본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%8C%80%EC%82%AC%EA%B3%B5%ED%95%99
최신순
조회순
페트병 대체할 미생물 플라스틱 생산 성공하다
현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다. 우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다. 유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. *단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함 이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테리움에서 2-피론-4,6-다이카복실산과 4종의 피리딘 다이카복실산 (2,3-, 2,4-, 2,5-, 2,6-피리딘 다이카복실산)을 포함한 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 미생물 균주를 개발했다. 연구팀은 대사공학 기법을 통해 여러 유사 방향족 다이카복실산의 전구체로 사용되는 프로토카테츄산의 대사 흐름을 강화하고 전구체의 손실을 방지하는 플랫폼 미생물 균주를 구축했다. 이를 기반으로 전사체 분석을 통해 유전자 조작 타겟을 발굴해 76.17g/L의 2-피론-4,6-다이카복실산을 생산하였고, 3종의 피리딘 다이카복실산 생산 대사회로를 신규 발굴 및 구축하여 2.79g/L의 2,3-피리딘 다이카복실산, 0.49g/L의 2,4-피리딘 다이카복실산, 1.42g/L의 2,5-피리딘 다이카복실산을 생산하는 데 성공했다. 또한, 연구팀은 2,6-피리딘 다이카복실산 생합성 경로 구축 및 강화를 통해 15.01g/L의 생산을 확인하며 총 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 데 성공했다. 결론적으로, 2,4-, 2,5-, 2,6-피리딘 다이카복실산을 세계 최고 농도로 생산하는 데 성공하였다. 특히 2,4-, 2,5-피리딘 다이카복실산은 기존에 극미량 (mg/L) 생산되던 것을 g/L 규모의 생산까지 달성하였다. 이번 연구를 기반으로 다양한 폴리에스터 생산 산업공정으로의 응용이 기대되며, 유사 방향족 폴리에스터 생산에 관한 연구에도 적극 활용될 수 있으리라 기대된다. 교신저자인 이상엽 특훈교수는 “미생물을 기반으로 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 연구가 앞으로 미생물 기반의 바이오 단량체 산업이 석유 화학 기반의 화학산업을 대체하는 데 일조할 것”이라고 밝혔다. 해당 연구 결과는 국제 학술지인 `미국 국립과학원 회보(PNAS)'에 10월 30일 자 게재됐다. ※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids ※ 저자 정보 : 조재성(한국과학기술원, 공동 제1저자), 찌웨이 루오(한국과학기술원, 공동 제1저자), 문천우(한국과학기술원, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.11.07
조회수 768
친환경을 위한 숙신산 세계 최고 수준 생산 성공
지구 온난화 등의 심각한 환경 문제로 인해 화석 연료를 대체할 수 있는 친환경 기반 화학물질 생산 기술개발의 필요성이 지속적으로 증가하고 있다. 우리 연구진이 화학적인 공정이 아닌 시스템 대사공학을 활용, 플라스틱의 원료와 식품, 의약품 등의 합성에 사용되는 매우 중요한 산업 기반 화학물질인 숙신산을 세계 최고 수준으로 생산하는 데 성공해 화제다. 우리 대학 생명화학공학과 김지연 박사과정생과 이종언 박사를 포함한 이상엽 특훈교수 연구팀이 마그네슘(Mg2+) 수송 시스템을 최적화함으로써 고효율 숙신산 생산 균주를 개발했다고 11일 밝혔다. 이상엽 특훈교수 연구팀은 한우의 반추위에서 분리한 미생물인 ‘맨하이미아 (Mannheimia)’의 대사회로를 조작하고 마그네슘 수송 시스템을 최적화해 세계 최고 수준의 생산성을 갖는 숙신산 생산 기술을 개발했다. 연구팀은 미생물 발효 과정 중 pH 조절을 위해 사용되는 다양한 알칼리성 중화제가 숙신산 생산에 미치는 영향을 파악하고, 최적화된 중화제를 선정했다. 특히 수산화마그네슘(Mg(OH)2)이 포함된 중화제를 사용, 마그네슘이 미치는 생리학적 영향을 분석해 세포 성장과 숙신산 생산에 중요한 역할을 한다는 사실을 확인했다. 또한, 맨하이미아 내 존재하는 마그네슘 수송체인 corA 유전자를 규명하고, 다양한 마그네슘 수송체를 도입해 마그네슘의 수송을 더욱 향상했다. 그중 살모넬라 엔테리카(Salmonella enterica) 균에서 유래한 고효율 마그네슘 수송체를 도입해 시스템을 최적화한 결과 152.23 g/L의 숙신산을 생산했으며, 최대 생산성은 39.64 g/L/h를 달성했다. 이는 기존 대비 약 2배 향상된, 현재까지 보고된 세계 최고의 숙신산 생산성 수치로, 연구팀은 이 과정에서 계속해서 세계 기록을 세우며 자체 기록을 경신하고 있다. 이는 생물학적 플랫폼을 통해 화학물질 생산을 극대화한 중요한 발전으로 의의를 지닌다. 이번 논문의 공동 제1 저자인 김지연 박사과정생은 “마그네슘 수송 시스템을 최적화해 고농도의 숙신산을 생산했다는 점에 의의가 있다”며, “이 기술이 향후 중요한 화학물질들을 생물학적으로 생산하는 미생물 균주 개발의 전략으로 작용할 것으로 기대된다”고 밝혔다. 또한, 이상엽 특훈교수는 “이번 연구는 숙신산 생산의 새로운 표준을 제시했으며 생물 기반 화학물질의 경제성을 크게 높일 수 있는 잠재력을 가지고 있으며, 지속 가능한 바이오화학 산업의 발전에도 크게 기여할 것으로 기대된다”고 말했다. 해당 연구 결과는 국제 학술지인 `미국 국립과학원 회보(PNAS)'에 9월 6일(현지시간) 자 게재됐다. ※ 논문명 : High-level succinic acid production by overexpressing a magnesium transporter in Mannheimia succiniciproducens ※ 저자 정보 : 김지연(한국과학기술원, 공동 제1 저자), 이종언(한국과학기술원, 공동 제1 저자), 안정호(한국과학기술원), 이상엽(한국과학기술원, 교신저자) 포함 총 4명 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.09.11
