본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%A0%88%EB%8F%85%EC%8A%A4%ED%9D%90%EB%A6%84%EC%A0%84%EC%A7%80
최신순
조회순
변혜령 ˙ 백무현 교수팀, 이온 쌍 형성을 통한 안정한 유기 레독스 흐름 전지 개발
우리 대학 화학과 변혜령 교수와 백무현 교수가 이끄는 공동 연구팀이 레독스 흐름 전지 구동 중 비수계 전해질의 조합 및 이온쌍의 형성에 따라 유기 분자의 전자 전달 과정이 변하는 원리를 해명했다. 최근 에너지 저장 장치(ESS, Energy Storage System)에서의 화재 위험성을 줄이기 위해 리튬 기반의 전지 대신 안정성과 경제성을 겸비한 레독스 흐름 전지(redox flow battery)가 새로운 대안으로 제시되고 있다. 상용화된 레독스 흐름 전지는 바나듐을 활물질로 사용하고 있지만, 최근 바나듐 원가의 가격 상승으로 인해 대체 활물질의 개발이 절실히 요구되고 있다. 특히 레독스 특성을 가지는 유기 분자를 설계하고 활물질로 활용한 연구는 전지의 성능을 대폭 개선할 수 있어 각광을 받고 있다. 공동연구팀은 분자당 두 개의 전자를 저장할 수 있는 나프탈렌 다이이미드(NDI, Naphthalene diimide)를 활물질로 사용한 비수계 레독스 흐름 전지의 연구를 진행했다. 먼저, 암모늄 기능기를 NDI에 도입하고 음이온 전해질 조절을 통해 아세토니트릴 전해액에서 NDI의 용해도를 최대 0.9 M까지 증가시켰다. 또한, 전기화학반응에서 NDI와 함께 사용되는 전해질의 양이온에 따라 산화환원 전위 및 레독스 흐름 전지에서의 충/방전 과정의 변화 이유를 규명하였다. 작은 크기의 리튬 이온(Li+)이온과 낮은 전자주개 특성을 가지는 용매(아세토니트릴)로 구성된 비수계 전해질 환경에서, NDI는 두 단계의 환원 과정이 유사한 전위에서 진행됨을 보였다. 이와 비교하여 큰 반지름을 가지는 포타슘 이온(K+)을 포함한 아세토니트릴 전해액에서는 NDI의 두 단계 환원반응 사이의 전위차가 크게 벌어짐을 관찰했다. 밀도범함수 계산 분석을 통해 환원된 NDI 음이온과 높은 전하밀도를 가지는 Li+ 이온은 결합이 강해지며 특정구조를 가지는 이온쌍이 형성됨을 예상하였으며, 적외선 분광 분석을 통해 이를 실험적으로 증명할 수 있었다. 반면, 낮은 전하밀도의 K+은 NDI 음이온과 약한 상호작용으로 이온쌍이 형성되기 어려우며, 따라서 K+ 은 NDI의 환원 전위 및 안정성에 영향을 미치지 않음을 보고했다. 전해질 양이온의 효과는 레독스 흐름 전지의 전압 및 에너지 전달 효율성에 그대로 반영되었다. Li+을 기반으로 한 전해질 하에서는 NDI의 두 전자전달 반응에서 각각 하나의 충/방전 전압을 유지하는 반면, K+ 기반의 전해질에서는 각각 두개의 충/방전 전압 곡선이 관찰되었다. 무엇보다도 Li+을 사용한 레독스 흐름 전지의 장점은 이온쌍 형성으로 인한 구조 크기의 증가로 크로스오버(레독스 활성분자인 NDI가 기공을 가지는 분리막을 지나 상대 전극으로 이동하여 용량을 감소시키는 현상)를 감소시킬 수 있었다는 점이다. 그 결과 0.1 M의 NDI를 음극 전해액으로 이용한 비수계 레독스 흐름 전지를 구동 시 약 1000 사이클 이후에도 84%의 용량이 유지되는 것을 증명하였다. 이는 Li+ 전해질에서의 충/방전 과정이 안정적이며 연속 사용 시 사이클 당 0.017%의 용량 감소만이 진행된다는 결과다. 이 연구는 삼성미래기술육성사업 및 기초과학연구원 등으로부터 지원을 받아 수행되었으며, ‘미국화학회지(Journal of the American Chemical Society)’에 2024년 2월 12일자로 온라인으로 발표되었다. (논문명: Stabilization of Naphthalene Diimide Anions by Ion Pair Formation in Nonaqueous Organic Redox Flow Batteries)
2024.02.20
조회수 3550
세계 최고 수명을 지닌 불타지 않는 ESS(에너지저장시스템) 수계전지 개발
