-
염소 제거로 폐플라스틱 재활용 쉬워진다
전 세계의 플라스틱 생산량이 증가함에 따라 폐기되는 플라스틱의 양도 증가하게 돼 여러 가지 환경적, 경제적 문제를 일으키고 있다. 한국 연구진이 고성능 촉매를 개발해 플라스틱 폐기물의 분해와 재활용을 쉽고 경제적으로 할 수 있도록 하는 기술을 개발하여 화제다.
우리 대학 생명화학공학과 최민기 교수, 충남대학교 에너지 과학기술 대학원 신혜영 교수 공동연구팀이 폐플라스틱의 분해 및 재활용 공정의 중요 반응인 탈염소 반응의 반응 메커니즘을 규명하고 미량의 백금으로도 염소를 효과적으로 제거할 수 있는 촉매를 개발했다고 26일 밝혔다.
플라스틱의 재활용을 위한 다양한 연구가 진행되고 있는데, 특히 열분해를 이용한 화학적 재활용 방법은 복잡하고 비경제적인 플라스틱 폐기물의 분류 과정을 생략할 수 있어 산업적으로 큰 주목을 받고 있다. 또한 이때 생성되는 유분은 플라스틱의 원료인 에틸렌, 프로필렌으로 변환이 가능하기 때문에 완벽한 플라스틱의 순환 경제를 가능케 한다.
하지만 폐플라스틱의 열분해유 내에는 후속 공정에 앞서 제거가 필요한 다양한 불순물들이 포함돼 있다. 특히, 폴리염화비닐(PVC)의 열분해로 생성되는 염소 화합물은 반응기 부식을 유발하고, 촉매를 비활성화시키므로 화학적으로 제거하는 것은 폐플라스틱 재활용에 있어 매우 중요하다. 다만 기존 석유와 같은 탄소 자원에는 염소가 포함돼 있지 않기 때문에 염소를 제거하는 촉매 공정은 현재까지 연구된 바가 없었다.
공동연구팀은 감마 알루미나에 미량(0.1wt%)의 백금을 담지한 촉매를 사용해 탈염소 반응의 메커니즘을 규명하고, 고성능 촉매를 설계했다. 연구 결과, 탄소와 염소 사이의 결합을 끊고 백금에서 활성화된 수소가 감마 알루미나 표면에 전달돼 염소를 염산(HCl)의 형태로 제거하는 독특한 반응 메커니즘을 확인했다.
연구팀은 다량(7,500ppm)의 염소를 포함하고 있는 해양 폐기물 기반의 폐플라스틱 열분해유를 이용한 반응에서도 직접 개발한 촉매를 사용했을 때 염소가 98% 이상 효과적으로 제거됨을 밝혔으며, 높은 장기 안정성을 보임을 확인했다.
최민기 교수는 “탈염소 반응은 폐플라스틱의 재활용에 있어 매우 중요한 반응이지만 현재까지 심도 있게 연구되지 않았다”며, “이번 연구는 세계 최초로 탈염소 반응의 메커니즘을 규명한 것으로 고성능 탈염소 촉매 개발을 앞당기는 데 큰 역할을 할 것이다”고 말했다.
이번 연구는 생명화학공학과 석진 박사과정 학생, 충남대학교 에너지 과학기술대학원 판 티 옌 니(Phan Thi Yen Nhi) 석사과정 학생이 공동 제1 저자로 참여했으며, 연구 결과는 국제 저명 학술지 ‘미국화학회지(Journal of the American Chemical Society)’에 지난 8월 28일 자 온라인판에 게재됐다.
※ 논문명: Catalytic Synergy between Lewis Acidic Alumina and Pt in Hydrodechlorination for Plastic Chemical Recycling
한편, 이 연구는 롯데케미칼 탄소중립연구센터와 한국연구재단 중견연구자 지원사업의 지원을 받아 수행되었다.
2024.09.28
조회수 1350
-
미토콘드리아로 퇴행성 질환까지 제어 가능하다
우리 대학 생명화학공학과 김유식 교수 연구팀이 비정상적 면역 활성을 유발해 염증반응이 동반된 세포 사멸을 일으키는 미토콘드리아 이중나선 RNA의 새로운 조절 기전을 찾아냈다고 22일 밝혔다.