조회수 1378
미생물 이용한 플라스틱 환경오염 문제 해결 다가가
여러 친환경 고분자 중에서도 폴리하이드록시알카노에이트(이하 PHA)는 생분해성과 생체 적합성이 뛰어나 토양이나 해양 환경에서도 생분해되며, 식품 포장재나 의료용품 등에 사용되고 있다. 하지만 지금까지 생산된 천연 PHA(natural PHA)는 내구성, 열적 안정성 등 다양한 물성을 충족시키기 어렵고, 생산 농도가 낮아 상업적으로 활용하는 데 한계가 있었다. 우리 대학 연구진이 플라스틱으로 인한 환경오염 문제 해결에 중요한 기술을 개발해 화제다. 우리 대학 생명화학공학과 이영준 박사와 강민주 석사과정생을 포함한 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 `방향족 폴리에스터*를 고효율로 생산하는 미생물 균주 개발'에 성공했다고 26일 밝혔다. *방향족 폴리에스터: 방향족 화합물(벤젠과 같은 특별한 형태의 탄소 고리 구조)을 포함하고 에스터 결합을 가지고 있는 고분자 이번 연구에서는 대사공학을 이용해 대장균 내 방향족 단량체인 페닐 젖산(phenyllactate, PhLA) 생합성 회로의 대사 흐름을 강화하고 대사 회로를 조작해 세포 내부에 축적된 고분자의 분율을 높였으며, 컴퓨터 시뮬레이션을 이용해 PHA 합성 효소의 구조를 예측하고 구조와 기능의 상관관계를 바탕으로 효소를 개량했다. 연구팀은 이후 발효 최적화를 통해 세계 최고 농도(12.3±0.1 g/L)로 폴리(PhLA)를 고효율로 생산하고 30L 규모의 유가식 발효로 성공적으로 폴리에스터를 생산해 산업화 수준 생산의 가능성도 보였다. 생산된 방향족 폴리에스터들은 추후 약물 전달체로서의 가능성과 더불어 향상된 열적 물성, 상업화되고 개선된 기계적 물성을 보여주었다. 연구팀은 비천연 PHA 생산에서 외래 파신(phasin) 단백질*이 경제성, 효율성과 직결되는 세포 내 고분자 축적분율 증가에 중요한 역할을 한다는 것을 입증하고 PHA 합성 효소를 합리적 효소 설계 방법으로 개량했다. 효소의 삼차원 입체 구조를 호몰로지 모델링(비슷한 단백질의 구조를 바탕으로 새로운 단백질의 삼차원 입체 구조를 예측하는 방법)을 통해 예측하고, 이를 분자 도킹 시뮬레이션(단량체가 효소에 잘 결합할 수 있는지 예측하는 시뮬레이션)과 분자 동역학 시뮬레이션(분자들이 시간에 따라 어떻게 움직이고 상호작용하는지 예측하는 시뮬레이션)을 이용해 단량체의 중합 효율이 향상된 변이 효소로 개량했다. *외래 파신 단백질: 파신은 PHA 생산과 관련된 단백질로 작은 입자(granule) 형태의 PHA 표면에서 세포질 환경과 상호작용하며 고분자 축적, granule 수 및 크기 조절 등에 관여한다. 본 연구에서는 다양한 천연 PHA 생산 미생물로부터 유래된 파신 단백질 암호화 유전자를 선별해 도입하였다. 이번 논문의 공동 제1 저자인 이영준 박사는 “친환경적인 원료와 방법으로 미생물 기반의 방향족 폴리에스터를 세계 최고 농도로 생산했다는 점에 의의가 있다”며 “이 기술이 플라스틱으로 인한 환경 오염 문제 해결에 중요한 역할을 할 것으로 기대된다”고 밝혔다. 또한 이상엽 특훈교수는 “시스템 대사공학을 이용해 유용한 고분자를 고효율로 생산하기 위해 다양한 전략을 제시한 이번 연구가 기후 변화 문제와 특히 최근 플라스틱 문제의 해결에 크게 기여할 수 있을 것”이라고 밝혔다. 해당 연구 결과는 국제 학술지인 셀(Cell) 誌가 발행하는 `생물공학 동향(Trends in Biotechnology)'에 8월 21일에 게재됐다. ※ 논문명 : Microbial production of an aromatic homopolyester ※ 저자 정보 : 이영준(한국과학기술원, 공동 제1 저자), 강민주 (한국과학기술원, 공동 제1 저자), 장우대(한국과학기술원, 제2 저자), 최소영(한국과학기술원, 제3 저자), 양정은(한국과학기술원, 제4 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 6명 한편 이번 연구는 과기정통부가 지원하는 석유 대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제 책임자 KAIST 이상엽 특훈교수)와 ‘미생물 세포공장 기반 신규 방향족 바이오플라스틱의 원스텝-원팟 생산 원천기술 개발 과제 (과제 책임자 이화여대 박시재 교수)’의 지원을 받아 수행됐다.
2024.08.26
조회수 2940
미래를 위한 대체 불가 바이오 제조 전략 제시
2021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다. 우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다. ※ 논문명 : Fungible and non-fungible technologies in biomanufacturing scale-up ※ 저자 정보 : 이상엽(한국과학기술원, 제1 저자, 교신저자) 1명 최근 신진 대사 공학과 합성 생물학의 급성장은 전통적인 화석 자원에 의존하는 제조 공정을 바이오 기반 대안으로 전환할 수 있는 잠재력을 보여주고 있다. 미생물 세포 공장을 통해 화학물질과 재료를 생산하는 바이오 기반 기술은 빠르게 발전하고 있으며, 이는 각각 5.7조 달러, 9.2조 달러, 22.5조 달러의 시장규모를 가진 화학, 식품 및 소비재 등 다양한 산업 부문에 혁신적인 변화를 가져오고 있다. 이는 2조 달러 규모의 제약시장 보다도 훨씬 크다. 그러나 이러한 바이오 제조로의 전환은 기술적, 경제적, 사회적 장벽으로 인해 어려움을 겪고 있다. 점점 더 많은 사람들이 지구 온난화의 현실과 그 악화되는 영향을 인식하면서 환경에 덜 해로운 제품에 대한 선호도가 높아지고 있지만, 실제 구매 결정에 있어서는 가격이 중요한 역할을 한다. 따라서, 각국 정부들은 규제 지원뿐만 아니라 대중과의 소통을 통해 지속 가능한 생산과 소비에 대한 이해와 헌신을 촉진해야 한다. 이 교수는 중요하게 떠오른 바이오 제조 확장, 특히 범용화학물질 생산 등 대체 불가능하지 않은 바이오기술 (not non-fungible)을 위해 풀어야 할 세 가지 주요 과제를 제시했다. 