김상욱(金尙郁, 37) 연구팀은 스스로 나노패턴를 형성하는 고분자를 대면적에서 원하는 형태로 배열하는 새로운 방법을 개발하고 이를 이용하여 나노선(Nanowire)을 원하는 위치에 손쉽게 만들 수 있는 방법을 개발했다고 밝혔다. 김 교수팀은 스스로 나노패턴를 형성하는 고분자를 마이크로패턴 안에 채워 넣어 다양한 크기와 형태를 가진 스스로 정렬된 나노구조를 만들고, 이를 틀(template)로 사용하여 알루미늄 금속나노선과 실리콘 반도체 나노선을 대면적에서 만들 수 있음을 보여 주었으며, 실제로 이 과정을 통해 만들어진 알루미늄 나노선의 전기적 특성을 측정하는데 성공했다. 이 연구결과는 나노기술 분야의 세계적 권위지인 "나노 레터스(Nano Letters)" 온라인 판(5.7, 목)에 게재됐으며, 관련기술은 국내특허 출원중이다. 나노선은 트랜지스터, 메모리, 화학감지용 센서등 첨단 전지전자 소자개발을 위한 가장 핵심적인 요소로 미래를 변화시킬 10대 기술중의 하나이다. 그러나, 기존공정으로는 나노크기의 틀을 만드는 비용이 비싸고 많은 시간이 소요되어 새로운 제작 기술이 요구되었다. 연구팀 관계자는 “이번에 개발한 신기술은 여러 층으로 구성된 나노트랜지스터 제작 및 바이오센서 제작 등에 폭넓게 적용될 것으로 전망된다.”고 말했다. 이번 연구는 국가지정 연구실사업 (NRL)의 지원하에 신소재공학과 박사과정 정성준(鄭盛駿, 33세)연구원이 주도적으로 진행했다.
2009.05.12
조회수 13813
신소재공학과 김상욱 교수팀, 생체분자 이용한 액정성 펩타이드 나노선 개발
- 어드밴스드 머티리얼즈誌 19일(월)자 발표, 표지 논문으로 선정- 순수 국내연구진에 의해 새로운 개념의 생체 소재 나노소자 개발 가능성을 한 단계 높인 연구 성과 우리 학교 신소재공학과 김상욱(金尙郁, 35) 교수팀이 생체분자(biomolecule)를 이용한 액정성 펩타이드 나노선(nanowire) 개발에 성공했다. 이 연구결과는 재료분야의 세계적 학술지인 어드밴스드 머티리얼즈(Advanced Materials)誌에 19일(월)자로 발표되고 그 중요성을 인정받아 표지 논문으로 선정됐다. 金 교수팀은 생체소재 나노제작기술(bionanofabrication)을 이용, 두 개의 아미노산이 연결된 생체 분자인 디펩타이드(dipeptide)로부터 액정성 나노선을 제조하고 그 분자 구조 및 액정상을 규명했다. (그림참조) 환경오염 등의 문제를 극복하기 위해 전 세계적으로 생체물질을 이용한 새로운 나노소재 연구가 큰 관심을 끌고 있다. 이번 액정성 나노선 개발은 새로운 개념의 생체 소재 나노소자 개발 가능성을 한 단계 높인 중요한 연구 성과다. 또한, 이 분야의 연구 기반이 거의 없는 국내에서 순수 국내연구진에 의해 새로운 분야를 개척한 것으로도 큰 의미가 있다. 金 교수팀은 그동안 ‘고분자 자기조립현상을 이용한 수십 나노미터 크기의 패턴 제조 연구’ 논문을 사이언스誌, 네이처誌 등 주요 학술지에 발표해 왔다. 이번 연구 결과로 합성 고분자 소재 뿐 아니라 생체 소재의 자기조립 관련 분야 연구에도 우수한 역량을 보여주었다. 이 연구는 金 교수의 지도하에 박사과정 한태희씨가 진행하고, 화학과 김장배(지도교수 이효철 교수, 박사과정)씨가 엑스선회절을 이용한 분자 구조 규명에 참여했다. <용어설명> - 액정상 : 액정은 결정과 액체의 중간 상태로 입자가 갖는 방향성에 따라 네마틱, 스메틱, 콜레스테릭 등으로 구분하기도 한다. 네마틱은 일정 방향으로 향하는 성질을 갖는 것으로 액정 표시 장치 (LCD)에 많이 쓰이고 있으며 보통 막대형 (rod/wire) 또는 판형 (disk) 분자로 이루어져 있다. 본 연구에서 개발된 펩타이드 나노선은 네마틱을 나타내고 있다. - 팹타이드(Peptide) : 펩타이드는 몇 개의 아미노산이 펩타이드 결합을 통해 연결된 형태를 말한다. 많은 아미노산이 연결되면 단백질이 된다. 두 개의 아미노산이 연결된 형태를 디펩타이드라고 하며, 본 연구에서는 두 개의 페닐알라닌이 연결된 디펩타이드가 사용되었다. - 나노선(nanowire) : 나노미터 단위의 크기를 가지는 일차원적 구조체로 금속성과 반도체, 절연성의 많은 종류의 나노선이 존재한다. 전 세계적으로 초미세/고효율 소자의 부품으로 활용하기 위한 연구가 활발하게 진행되고 있다.