최근 미토콘드리아 이중나선 RNA가 스트레스 환경에서 세포질로 빠져나가 비정상적 면역 활성 및 세포 사멸을 유발한다는 것이 밝혀졌다. 또한 이러한 미토콘드리아 이중나선 RNA로 촉발되는 면역 활성은 관절염 및 헌팅턴 무도병을 비롯한 염증반응이 동반된 퇴행성 질환과 자가면역질환 중 하나인 쇼그렌 증후군의 발병 및 진행에 핵심적인 역할을 한다는 것이 보고됐다.
아직 미토콘드리아 이중나선 RNA의 분자적 조절 기전에 대해서는 보고된 바 없다는 점을 착안해서 연구팀은 미토콘드리아 내에 존재하며 RNA와 결합할 수 있는 단백질에 대해 유전자 가위를 이용해 각 단백질의 발현을 억제한 후 미토콘드리아 이중나선 RNA의 발현량을 조사했다.
이 과정에서 RNA의 구성 물질 중 하나인 시토신의 화학적 변형을 유발하는 엔썬4(NSUN4)*이라는 단백질의 발현을 줄였을 때 미토콘드리아 이중나선 RNA의 발현이 유의미하게 증가하는 것을 확인했다.
*엔썬4 (NSUN4): NOP2/Sun RNA 메틸트랜스퍼라제 4
나아가, 연구팀은 단백질을 생산하지 않는 미토콘드리아 비암호화 RNA의 변형을 가속시키는 것이 동 단백질 엔썬4에 의해서라고 최초로 제시했다.
연구팀은 추가 연구를 통해 미토콘드리아 RNA 단백질들의 발현 감소로 축적된 미토콘드리아 이중나선 RNA의 양이 증가했으며 세포질로 누출된 미토콘드리아 이중나선 RNA는 면역반응을 활성화시켰다. 이를 통해 연구팀은 새로운 세포 내 면역 유발인자로 최근 주목받기 시작한 미토콘드리아 이중나선 RNA의 변형에 의한 발현 조절 기전을 제시했다.
생명화학공학과 김유식 교수는 “이번 연구를 통해 비정상적 면역 활성 유발 인자로 최근 주목받고 있는 미토콘드리아 이중나선 RNA의 형성 및 조절 기전을 밝혔다”면서 “이번 연구의 결과를 바탕으로 면역 계통 질환을 비롯해 다양한 퇴행성 질환의 발병 및 진행 과정을 효과적으로 제어할 수 있는 전략을 제시할 수 있을 것”이라고 말했다.
생명화학공학과 김수진 박사(現 보스턴 아동병원 (Boston Children’s Hospital) 및 하버드 의과대학(Harvard Medical School) 박사후연구원)와 탄 스테파니(Tan Stephanie) 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 셀(Cell) 자매지인 ‘몰레큘러 셀(Molecular Cell)’ 7월 16일 字에 온라인 게재됐다. (논문명 : RNA 5-methylcytosine marks mitochondrial double-stranded RNAs for degradation and cytosolic release).
한편 이번 연구는 한국연구재단 우수신진연구지원사업과 미국 국립보건원의 지원으로 수행됐다.
2024.07.22
조회수 2094
-
가뭄현상이 DNA에 적용되면?
한미 공동연구진이 가뭄이 들면 논바닥이 쩍쩍 갈라지는 현상에 착안해서 물을 품고 있는 DNA 박막 위에 탈수 반응을 일으킬 수 있는 유기 용매를 뿌려 DNA 균열을 원하는 대로 만들어 낼 수 있는 기술을 개발했다. 이를 통해 만들어진 균열 구조 안에 친환경 온열소재, 적외선 발광체 등을 넣어 기능성 바이오 소재를 제작, 스마트 헬스케어 분야에 활용할 수 있을 것으로 보인다.
우리 대학 화학과 윤동기 교수, 기계공학과 유승화 교수, 미국 코넬대 화학공학과 박순모 박사 연구팀이 DNA 박막의 탈수 현상에 기반한 미세구조 균열을 제작했다고 29일 밝혔다.