첫째, 미생물 세포 공장의 TRY(titer, rate, yield; 농도, 속도 및 수율)를 최대화하는 것으로 기존 대사공학에 데이터 과학, 인공지능 및 로봇 공학의 통합을 통해 이러한 역량을 강화해야 한다. 둘째, 원료 공급 및 물류의 최적화가 필요하다. 약 6억 톤의 바이오매스가 연간 바이오 기반 재료 생산을 위해 사용될 수 있지만, 최적의 분배 및 공급망이 완전히 구축되지 않았다. 다양한 원료의 사용을 가능하게 하는 기술 개발이 필요하다. 셋째, 인프라 및 시설 건설에 필요한 대규모 자본 투자 문제이다. 최근 들어 건설비용이 급격히 증가하여 최첨단 제조 시설을 구축하는 데 드는 높은 비용은 운영 확장의 재정적 실행 가능성을 어렵게 한다. 바이오 제조시설 구축을 위한 정책자금 투입 등 국가적인 인프라 개념에서의 투자가 요구되며, 단기적인 해결책으로는 완전히 유연한 중형 바이오 정제소를 건설하여 시장에 가장 적합한 제품을 생산할 수 있다고 제시했다. 이 교수는 “기술 혁신, 원료 공급 및 인프라 개발에의 집중적인 노력이 필요하다”고 강조하면서 “이를 통해 산업은 보다 지속 가능하고 경제적으로 실행 가능한 바이오 제조 공정으로 전환할 수 있으며, 이는 글로벌 시장에 큰 영향을 미칠 것이다. 지속 가능한 미래에 기여하고 산업에 상당한 경제적 기회를 제공할 것으로 기대된다.”고 밝혔다. 한편 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.07.25
조회수 2206
미생물로 자스민 향도 만든다
우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘벤질아세테이트 생산을 위한 미생물 공정’논문을 발표했다고 26일 밝혔다. 이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 화학공학(Nature Chemical Engineering)’의 표지논문으로 선정됐다. ※ 논문명 : A microbial process for the production of benzyl acetate ※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), Luo Zi Wei(한국과학기술원, 제2 저자), 김기배(한국과학기술원, 제3 저자), Xu Hanwen(한국과학기술원, 제4 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 5명 향은 화장품 및 식품 산업에서 중요한 요소다. 그중에서도 자스민 향과 일랑일랑 향은 각종 향수와 화장품, 개인 위생용품뿐만 아니라 식품 및 음료 제조에까지 널리 애용되고 있다. 하지만 자스민과 일랑일랑 꽃으로부터의 추출을 통해 생산되는 향료의 양이 수요를 충족시키기 못하기 때문에 산업에서는 두 향료의 향을 내는 주요한 방향성 성분인 벤질아세테이트를 석유로부터 유래한 원료를 이용해 화학적으로 합성해 첨가해 제품을 생산하고 있다. 이상엽 특훈교수 연구팀은 각종 산업에서 널리 이용되는 방향성 화합물인 벤질아세테이트를 친환경적이고 지속가능한 방식으로 생산하고자 시스템 대사공학을 통해 포도당으로부터 벤질아세테이트를 생산하는 대장균 발효 공정을 개발했다. 시스템 대사공학은 석유에 대한 의존도가 높은 기존의 화학산업을 대체할 바이오산업의 핵심인 미생물 세포공장을 보다 효과적으로 개발하기 위해 이상엽 특훈교수가 창시한 연구 분야다. 이상엽 특훈교수팀은 2019년 대장균을 대사공학적으로 개량해 포도당으로부터 벤조산을 생산하는 미생물 균주를 개발한 바 있다. 이번 연구에서는 해당 전략을 바탕으로 포도당으로부터 벤조산을 거쳐 벤질아세테이트를 생합성하는 대사 경로를 개발했다. 연구팀은 포도당으로부터 벤조산을 생합성하는 대사경로를 도입한 상단 균주와 벤조산을 벤질아세테이트로 전환하는 대사 경로가 도입된 하단 균주의 공생배양을 통해 포도당으로부터 벤질아세테이트를 생산하는 데 성공했다. 하지만 해당 공생배양 전략을 활용할 경우 벤조산을 벤질아세테이트로 전환하는 데에 이용되는 효소가 벤조산 생합성 중 생성되는 중간체에 비특이적으로 작용해 신나밀아세테이트라는 부산물을 생성하는 것이 확인됐다. 특히 이 과정에서 벤조산 생합성에 필요한 중간체가 소모되어 목표 화합물인 벤질아세테이트의 생산 효율이 감소된다. 이상엽 특훈교수 연구팀은 효소의 기질 비특이성으로 인한 부산물 생성 문제를 극복하기 위해 발효 초반에는 포도당으로부터 벤조산을 생산하는 상단 균주만을 배양해 벤조산을 우선적으로 생산하고, 하단 균주를 뒤늦게 접종해 배양액 내에 축적된 벤조산을 벤질아세테이트로 전환하는 지연 공생배양 전략을 고안했다. 하단 균주가 도입되는 시점에는 배양액 내 벤조산의 농도가 중간체의 농도보다 월등히 높아 벤조산이 벤질아세테이트로 전환되는 반응이 중간체가 부산물로 전환되는 반응보다 우세하게 진행된다. 연구진은 지연 공생배양 전략을 적용함으로써 추가적인 효소 및 균주 개량을 거치지 않고도 부산물의 생성은 억제하는 동시에 목표 화합물인 벤질아세테이트의 생산 농도는 기존 플라스크 수준의 발효 대비 10배 이상인 2.2 g/L까지 향상시킬 수 있었다. 또한 기술 경제성 분석을 통해 해당 미생물 공정을 통한 벤질아세테이트의 상업적 생산 가능성을 확인했다. 이번 논문의 제1 저자인 최경록 연구교수는 “이번 연구는 벤질아세테이트라는 산업적으로 유용한 화합물을 효과적으로 생산하는 미생물 공정을 개발함과 동시에, 대사공학을 연구 중 효소의 기질 비특이성으로 인해 빈번하게 발생하는 부산물 생성 및 이로 인한 목표 화합물 생산 효율의 저하 문제를 극복하는 새로운 접근을 제시했다는 데 큰 의의가 있다”고 말했다. 또한 이상엽 특훈교수는 “산업적으로 유용한 화합 물질을 지속가능한 방식으로 생산할 수 있는 미생물 공정의 종류와 수를 늘려 나감과 동시에 미생물 균주 개발 중 고질적으로 필연적으로 발생하는 여러 문제를 해결하는 효과적인 전략의 개발에도 힘쓴다면 석유화학산업의 친환경적이고 지속가능한 바이오산업으로의 전환을 더욱 앞당길 수 있을 것”이라고 밝혔다. 한편, 이번 연구는 과기정통부가 지원하는 바이오의료기술개발사업의 ‘지능형 세포공장기술 구현’ 과제 (과제책임자 KAIST 이상엽 특훈교수) 및 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식)의 ‘미생물 대사 시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수)의 지원을 받아 수행됐다.