2007.11.20
조회수 19228
김봉수교수, 은나노선 합성법 개발
단결정 銀 나노선 합성법 최초 개발 - 질병진단센서, 바이오센서, 차세대 자성소자 등 광범위한 활용- 화학분야 최고 권위지인 미국화학회지에 지난 18일자 속보로 게재 KAIST(총장 서남표) 화학과 김봉수(金峯秀, 48) 교수 연구팀은 촉매를 전혀 사용하지 않는 새로운 합성법 개발로 ‘단결정 은 나노선 합성’에 최초로 성공했다. 이 연구 결과는 화학분야 최고 권위지인 미국화학회지(Journal of the American Chemical Society)에 지난 18일(수) 속보로 게재됐다. 은(Ag)은 높은 항균효과를 지니며, 전자 및 광학 재료로도 중요하게 사용된다. 은을 완벽한 단결정 나노선으로 만들면 탄소가 다이아몬드로 변하듯 물질의 특성이 변하면서 가치가 크게 높아진다. 보통의 물질은 촉매 등을 사용하면 단결정 나노선 합성이 가능한데 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능했다. 金 교수는 촉매를 사용하지 않고 산화은을 출발물질로 적절한 응결조건을 맞추어줌으로써 은 입자들이 가장 에너지가 낮은 상태를 스스로 찾아가서 저절로 은 나노선이 생긴다는 사실을 발견했다. 이 기술을 이용하면 금속 및 금속화합물 대부분을 단결정 나노선으로 만들 수 있다. 특히 자성물질 나노선 및 열전소자 나노선 개발로 차세대 자성 소자 및 신에너지 핵심 물질을 개발할 수 있는 가능성이 열렸다. 합성된 은 나노섬유는 소독이 필요 없는 의료용 제품 개발, 바이오센서 및 자성메모리 제작 등에 중요한 소재가 될 수 있다. 은에 분자가 흡착되면 빛을 쪼였을 때 산란되는 빛의 세기가 1조배 이상 커진다. 이를 “표면증강 라만 효과”라 하며, 단 하나의 분자만 존재하더라도 검출이 가능하다. 이 효과는 은이 나노입자 크기로 작아지면 더욱 높아지므로 이를 이용한 질병 진단기 개발 연구가 활발하게 진행되고 있다. 특히, 은 나노선은 진단 능력이 보다 뛰어나 질병진단센서로 개발 전망이 높다. 이 연구는 과학기술부「21세기 프론티어연구개발사업」나노소재기술개발사업단에서 지원했으며, 연구 결과는 현재 세계 각국에 특허 출원중이다. <붙임1. 용어해설> ■ 단결정 은 나노선나노선은 직경이 수 나노미터에서 수백 나노미터 사이에 있는 아주 가늘고 긴 선을 말한다. 단결정은 물질을 이루고 있는 모든 구성원소가 규칙적으로 배열되어 있는 순수하고 독특한 구조인데 다이아몬드 같은 것이 대표적 예다. 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능한데, 이번에 촉매를 사용하지 않고 은이 스스로 단결정 나노선을 이루는 새로운 합성법을 개발했다. ■ 은 나노섬유의 의료분야 응용 은 나노섬유를 이용하여 상처를 보호하기 위해 사용하는 의료용 붕대 등을 제작하면 병균 등의 침투를 근본적으로 방지할 수 있으므로 강력한 의료용 소재가 될 것으로 전망된다. ■ 미국 화학회지(Journal of the American Chemical Society)미국화학회(American Chemical Society)에서 발행하는 대표 학회지로서 가장 역사가 오래되고 권위가 높은 학술지이다. 여기서 특히 긴급하며 중요성이 높은 연구결과는 속보(Communication)로 신속하게 발표된다. <붙임2. 관련 사진 및 설명> 1. 연구팀이 합성에 성공한 단결정 은 나노선의 전자현미경 사진 2. 하나하나의 원자까지 보여주며 완벽한 은 단결정임을 증명하는 초고전압 전자현미경 사진
2007.07.23
조회수 24104
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1