본래 유전 정보를 저장하는 기능을 하는 DNA는 두 가닥이 서로 꼬여있는 이중나선 사슬 구조, 사슬과 사슬 사이는 2~4 나노미터*(1나노미터는 10억분의 1미터) 주기의 규칙적인 모양을 갖는 등 일반적인 합성 방법으로는 구현하기 힘든 정밀한 구조재료로 구성되어 있다. 이 구조를 변경하기 위해서 DNA를 빌딩블록으로 사용하여 정밀하게 합성하거나 오리가미(종이접기) 기술을 이용해 구현해 왔지만 매우 복잡한 설계과정이 필요하고, 특히 염기서열이 조절된 값비싼 DNA를 이용해야 하는 단점이 있었다.
*수분이 있으면 DNA 사슬 지름이 2 나노미터, 수분이 없으면 4 나노미터가 됨.
연구팀은 이를 극복하기 위해, 연어에서 추출한 DNA 물질을 이용해 기존보다 천 배 이상 저렴한 비용으로 화장용 붓을 이용해 마치 DNA를 수채화 물감과 같이 사용해 그림을 그리듯이 정렬시켰다. 그리고 3D 프린터를 이용해 지름이 2나노미터인 DNA 분자들을 원하는 방향으로 정렬시키면서 말려 얇은 막을 만들었다.
여기에 유기 용매(예: 테트라하이드로퓨란, THF) 방울을 떨어뜨리면 끓는점이 낮은 유기 용매가 DNA내의 수분을 빼앗아 가면서 크랙이 형성되는 현상을 연구팀은 관찰했다. 이때 DNA의 사슬 옆면이 사슬 끝부분에 비해, 물을 상대적으로 많이 포함하고 있어 더 많은 수축이 일어나 결국 DNA 사슬 방향으로 크랙이 형성됐고, DNA 사슬 방향을 원하는 방향으로 조절할 수 있기에 연구팀은 이 크랙도 원하는 방향으로 조절할 수 있는 결과를 얻었다.
연구팀이 개발한 DNA 기반 미세 균열(크랙) 구조 형성 및 제어 기술은 생체 친화적 소재인 DNA로 이루어진 수십-수백 나노미터의 박막에 DNA 사슬방향으로 생긴 크랙(균열)에 다양한 기능성 소재를 채워 넣는 공정이 가능하다. 예로, 온열 소재의 경우 겨울에 따뜻하게 하고 적외선 발광체를 넣으면 탈모나 피부케어 등에 응용되는 등, 생체친화적인 패턴을 바탕으로 기능성을 부여함으로써, 향후 다양한 기능성 바이오 소재 및 헬스케어 분야에 활용될 수 있을 것으로 기대된다.
윤동기 교수는 “DNA 미세 크랙 패터닝은 코끼리 피부가 갈라지는 현상이 체온을 유지하기 위한 한 방법이고, 극심한 가뭄에, 땅이 갈라지는 일은 비가 많이 올 때 더 많은 물을 흡수하기 위함이라는 자연의 현상을 그대로 따라 구현했다”며, “이번 연구는 반도체 패턴만큼이나 작은 DNA 빌딩블록 기반의 미세구조 패턴을 제조한 것으로 환경친화적인 면을 고려할 때 그 의의가 더 크다고 할 수 있다”라고 언급했다.
한편 유승화 교수는 “이번 연구를 통해 DNA 필름의 수축 과정에서 발생하는 균열과 DNA의 배열 패턴 사이의 관계를 고체역학 이론에 기반한 시뮬레이션으로 명확하게 분석하고 예측할 수 있었다”며, “DNA 필름에 국한되지 않은 다양한 이방성 소재에서의 균열 제어와 패터닝 기술 발전에 기여할 수 있는 토대를 마련했다고 생각한다”고 의견을 덧붙였다.
화학과 이소은 석사과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머터리얼즈 (Advanced Materials)’ 3월 15일 자 온라인 판에 게재됐다. (논문명 : On-demand Crack Formation on DNA Film via Organic Solvent-induced Dehydration)
한편 이번 연구는 과학기술정보통신부-한국연구재단의 멀티스케일 카이랄 구조체 연구센터, 중견연구 과제의 지원을 받아 수행됐다.