2024.02.26
조회수 4527
친환경적 나일론 생산 전략 소개하다
기후 변화에 대응하여 전 세계는 '넷제로(Net-Zero)'라는 슬로건을 내세운 탄소 중립 관련 산업에 점점 더 주목하고 있다. 나일론으로 대표되는 폴리아마이드는 자동차, 전기, 섬유, 의료 산업 등 다양한 분야에서 광범위하게 사용되는 선형 고분자다. 1938년 나일론으로 처음 상업화된 이후, 매년 전 세계적으로 약 700만 톤의 폴리아마이드가 생산되고 있다. 이러한 폭넓은 활용성과 중요성을 고려할 때, 폴리아마이드를 생물 기반 방식으로 생산하는 것은 환경적, 산업적 측면에서 모두 중대한 의미를 지니고 있다. 우리 대학 생명화학공학과 이상엽 특훈교수팀의 이종언 박사와 김지연 박사과정생이 `바이오 기반 폴리아마이드 생산 기술의 발전 동향' 논문을 발표했다고 18일 밝혔다. 기후변화대응 기술 중 바이오리파이너리는 화석 원료에 의존하지 않고 바이오매스 원료로부터 생물공학적·화학적 기술을 이용해 화학제품·바이오 연료 등 산업 화학물질을 친환경적으로 생산하는 분야에 해당한다. 특히, 이상엽 특훈교수가 창시한 시스템 대사공학은 미생물의 복잡한 대사회로를 효과적으로 조작해, 바이오매스 원료로부터 유용 화합물을 생산하는 핵심 바이오리파이너리 기술이다. 이상엽 특훈교수 연구팀은 실제로 시스템 대사공학 전략을 이용해 숙신산, 생분해성 플라스틱, 바이오 연료, 천연물 등을 생산하는 고성능 균주들을 다수 개발한 바 있다. 연구팀은 우리의 실생활에서 의류 및 섬유에 다양하게 활용되는 바이오 기반 폴리아미드 생산기술이 보편화된다면, 친환경적 생산기술을 바탕으로 기후 위기에 대응할 수 있는 미래기술로써 주목받게 될 것임을 전망했다. 이번 논문에서는 바이오 기반 폴리아마이드 생산 전략을 종합적으로 정리함으로써 대사공학적으로 개량된 미생물 세포 공장을 사용한 폴리아마이드 생산과 합성된 바이오 기반 폴리아마이드 발전 동향을 제공했다. 또한, 화학적 전환을 통하여 합성된 바이오 기반 폴리아마이드 생산 전략, 생산된 폴리아마이드의 생분해 및 재활용 가능성에 대해 논의했다. 나아가 친환경 화학 산업과 지속 가능한 사회를 위해 바이오 기반 폴리아마이드 생산에 활용되는 대사공학이 나아갈 방향을 함께 제시했다. 이번 논문의 공동 제1 저자인 김지연 박사과정생은 “탄소 중립 목표 달성을 위해 시스템 대사공학을 활용한 바이오 기반 폴리아마이드 생산의 중요성이 더욱 대두되고 있다”라고 말했으며, 이상엽 특훈교수는 “증가하는 기후 변화에 대한 우려 속에 어느 때보다 친환경적이며 지속 가능한 산업 발전의 중요성이 커지고 있는 지금, 시스템 대사공학이 화학 산업뿐만 아니라 다양한 분야에 큰 영향을 미칠 것”이라고 밝혔다. 우리 대학 생명화학공학과의 이종언 박사, 김지연 박사과정생, 안정호 박사, 안예지 석사가 함께 참여한 이번 논문은 셀(Cell) 誌가 발행하는 화학 분야 권위 리뷰 저널인 `화학의 동향(Trends in Chemistry)' 12월호 표지논문 및 주 논문(Featured Review)으로 12월 7일 字 게재됐다. ※ 논문명 : Current advancements in the bio-based production of polyamides ※ 저자 정보 : 이종언(한국과학기술원, 공동 1 저자), 김지연(한국과학기술원, 공동 1 저자), 안정호(한국과학기술원, 제 3저자), 안예지(한국과학기술원, 제 4저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 및 ‘C1 가스 리파이너리 사업’의 지원을 받아 수행됐다.
2023.12.18
조회수 3814
화학공장 대체 방안 ‘아이브릿지’에서 찾다
기후 변화와 환경 문제가 심각하게 대두됨에 따라 현재의 화학 공장을 대체할 수 있는 지속가능한 미생물 세포공장이 크게 주목받고 있다. 미생물 세포공장으로 활용할 미생물을 개량하기 위해선 미생물이 가진 유전자들의 발현을 증폭 또는 억제해 유용한 화합물을 생산하도록 미생물 대사 메커니즘을 개량해야 하지만, 어떠한 유전자를 증폭하고 억제할 것인지 결정하는 것은 지금까지 어려운 문제로 남아있다. 우리 대학 이상엽 특훈교수 연구팀이 아이브릿지(iBridge)라는 시뮬레이션 프로그램을 개발하여 생산하고자 하는 화합물에 맞춤형 미생물 공장을 구축할 수 있도록 과발현 및 억제 유전자들을 예측함으로써 미생물 공장을 적은 비용으로 빠르고 효율적으로 구축하는 방법을 제시했다고 9일 밝혔다. 이상엽 특훈교수가 창시한 시스템 대사공학은 유전공학, 합성생물학, 시스템생물학, 발효공학 등을 접목해 개량한 미생물을 이용해 유용한 화합물들을 생산하는 분야다. 미생물을 목표로 하는 유용한 화합물을 생산하도록 개량하기 위해선 미생물의 유전자들을 삭제, 발현억제, 과발현 등이 필수적이지만, 이를 일일이 실험적으로 확인하지 않고서는 여전히 전문가들조차 판별하기 어려워 많은 시간과 자원이 소모된다. 연구팀은 신규 개발된 아이브릿지(iBridge) 시뮬레이션을 활용해 세 가지의 유용한 화합물을 세계 최고 수준으로 생산하는 대장균 미생물 세포공장을 구축하는 데 성공했다. 연구팀은 많은 화장품에서 보습제 역할을 하는 판테놀, 나일론의 원료인 퓨트레신, 항균성 식품첨가제인 4-하이드록시페닐젖산 등을 생산하는 대장균 균주를 개발하고, 신규 개발된 시뮬레이션 아이브릿지(iBridge)를 활용해 세계 최고 농도로 이들 화합물을 생산하는 공정을 개발했다. 그뿐만 아니라 연구팀은 이들 세 가지 외에도 산업적으로 유용한 화합물 298 여종의 미생물 공장을 구축하기 위한 과발현 및 억제 유전자들을 예측해 제시했다. 