우리 대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 아연 전극의 열화 메커니즘을 규명하고 이를 해결함으로써 전 세계에서 보고된 모든 레독스 흐름 전지 가운데 가장 오래가는 수명을 가지는 수계 아연-브롬 레독스 흐름 전지 개발에 성공했다고 5일 밝혔다. 생명화학공학과 이주혁 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `Energy and Environmental Science'에 최근(9월) 게재되는 한편 표지논문으로 선정됐다. (논문명: Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries) 최근 들어 신재생에너지의 간헐성을 보완하고 전력 피크 수요를 충당하기 위해 신재생에너지 및 심야 전력을 대용량으로 저장, 필요할 경우 저장된 에너지를 설비에 공급함으로써 에너지 이용 효율을 높일 수 있는 에너지저장시스템(Energy storage systems, 이하 ESS) 기술이 각광받고 있다. 현재 대부분의 ESS는 값이 저렴한 `리튬이온전지' 기술을 채택하고 있지만, 리튬이온전지는 태생적으로 발화로 인한 화재 위험성 때문에 대용량의 전력을 저장하는 ESS에는 적합하지 않다는 지적을 받아왔다. 실제 2017년~ 2019년까지 2년간 국내에서 발생한 리튬이온전지로 인한 ESS 화재사고 33건 가운데 가동이 중단된 곳은 전체 중 35%에 달한다. 현재까지 집계된 손해액만도 약 7,000억 원 이상으로 추정되고 있다. 따라서 최근에는 배터리 과열 현상을 원천적으로 차단할 수 있는 수계(물) 전해질을 이용한 *레독스 흐름 전지가 큰 주목을 받고 있다. 특히, 초저가의 브롬화 아연(ZnBr2)을 활물질로 이용하는 아연-브롬 레독스 흐름 전지는 다른 수계 레독스 흐름 전지와 비교할 때 높은 구동 전압과 함께 에너지 밀도를 높일 수 있고, 가격이 싸다는 장점 때문에 70년대부터 ESS용으로 개발돼왔다. ☞ 레독스 흐름 전지(Redox flow battery): 레독스 흐름 전지는 양극 및 음극 전해액 내에 활물질을 녹여서 외부 탱크에 저장한 후 펌프를 이용해 전극에 공급하면 전극 표면에서 전해액 내의 활성 물질의 산화·환원 반응을 이용해 에너지는 저장하는 전지이다. 문제는 아연-브롬 레독스 흐름 전지의 경우 아연 음극이 나타내는 짧은 수명 때문에 상용화가 지연되고 있다는 점이다. 특히 아연 금속이 충·방전 과정 중에 보이는 불균일한 돌기 형태의 *덴드라이트 형성은 전지의 내부 단락을 유발해 수명을 단축하는 주요 원인으로 지적되고 있다. 현재 덴드라이트 형성 메커니즘은 명확히 규명되진 않고 있지만 충전 초기 전극 표면에 형성되는 아연 핵의 불균일성 때문일 것으로 전문가들은 추정하고 있다. 이런 문제 해결을 위해 그동안 균일한 핵의 생성을 유도하는 기술이 경쟁적으로 개발돼왔으나, 여전히 충분한 수명향상 효과를 얻지 못하고 있다. ☞ 덴드라이트(Dendrite): 아연 이온이 환원되어 금속 전극 표면에 증착될 때, 금속 표면 일부에서 비정상적으로 성장하는 나뭇가지 형태의 결정. 김희탁 교수 연구팀은 낮은 표면에너지를 지닌 탄소 전극 계면에서는 아연 핵의 `표면 확산(Surface diffusion)'을 통한 `자가 응집(Self-agglomeration)' 현상이 발생한다는 사실에 주목하고 양자 역학 기반의 컴퓨터 시뮬레이션과 전송 전자 현미경 분석을 통해 자가 응집 현상이 아연 덴드라이트 형성의 주요 원인임을 규명하는 데 성공했다. 연구팀은 이와 함께 특정 탄소결함구조에서는 아연 핵의 표면 확산이 억제되기 때문에 덴드라이트가 발생하지 않은 사실을 발견했다. 탄소 원자 1개가 제거된 단일 빈 구멍 결함(single vacancy defect)은 아연 핵과 전자를 교환하며, 강하게 결합함으로써 표면 확산이 억제되고 균일한 핵생성 또는 성장을 가능하게 한다. 김 교수 연구팀은 고밀도의 결함 구조를 지닌 탄소 전극을 아연-브롬 레독스 흐름 전지에 적용해, 리튬이온전지의 30배에 달하는 높은 충·방전 전류밀도(100 mA/cm2)에서 5,000 사이클 이상의 수명 특성을 구현하는데 성공했다. 연구팀 관계자는 지금까지 다양한 레독스 흐름 전지에 대해 보고된 결과 중 가장 뛰어난 수명성능을 지닌 전지라는 점을 강조했다. 우리 대학 나노융합연구소 차세대배터리센터장 김희탁 교수는 "차세대 수계 전지의 수명 한계를 극복하기 위한 새로운 기술을 제시한 게 이번 연구의 성과”라면서 "기존 리튬이온전지보다 저렴할 뿐만 아니라 에너지 효율 80% 이상에서 5,000 사이클 이상 구동이 가능하다는 점에서 신재생에너지의 확대 및 ESS 시장 활성화에 기여할 것”이라고 밝혔다. 한편 이번 연구는 우리 대학 나노융합연구소와 과학기술정보통신부의 지원을 받아 수행됐다.
2020.10.05
조회수 30238
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1