2024.03.29
조회수 3447
-
DNA 인식 선천면역인자의 방호패치 발견
우리 대학 생명과학과 강석조 교수 연구팀이 선천면역반응을 매개하는 중요 단백질인 STING의 활성을 조절하는 새로운 기전으로, 미토콘드리아 막 단백질이자 E3 유비퀴틴 리가아제인 MARCH5가 STING을 유비퀴틴시켜서 활성산소에 의해 STING이 비활성형 다량체로 응집되는 것을 억제함을 규명했다고 4일 밝혔다.
STING(Stimulator of interferon genes)은 선천면역 신호경로의 필수적인 어댑터 단백질로서 외부로부터 들어온 세균 및 바이러스로부터 유래한 세포질 내 DNA를 감지하는 cGAS(cyclic GMP-AMP synthase)가 생성한 cGAMP(2'3'-cyclic GMP-AMP)에 결합하여 활성화되면 TBK1(TANK-binding kinase 1)과 IRF3(Interferon regulatory factor 3)를 활성화하여 제1형 인터페론을 유도한다. 이를 통해서 염증반응과 다양한 면역세포를 활성화하여 병원균으로부터 우리 몸을 방어하는 면역반응을 일으킨다. STING은 또한 자가 염증성 질환, 암, 노화 및 퇴행성 뇌질환을 포함한 다양한 염증질환의 주요 매개체로 작용한다.
STING의 활성은 다양한 방법으로 조절되는 데, 세포내 이동, 번역 후 변형(post-translational modification, PTM), 고차원 구조체인 다량체 (polymer)의 형성 등이 알려져 있다. STING은 세포내 소기관인 소포체(endoplasmic reticulum)에 위치하고 활성 후 골지체로 이동하여 하위 신호전달을 매개한다. 인산화(phosphorylation), 유비퀴틴화(ubiquitination), 팔미토일화(palmitoylation), 산화(oxidation) 등의 다양한 번역 후 변형을 받으며, 활성화된 STING은 이량체(dimer)를 거쳐 활성형 다량체를 형성하여 신호전달을 매개한다. 하지만, 이들 조절 기전의 다이나믹스와 상호작용에 대해서는 알려진 바가 적다. 특히, 염증과 같은 조건에서 다량 생성되는 활성산소에 의해 STING이 비활성형 다량체를 형성하는 데 이를 억제하는 번역 후 변형 및 그 조절 기전에 대해서는 전혀 알려지지 않았다.
강 교수 연구팀은 이전 연구에서 STING이 위치한 소포체와 인접한 미토콘드리아의 다이나믹스를 조절하는 인자가 STING 활성에 영향을 미친다는 것을 밝혔다. 이에 대한 후속연구를 수행하던 중, 미토콘드리아 막 단백질이자 E3 유비퀴틴 리가아제로 알려진 MARCH5(Membrane associated RING-CH-type finger 5)가 결손된 마우스 배아 섬유아세포에서 STING 매개 제1형 인터페론 형성이 감소하며 STING 활성경로의 하위단계인 TBK1, IRF3의 활성 또한 저해되어있음을 통해 MARCH5가 STING의 활성에 양성 조절자로서 역할을 한다는 사실을 밝혔다. 나아가 강 교수팀은 MARCH5가 결손된 세포주에서 활성산소(reactive oxygen species, ROS)가 정상 세포주에 비해 높다는 것과 높은 활성산소는 STING이 정상 세포주에 보이는 STING의 활성형 다량체가 아닌 비활성형 다량체로의 형성을 촉진한다는 사실을 확인하였다.
기전적으로 MARCH5 단백질이 STING과 결합하며 STING의 Lysine 19 잔기를 선택적으로 타겟하여 Lysine-63형으로 유비퀴틴화하는 것을 확인하였다. STING은 높은 활성산소 조건에서 Cysteine 205 잔기에 산화가 일어나는데, MARCH5에 의한 STING 유비퀴틴화는 과도한 활성산소 조건에서 산화된 STING이 비활성 STING 다량체를 형성하는 것을 억제하여 정상적인 STING활성을 갖도록 돕는다는 사실을 규명하였다.