이번 논문의 공동 제1 저자인 우리 대학 이영준 박사는 “이번에 개발된 시뮬레이션을 이용하니 여러 가지 미생물 공장들이 기존방법보다 월등히 빠른 속도로 구축됐다”며 “더 다양한 유용한 화합물들을 생산하는 미생물 세포공장들이 이 기술을 활용해 빠르게 구축될 수 있을 것”이라고 말했다. 또한 이상엽 특훈교수는 “시스템 대사공학은 현재 우리가 해결해야 할 기후변화문제에 접근하는 매우 중요한 기술”이라며 “이 시뮬레이션은 기존의 화학 공장을 친환경 미생물 공장으로 대체하는 시기를 앞당기는 데 크게 기여할 수 있을 것”이라고 밝혔다. 생물공정연구센터 김원준 박사, 이영준 박사, 생명화학공학과 김현욱 교수와 이상엽 특훈교수가 참여한 이번 논문은 셀 (Cell) 誌가 발행하는 `셀 시스템즈 (Cell Systems)'에 동료심사를 거쳐 11월 6일 온라인판에 게재됐다. ※ 논문명 : 세포 내 화학반응 속도의 공분산의 합을 활용한 게놈 수준 과발현 및 억제 유전자 예측 (Genome-Wide Identification of Overexpression and Downregulation Gene Targets Based on the Sum of Covariances of the Outgoing Reaction Fluxes) ※ 저자 정보 : 김원준 (한국과학기술원, 공동 제1 저자), 이영준 (한국과학기술원, 공동 제1 저자), 김현욱 (한국과학기술원, 공동 제1 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 6 명 한편, 이번 연구는 과기정통부가 지원하는 ‘석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제책임자 KAIST 이상엽 특훈교수) 및 바이오매스기반 탄소중립형 바이오플라스틱 제품기술개발사업’ 과제(과제책임자 KAIST 최소영 연구교수)의 지원을 받아 수행됐다. 아이브릿지 사이트: https://github.com/kaistsystemsbiology/iBridge.git
2023.11.09
조회수 4010
미생물로 나일론을 친환경적으로 만든다
기후 변화와 환경 문제가 심각해짐에 따라 나일론을 포함한 다양한 고분자들의 친환경 생산에 관한 관심이 빠르게 증가하는 추세다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀 한태희 박사가 `나일론-5의 단량체인 발레로락탐을 생산하는 미생물 균주 개발'에 성공했다고 10일 밝혔다. 발레로락탐(valerolactam)은 나일론-5 및 나일론 6,5의 중요한 단량체다. 나일론-5와 나일론 6,5는 역사가 가장 오래된 합성섬유인 나일론의 일종으로, 나일론-5는 탄소 5개짜리 단량체로 이루어진 고분자, 나일론 6,5는 탄소 6개와 5개짜리의 두 가지 단량체로 이루어진 고분자를 말한다. 이는 우수한 가공성과 가볍고 질긴 특징으로 인해 의류뿐 아니라 배드민턴 라켓 줄, 어망, 텐트, 그리고 기어 부품 등 산업 전반에 활용되고 있다. 또한 단량체란 이러한 고분자를 만드는 재료이며, 단량체들을 서로 연결해 고분자를 합성하는 원리다. 석유 화학 기반의 화학적 발레로락탐 생산은 극한 반응조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. 이러한 문제를 해결하기 위해 발레로락탐을 친환경적이며 고효율로 생산하는 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 시스템 대사공학은 효과적인 미생물 균주 개발을 위해 필요한 핵심 전략으로, 이상엽 특훈교수가 창시한 연구 분야다. 이상엽 특훈교수 연구팀은 미생물의 대사회로를 조작하는 기술인 대사공학을 이용해 아미노산 생산에 주로 사용되는 세균의 일종인 코리네박테리움에 발레로락탐 생산 합성 대사회로를 구축했다. 이로써 바이오매스인 포도당을 탄소원으로 사용해 고부가가치의 발레로락탐을 생산하는 미생물 균주를 개발했다고 연구팀 관계자는 설명했다. 이 교수팀은 2017년 대장균을 대사공학적으로 개량해 발레로락탐을 세계 최초로 생산하는 전략을 제시한 바 있다. 하지만 그 당시 낮은 발레로락탐 생산능과 부산물 생성과 같은 한계가 있었다. 이번 연구를 통해 미생물의 발레로락탐 생산능을 향상시키고 개발한 균주에 추가로 부산물 제거를 위한 시스템 대사공학 전략을 도입했다. 주요 부산물 생산에 관여하는 유전자를 제거하고, 유전자 스크리닝을 통해 부산물이자 전구체인 5-아미노발레르산(5-aminovaleric acid)을 발라로락탐으로 전환시켜서 부산물 생성을 줄이는데 성공했다. 연구팀은 또한 5-아미노발레르산을 발레로락탐으로 전환하는 유전자를 게놈 상에 여러 번 삽입하는 전략을 통해 발레로락탐 생산을 위한 대사 흐름을 강화하고, 세계 최고 농도(76.1g/L)의 발레로락탐을 고효율로 생산하는 데 성공했다. 이는 기존 대비 6.17배 높은 수치다. 해당 연구 결과는 국제 학술지인 `대사공학지(Metabolic Engineering)'에 지난 7월 12일 게재됐다. ※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer ※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 한태희(한국과학기술원, 제1저자) 포함 총 2명 연구에 참여한 한태희 박사는 “미생물을 기반으로 나일론의 단량체인 락탐을 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 기술을 활용해 미생물 기반의 바이오 고분자 산업이 석유화학 기반의 화학산업을 대체하는 데에 한 단계 앞으로 나아갈 수 있을 것”이라고 밝혔다. 이번 연구는 이상엽 특훈교수 연구팀에 의해 과학기술정보통신부가 지원하는 기후환경연구개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제’의 지원을 받아 수행됐다.
2023.08.10
조회수 5153
대체육 풍미 향상 등 미생물 세포공장 제시
수십 년 동안 전 세계 인구 증가에도 불구하고 기후변화 및 이상기후의 심화로 인한 식량 생산성 감소와 전쟁 등의 국제적 분쟁으로 인한 식량 공급망의 파괴는 식량부족과 영양 불평등 문제를 심화시키며 세계적인 식량 위기를 가시화하고 있다. 그러나 아이러니하게도 다른 한편에서는 환경과 지속가능성에 대한 인식이 고조됨에 따라 보다 친환경적이면서 고품질을 자랑하는 식품 및 미용품에 대한 수요 증가가 동시에 관찰되고 있다. 미생물은 이러한 다면적인 문제들을 동시에 풀어낼 수 있는 열쇠로서 주목받고 있다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘식품 및 화장품 생산을 위한 미생물의 시스템 대사공학’논문을 발표했다고 26일 밝혔다. 이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 생명공학 리뷰(Nature Reviews Bioengineering)’의 초청으로 준비한 것으로 동료심사를 거쳐 온라인 게재됐다. ※ 논문명 : Systems metabolic engineering of microorganisms for food and cosmetics production ※ 저자 정보 : 최경록(한국과학기술원, 제1 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 2명 시스템 대사공학은 석유에 대한 의존도가 높은 기존의 화학산업을 대체할 바이오산업의 핵심인 미생물 세포공장을 보다 효과적으로 개발하기 위해 KAIST 이상엽 특훈교수가 창시한 연구 분야다. 연구진은 시스템 대사공학 전략을 적용함으로써 대체육의 풍미와 색감을 향상할 수 있는 천연물질인 헴철(heme)과 아연-프로토포르피린 IX(zinc protoporphyrin IX), 식품과 화장품에 폭넓게 활용할 수 있는 기능성 천연 색소인 라이코펜(lycopene)과 베타카로틴(β-carotene), 식품이나 음료 제조 시 포도향을 내기 위해 널리 활용되는 포도 유래 화합물인 메틸안트라닐산(methyl anthranilate) 등을 비롯해 다양한 식품 및 미용 화합물을 생산하는 고성능 미생물 세포공장들을 다수 개발한 바 있다. 연구진은 이번 네이처지로부터의 초청 논문을 통해 각종 식품과 화장품에 이용되는 아미노산과 단백질, 지방 및 지방산, 비타민, 향미료, 색소, 알코올, 기능성 화합물과 기타 식품 첨가물 등을 생산할 수 있는 괄목할만한 미생물 세포공장의 개발 사례들과 이러한 미생물 유래 물질들을 성공적으로 제품화해 시장에 공급하고 있는 전세계 기업들을 총망라했다. 더 나아가 보다 다양한 식품 및 미용 화합물들을 친환경적으로 생산하면서도 경제성도 갖춘 산업용 미생물 세포공장의 개발에 박차를 가할 수 있는 다양한 시스템 대사공학 전략을 정리 및 제시했다. 예를 들어, 미생물 발효 과정을 통해 동물의 사료로 이용되거나 비료로 이용되고 있는 비식용 바이오매스 등을 통해 영양학적으로 높은 가치를 지닌 단백질이나 아미노산을 생산함으로써 전세계 식량 생산량의 증대 및 안정적인 공급에 기여할 수 있다. 더 나아가 대체육 개발 등 동물성 단백질에 대한 의존도를 낮춤으로써 가축 사육이나 물고기 양식을 통해 발생하는 온실가스 및 환경오염을 줄이는 데에도 기여할 수 있다. 또한 바닐라 향이나 포도 향을 내는 바닐린(vanillin)이나 메틸안트라닐산(methyl anthranilate)은 다양한 식품에 널리 첨가되고 있으나, 식물로부터 분리정제한 천연 제품은 생산량이 적고 생산단가가 높기 때문에 대부분의 경우 석유화학물질로부터 유래한 바닐린과 메틸안트라닐산을 식품에 첨가하고 있다. 이러한 물질들 역시 미생물의 힘을 빌려 친환경적이고 인체 친화적인 방법을 통해 생산할 수 있다. 붉은색 립스틱이나 딸기맛 우유 등 다양한 화장품이나 식품에 첨가되지만 특정한 선인장에서만 서식하는 연지벌레로부터 추출해야 하는 칼민(코치닐색소), 피부 미용에 도움을 줄 수 있으나 닭벼슬이나 소의 안구에서 추출해야 하는 하이알루론산, 건강보조제로 널리 섭취되고 있지만 상어나 생선의 간 등에서 추출하는 오메가-3 지방산 등도 미생물을 이용하면 윤리적인 문제 없이 친환경적으로 생산할 수 있다. 이번 논문의 제1 저자인 우리 대학 최경록 연구교수는 “김치나 요거트와 같은 전통 발효식품뿐만 아니라, 카카오 콩을 발효시켜야만 얻을 수 있는 초콜릿의 원료인 카카오버터나 미생물 발효를 통해 생산하는 조미료인 글루탐산나트륨처럼 미생물의 도움을 받아 생산한 식품은 이미 우리에게 친숙한 존재”라면서 “앞으로 미생물 세포공장을 통해 친환경적이고 지속가능한 방법으로 생산한 더 다양한 종류의 식품과 화장품을 일상에서 더욱 쉽게 마주할 수 있을 것이다”고 말했다. 또한 이상엽 특훈교수는 “과학기술을 활용해 더 나은 세상을 만들어가는 것은 공학자의 숙명”이라며 “시스템 대사공학 기술의 꾸준한 발전과 적극적인 활용을 통해 식량 위기와 기후변화를 동시에 해결하는 데 크게 기여할 수 있을 것”이라고 밝혔다. 한편, 이번 연구는 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식)의 ‘미생물 대사시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수) 및 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2023.07.26
조회수 5078
산업 균주 제작 및 병원균 억제 범용기술 개발
박테리아는 우리 일상에서 김치, 된장, 술 등 식품에 활용되어 왔을 뿐만 아니라 최근에는 대사 공학을 통해 플라스틱, 영양제, 사료, 의약품 등을 생산하는 산업용 세포 공장으로 활약하고 있다. 하지만 유익한 박테리아 외에도 다양한 감염성 질병을 일으키는 폐렴균, 살모넬라균 등 병원균이 있어 대사공학적 기법을 통해 유해한 병원균은 병원성을 억제하거나 사멸을 유도하고, 유익한 산업용 박테리아는 고부가가치 물질을 고효율로 생산할 수 있도록 조작하는 것이 중요하다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다고 10일 밝혔다. 