강석조 교수는 “본 연구는 미토콘드리아 막 단백질이 산화된 STING의 다량체 형성을 조절하는 원리를 최초로 제공한 연구이면서 STING이라는 단백질을 통하여, 다양한 번역 후 변형간의 상호 작용과 고차원 구조적 변화, 그리고 이에 기여하는 세포내 소기관의 교류를 동시에 밝혀 보다 넓은 학문분야에 활용되는 지식을 제공했다는 데 의의가 크다”고 언급하면서, “본 연구를 통해 얻은 새로운 지식은 STING이 매개하는 다양한 염증성 질환에 대한 보다 깊은 이해와 치료제 개발 연구에 가치 있게 활용될 것으로 기대한다”고 전했다.
이번 연구는 유럽 분자생물학의 권위있는 국제 학술지 `엠보 리포트 저널 (EMBO (European Molecular Biology Organization) Reports)’에 11월 2일 字 온라인판에 게재됐다 (논문명: MARCH5 promotes STING pathway activation by suppressing polymer formation of oxidized STING). KAIST 생명과학과 손경표 박사과정, 정석환 박사과정, 엄은총 박사과정이 공동 제1 저자로 연구를 주도하였고, 권도형 박사(現 부스트이뮨)가 함께 참여하였다.
이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2023.12.04
조회수 3040
-
신기루처럼 사라지는 중간체의 모습 최초 공개
아이는 청소년기를 거쳐 성인이 된다. 화학반응도 반응물에서 생성물이 생겨나는 일종의 성장 과정에서 중간 단계인 ‘중간체’가 만들어진다. 사진과 영상으로 기록할 수 있는 사람의 청소년기와 달리, 화학반응 도중 빠르게 생성되었다가 사라지는 중간체의 모습을 기록하는 것은 매우 어렵다.
우리 대학 화학과 장석복 특훈교수 (IBS 분자활성 촉매반응 연구단장) 연구팀은 기초과학연구원 김동욱 연구위원, 우리 대학 화학과 임미희 교수 연구팀과의 협업으로 자연에 풍부한 탄화수소를 고부가가치의 물질인 질소화합물로 변환시키는 화학반응에서 생겼다가 사라지는 ‘전이금속-나이트렌’ 촉매 중간체의 구조와 반응성을 세계 최초로 규명했다.
질소화합물은 의약품의 약 90%에 포함될 정도로 생리 활성에 중요한 분자다. 제약뿐만 아니라 소재, 재료 분야에서도 중요한 골격이 된다. 현대 화학자들이 석유․천연가스 등 자연에 풍부한 탄화수소를 질소화합물로 바꾸는 아민화 반응(질소화 반응)을 효율적으로 진행할 수 있는 촉매 개발에 집중하는 이유다.
장석복 교수 연구팀은 2018년 다이옥사졸론 시약과 전이금속(이리듐) 촉매를 활용하여 탄화수소로부터 의약품의 원료가 되는 락탐을 합성하는 촉매반응을 개발한 바 있다(Science). 당시 아민화 반응을 유발하는 핵심 중간체가 바로 전이금속-나이트렌이라는 분석을 내놓았고, 이후 세계 120여 개 연구팀이 다이옥사졸론 시약을 활용한 아민화 반응 연구를 이어갔다. 하지만 계산화학적으로 구조를 파악할 뿐, 전이금속-나이트렌 중간체의 모습을 직접 관찰한 적은 없었다.
제1저자인 정회민 연구원은 “촉매 화학반응이 진행되며 어떤 촉매 중간체를 거쳐 가는지를 규명하는 것은 반응의 진행 경로를 면밀히 이해하는 동시에 더욱 효율이 높은 차세대 촉매를 개발하는데 중요한 단서가 된다”고 설명했다.
대부분의 촉매반응은 용액 상태에서 이뤄진다. 용액 내 분자들은 끊임없이 다른 분자와 상호작용하기 때문에 전이금속-나이트렌과 같이 빠르게 반응하고 사라지는 중간체를 규명하는 일은 매우 어려웠다. 이 한계를 극복하기 위해 연구팀은 고체상태의 시료에 빛을 쬐며 분자 수준에서 일어나는 구조 변화를 단결정 엑스선(X-ray) 회절 분석을 통해 관찰하는 광 결정학 분석을 활용하자는 아이디어를 냈다.