해당 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)'에 4월 24일 字 온라인 게재됐다. ※ 논문명 : Targeted and high-throughput gene knockdown in diverse bacteria using synthetic sRNAs ※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 조재성(한국과학기술원, 현 MIT 박사후연구원, 공동 제1저자), 양동수(한국과학기술원, 현 고려대학교 조교수, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), Mohammad Ghiffary (한국과학기술원, 공동저자), 한태희 (한국과학기술원, 공동저자), 최경록 (한국과학기술원, 공동저자), 문천우 (한국과학기술원, 공동저자), Hengrui Zhou (한국과학기술원, 공동저자), 류재용 (한국과학기술원, 현 덕성여자대학교 조교수, 공동저자), 김현욱 (한국과학기술원, 공동저자) - 총 11명 sRNA는 대장균에서 표적 유전자를 억제하기 위해 합성 조절하는 효과적인 도구이지만 그동안 대장균과 같은 그람 음성균 외에 산업적으로 유용한 고초균이나 코리네박테리움 같은 그람 양성균에서는 적용이 어려웠다. 이에 생명화학공학과 이상엽 특훈교수 연구팀은 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다. 연구팀은 우선 미생물 데이터베이스를 이용해 수천 종의 미생물 유래 sRNA 시스템을 검토했고, 그중 가장 높은 유전자 억제능을 보여준 `고초균(Bacillus subtilis)' 박테리아 유래 sRNA 시스템을 최종 선정했고 이를 ’광범위 미생물 적용 sRNA‘(Broad-Host-Range sRNA, 이하 BHR-sRNA)라고 명명했다. sRNA와 유사한 시스템으로는 유전자 가위로 잘 알려진 크리스퍼(CRISPR)를 개량한 크리스퍼 간섭(CRISPR interference, CRISPRi) 시스템이 있다. 유전자 가위의 핵심인 Cas9 단백질에 돌연변이를 일으켜 DNA를 자르지 않으면서 유전자 전사 과정만을 억제해 유전자 발현을 억제하는 시스템인데, Cas9 단백질의 분자량이 매우 높아 몇몇 박테리아에서 성장을 저해하는 현상이 보고됐다. 하지만 이번 연구에서 개발한 BHR-sRNA 시스템은 박테리아의 성장에 전혀 영향을 끼치지 않으면서도 CRISPR 간섭과 유사한 유전자 억제능을 보였다. BHR-sRNA 시스템의 범용성을 검증하기 위해 연구팀은 다양한 그람 음성균 및 그람 양성균 16종을 선정하여 테스트했고, 그중 15종의 박테리아에서 BHR-sRNA 시스템이 성공적으로 작동함을 증명했다. 또한, 10종의 박테리아에서 기존의 대장균 기반 sRNA 시스템보다 유전자 억제능이 뛰어남을 증명했다. 이와 같이 BHR-sRNA 시스템은 다양한 박테리아에서 효과적으로 유전자 발현을 억제할 수 있는 범용 도구임을 입증했다. 최근 점차 심각해져 가는 항생제 내성 병원균 문제를 해결하기 위해, 연구팀은 BHR-sRNA를 이용해 독성인자를 생산하는 유전자를 억제하고, 결과적으로 병원성을 억제하고자 했다. 특히 BHR-sRNA를 활용해 병원 발생 감염균인 표피포도상 구균(Staphylococcus epidermidis)에서 항생제 내성의 원인 중 하나인 바이오필름 형성을 73% 억제할 수 있었고, 폐렴균인 폐렴막대균(Klebsiella pneumoniae)에서 항생제 내성을 58% 약화하는 결과를 보였다. 연구팀은 또한, BHR-sRNA를 산업용 박테리아에 적용해 표적 물질을 고효율로 생산하고자 했다. 특히 폴리아마이드 고분자의 원재료인 발레로락탐(valerolactam), 포도향 첨가제인 메틸안트라닐산(methyl anthranilate), 그리고 청색 천연염료인 인디고이딘(indigoidine)을 최고 농도로 생산할 수 있었다. 이번 연구를 통해 개발한 BHR-sRNA를 활용해 다양한 산업공정으로의 응용이 기대되며, 항생제 내성 병원균 퇴치를 통한 연구에도 활용될 수 있으리라 기대된다. 교신저자인 이상엽 특훈교수는 “기존에는 각각의 박테리아마다 유전자 억제 도구를 새로 개발해야 했는데, 이번 연구를 통해 다양한 박테리아에서 범용으로 작동하는 도구를 개발했다”며 “앞으로 합성생물학과 대사공학, 그리고 병원균 대응연구 발전에 큰 도움이 될 것”이라고 밝혔다. 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제의 지원을 받아 수행됐다.
2023.05.10
조회수 5585
바이오경제를 이끌어가는 대사공학 30년 역사와 미래
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 지난 30년간 대사공학이 발전해온 역사를 정리해, 대사공학이 어떻게 지속 가능한 발전에 기여할 수 있는 분석한 결과를 정리하여 ‘지속 가능성과 건강을 위한 대사공학’ 논문으로 발표했다고 25일 밝혔다. 이번 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 리뷰 저널인 `생명공학 동향(Trends in Biotechnology)'의 40주년 특집호 온라인판에 게재됐다. ※ 논문명 : Metabolic engineering for sustainability and health ※ 저자 정보 : 김기배(한국과학기술원, 공동 제1 저자), 최소영(한국과학기술원, 공동 제1 저자), 조인진(한국과학기술원, 공동 제1 저자), 안다희(한국과학기술원), 이상엽(한국과학기술원, 교신저자) 포함 총 5명 대사공학은 1990년대 초반부터 본격적으로 연구되어 지난 30년간 괄목할 만한 발전을 이뤘다. 대사공학은 산업, 의료, 농업 및 환경 분야를 포함한 대부분의 생명공학 분야에서 적용돼왔으며, 특히 미생물 공학에 중점을 두고 연구가 진행됐다. 다양한 발효 식품과 알코올음료 생산 등, 미생물을 사용한 물질 생산은 오랜 역사가 있다. 미생물은 동식물에 비해 빠르게 자랄 수 있어 실험에 드는 시간과 비용이 적게 든다. 또한 유전자 변형 생물(Genetically Modified Organism; GMO) 관련한 윤리 및 안정성 문제에서 동식물과 비교해 미생물의 유전공학은 상대적으로 자유로워 미생물에 관한 대사공학 연구가 광범위하게 시행돼왔다. 지난 수십 년간 대사공학은 유용한 화학물질을 효율적으로 생산하고, 분해가 어려운 오염 물질을 분해할 수 있는 미생물 균주를 성공적으로 개발하는 등, 지속 가능한 발전을 위한 핵심적인 기술로서의 면모를 보여왔다. 특히, 현재까지 대사공학을 통해 개발한 미생물은 재생 가능한 바이오매스로부터 바이오 연료, 바이오 플라스틱, 산업용 대량 화학물질, 화장품 성분 및 의약품까지 수백 가지의 화학물질이 생산을 가능케 했다. 