우선, 연구팀은 빛에 반응하는 로듐(Rh) 기반 촉매를 새롭게 제작했다. 이 촉매와 다이옥사졸론 시약이 결합한 복합체는 빛을 받으면 탄화수소에 아민기를 도입하는 과정에서 전이금속-나이트렌을 형성할 것으로 예상했다. 이 과정을 포항 가속기연구소의 방사광을 활용한 광 결정학 방법으로 분석한 결과, 기존 관찰된 적 없는 ‘로듐-아실나이트렌’ 중간체의 구조와 성질을 세계 최초로 확인할 수 있었다.
더 나아가, 로듐-아실나이트렌 중간체가 다른 분자와 반응하는 과정도 광 결정학으로 분석했다. 즉, 고체 시료에서 화학 결합이 끊어지며 중간체가 생성되고, 중간체가 다시 다른 물질과 반응해 새로운 화학 결합을 형성하는 전 과정을 마치 카메라가 사진을 찍듯이 포착했다는 의미다.
연구를 이끈 장석복 단장은 “그간 그 존재가 제안되었을 뿐, 입증된 적 없는 아민화 반응의 핵심 중간체의 모습을 최초로 공개했다”며 “현재 밝혀낸 로듐-아실나이트렌 중간체의 구조와 친전자성 반응성을 바탕으로, 여러 산업에서 쓰이는 차세대 촉매 반응을 개발할 수 있을 것”이라고 말했다.
연구결과는 7월 21일(한국시간) 최고 권위의 국제학술지 ‘사이언스(Science, IF 56.9)’온라인판에 실렸다. (논문명: Mechanistic snapshots of rhodium-catalyzed acylnitrene transfer reactions.)
2023.07.21
조회수 3997
-
인공지능으로 화학반응을 예측하다
우리 대학 생명화학공학과 정유성 교수 연구팀이 화학자처럼 생각하는 인공지능을 개발했다고 4일 밝혔다. 연구팀이 개발한 인공지능은 유기 반응의 결과를 정확하게 예측한다.
유기 화학자는 반응물을 보고 유기 화학반응의 결과를 예상해 약물이나 유기발광다이오드(OLED)와 같이 원하는 물성을 갖는 분자를 합성한다. 하지만 실험을 통해 화학반응의 생성물을 직접 확인하는 작업은 일반적으로 시간과 비용이 많이 소모된다. 게다가 유기 화학 반응은 같은 반응물에서 다양한 생성물이 생길 수 있어 숙련된 유기 화학자라도 모든 화학반응을 정확하게 예측하지 못한다.
이런 한계를 극복하고자 인공지능을 이용해 유기 반응을 예측하는 연구가 활발하게 일어나고 있다. 대부분의 연구는 반응물과 생성물을 서로 다른 두 개의 언어로 생각하고 한 언어에서 다른 언어로 번역하는 언어 번역 모델을 사용하는 방법에 집중하고 있다. 이 방법은 예측 정확도는 높지만, 인공지능이 화학을 이해하고 생성물을 예측했다고 해석하기 어려워 모델이 예측한 결과를 신뢰하기 어렵다.
정 교수팀은 화학적 직관을 바탕으로 모델을 설계해서 모델이 예측한 결과를 화학적으로 설명을 할 수 있을 뿐 아니라, 공개 데이터베이스에서 매우 우수한 예측 정확도를 달성했다.
정 교수팀은 화학자가 반응 결과를 예측하는 방법에서 아이디어를 얻었다. 화학자는 반응 중심을 파악하고 화학반응 규칙을 적용해 가능한 생성물을 예측한다. 이 과정을 본떠서 공개 화학반응 데이터베이스로부터 화학반응 규칙을 도출했다. 화학반응 규칙을 바탕으로 분자의 화학 반응성을 예측하기 위해서, 분자를 그래프로 취급하는 그래프 신경망(Graph Neural Network, GNN) 모델을 개발했다. 이 모델에 반응물들을 넣으면 화학반응 규칙과 반응 중심을 식별해 생성물을 성공적으로 예측한다.