또한, 대사공학은 미생물과 곤충을 포함한 동식물의 자연적 정화 과정에서 영감을 얻어 미생물 기반의 다양한 생물학적 정화 방법을 개발하기 위해 사용돼왔다. 오염 물질과 독성 화학물질의 분해 경로를 조작함으로써 유출된 기름, 폐플라스틱, 살충제, 폐기된 항생제와 같은 물질을 더 높은 효율로 분해할 수 있도록 미생물을 개량할 수 있고, 이는 환경 보존을 위한 연구의 초석으로서 대사공학이 인류 건강에 기여하는 중요 예시다. 이처럼 대사공학은 유엔이 발표한 지속가능발전목표(Sustainable Development Goals; SDG) 달성에 다방면으로 기여하고 있다. 연구팀은 이번 연구에서 지난 30년간 대사 공학이 발전하며 어떻게 바이오 기반 화학물질의 지속 가능한 생산, 인류 건강 및 환경 문제까지 기여했는지에 대한 광범위한 개요를 제공했다. 특히 이상엽 특훈교수는 대사공학의 태동기부터 연구를 수행해 왔으며 2000년대 들어서 두드러진 합성생물학의 발전과도 함께해 왔다. 연구팀은 이번 논문을 통해 대사공학의 출현부터 인공지능을 활용한 최신 기술의 도입까지, 지난 수십 년 동안 어떻게 사회적, 산업적, 기술적 요구를 해결하기 위해 어떻게 발전해왔는지 정리하고, 최근 대사공학 연구가 어떻게 산업용 대량 화학물질 생산, 바이오 연료 생산, 천연물 생산, 생물학적 정화 분야에 기여하고 있는지 논의했다. 나아가 건강 및 환경 문제의 해결과 지속 가능한 바이오 기반의 화학산업을 정착시키기 위해 극복해야 할 대사공학의 문제점을 함께 제시했다. 공동 제1 저자인 생명화학공학과 김기배 박사과정생은 “기존의 석유화학 공정 기반의 화학물질 생산으로 인한 기후 위기와 화석 연료 고갈 문제를 고려했을 때 대사공학을 이용한 화학물질의 지속 가능한 생산 연구는 더욱 중요해지고 있다”라고 말했으며, 이상엽 특훈교수는 “이번 연구에서 대사공학의 역사를 돌이켜봄으로써 대사공학의 지속가능발전목표를 달성하기 위한 기여를 조명했으며, 우리 사회가 직면한 기후 위기, 환경 오염, 헬스케어, 식량 및 에너지 부족 문제에 대한 해결책으로서 대사공학이 점점 더 중요한 역할을 할 것”이라고 밝혔다. 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제, 바이오·의료기술개발사업의 맞춤형 세포공장 기반 유해선충제어 바이오소재 기술 개발 과제, 그리고 산업통상자원부가 지원하는 e바이오리파이너리 직접공기포집 C1전환 합성생물학의 통합 과제의 지원을 받아 수행됐다.
2023.01.25
조회수 6530
미생물 이용해 고효율 루테인 생산 기술 최초 개발
우리 대학 생명화학공학과 박선영 박사(現 LG화학)와 은현민 박사과정생을 포함한 이상엽 특훈교수 연구팀이 `루테인을 생산하는 미생물 균주 개발'에 성공했다고 17일 밝혔다. 루테인(lutein)은 눈을 산화 손상과 자외선으로부터 보호하며, 주로 계란의 난황과 과일 등에 함유된 영양물질이다. 루테인은 노안, 백내장 등의 예방 및 치료 효과가 있어 눈 영양제로 많이 판매되며, 이외에도 화장품과 동물사료에도 사용되고 있다. 노령화와 전자기기 사용 시간 증가에 따라 루테인 수요와 시장 규모는 빠르게 증가하는 추세다. 해당 연구 결과는 국제 학술지인 `네이쳐 카탈리시스(Nature Catalaysis)'에 8월 4일 게재됐다. ※ 논문명 : Metabolic engineering of Escherichia coli with electron channeling for the production of natural products ※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 박선영(한국과학기술원, 제1저자, 현 LG화학), 은현민 (한국과학기술원, 제2저자), 이문희(한국과학기술원, 제3저자) 포함 총 4명 현재 시장에 공급되고 있는 루테인은 주로 금잔화(marigold) 꽃에서 추출해 생산되지만, 금잔화 꽃의 재배에는 대지와 시간, 노동이 많이 요구된다는 점에서 대량으로 공급하기에 비효율적이다. 그 대안으로 화학적 합성 방법도 제시돼왔지만, 비대칭적인 화학 구조와 다양한 이성질체의 존재로 인해 이 또한 비효율적이다. 이러한 문제를 해결하기 위해 루테인을 친환경적이며 고효율로 생산하는 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 시스템 대사공학은 효과적인 미생물 균주 개발을 위해 필요한 핵심 전략으로, 우리 대학 이상엽 특훈교수가 창시한 연구 분야다. 이상엽 특훈교수 연구팀은 미생물의 대사회로를 조작하는 기술인 대사공학을 이용해 대장균 내 루테인 생산 대사회로를 구축했으며, 이로써 값싼 바이오매스의 주원료인 글리세롤을 탄소원으로 사용해 고부가가치의 루테인을 생산하는 대장균 균주를 개발했다고 연구팀 관계자는 설명했다. 연구팀은 개발한 대장균 균주에 추가로 시스템 대사공학 기술과 대사회로의 전자 채널링 전략을 도입함으로써 대장균으로부터 루테인을 고효율로 생산할 수 있는 기술 개발에 성공했다. 대사회로 상 여러 생화학적 반응에 관여하는 효소는 원하는 목표 화학물질로의 대사 흐름을 방해하기에 그동안 루테인을 특정량 이상으로 생산할 수 없었다. 연구진은 병목 단계의 효소들을 그룹화해 세포 내 효소 주변의 기질들과 전자들의 농도를 높일 수 있는 기질 채널링 및 전자 채널링 효과를 만들었으며, 그 결과 루테인 생산을 위한 대사 흐름이 강화되면서 대장균을 이용해 루테인을 고효율로 생산하는 데 성공했다. 연구팀은 또한 동일한 전자 채널링 전략을 사용해 대장균에서 자몽의 향기 성분인 누카톤(nootkatone)과 항노화 천연화합물인 아피게닌(apigenin) 등을 생산하는 데 성공했다. 연구에 참여한 박선영 박사는 “천연자원으로부터의 비효율적인 추출법을 대체할 수 있는 미생물 기반의 고효율 루테인 생산 기술을 개발했다는 점에 의의가 있다”며 “이번 기술을 활용해 미생물 기반의 의약품, 영양 보조제 등의 제품을 만드는 데 한 단계 앞으로 나아갈 수 있을 것”이라고 밝혔다. 이번 연구는 이상엽 특훈교수 연구팀에 의해 과학기술정보통신부가 지원하는 기후환경연구개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제’와 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식)의 ‘카로티노이드 생산 미생물 세포공장 개발’ 과제(과제책임자 국립농업과학원 김수진 박사)의 지원을 받아 수행됐다.
2022.08.17
조회수 6559
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4