정 교수팀은 화학반응에서 널리 사용되는 미국 특허무역청(USPTO) 데이터를 이용해 유기 반응을 90% 이상의 정확도로 예측하는 데 성공했다. 개발된 모델은 실제 사용 시 모델에 높은 신뢰성을 제공하는 `예측의 불확실성'을 말할 수 있다. 예를 들어, 불확실성이 낮다고 간주되는 모델의 정확도는 98.6%로 증가한다. 모델은 무작위로 샘플링된 일련의 유기 반응을 예측하는 데 있어 소규모의 합성 전문가보다 더 정확한 것으로 나타났다.
이번 연구의 성공으로 연구팀은 다른 분야에서 좋은 성능을 보인 모델을 그대로 사용하던 기존 방법보다, 화학자가 생각하는 방법과 동일하게 신경망을 설계하는 전략이 더 합리적이고 우수한 성능을 보인다는 것을 입증했다. 연구팀은 이 연구를 활용하면 분자 설계 과정이 비약적으로 빨라질 것으로 기대하며, 새로운 화합물 개발에 실용적인 응용을 기대하고 있다. 정유성 교수팀은 현재 연구 성과의 특허 출원을 준비하고 있다.
우리 대학 생명화학공학과 첸수안(Shuan Chen) 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '네이처 머신 인텔리전스(Nature Machine Intelligence)'에 9월호 표지논문으로 선정돼 출판됐다.
한편 이번 연구는 산업통상자원부와 한국연구재단의 지원을 받아 수행됐다.
2022.10.04
조회수 13842
-
기저 질환이 없는 코로나19 환자의 중증 신규 유전적 위험 인자 규명
우리 대학 생명과학과 정인경 교수 연구팀이 서울대병원 강창경, 고영일, 분당서울대병원 송경호 교수, 경북대병원 문준호 교수, 국립중앙의료원 이지연 교수, 지놈오피니언 社로 이루어진 산·학·병 공동연구를 통해 기저 질환이 없는 저위험군의 신규 코로나19 중증 위험 인자를 발굴하고, 발굴된 인자의 과잉 염증반응에 대한 분자 메커니즘을 제시했다고 29일 밝혔다.
코로나19 바이러스(SARS-CoV2)는 지난 2년이 넘도록 확산하면서 전 세계적으로 6억 명 이상이 감염됐고, 이 중 6백만 명 이상이 사망했다. 이러한 심각성으로 인해 코로나19 바이러스의 병리에 관한 연구가 활발히 진행됐고, 단핵구(큰 크기의 백혈구, Monocyte)의 과잉 염증반응으로 인한 중증 진행 메커니즘 등이 밝혀졌다.
하지만 개별 코로나19 환자마다 면역 반응의 편차가 크게 나타나는 현상에 대해서는 앞서 찾은 연구 결과만으로는 전부 설명할 수 없다. 예를 들어 중증 코로나19 환자 중에서 당뇨병이나 고혈압 등의 기저 질환이 없는 경우도 빈번하기에 이들이 코로나19 감염 시 중증으로 진행될 수 있는 신규 위험 인자를 발굴하는 것은 환자 맞춤형 치료에 있어 매우 중요하다.
우리 대학 생명과학과 최백규, 박성완 석박사통합과정과 서울대병원 강창경 교수가 주도한 이번 연구에서는 기존의 기저 질환이 없는 중증 코로나19 환자의 중증 요인을 알아내기 위해, 국내 4개의 병원이 합동해 총 243명의 코로나19 환자의 임상 정보를 수집 및 분석했다. 연구팀은 그 집단의 임상적 특징을 밝히고, 단일세포 유전자 발현 분석과 후성유전학적 분석을 도입해 관찰된 임상적 특징과 중증 코로나19 내 과잉 염증반응 간의 유전자 발현 조절 메커니즘을 분석했다.
그 결과, 기저 질환이 없는 집단 내 중증 환자는 `클론성조혈증'이라는 특징을 가지고 있는 것을 관찰하였다. 이는 혈액 및 면역 세포를 형성하는 골수 줄기세포 중 후천적 유전자 변이가 있는 집단을 의미한다. 또한 단일세포 유전자 발현 분석을 통해 클론성조혈증을 가진 중증 환자의 경우 단핵구에서 특이적인 과잉 염증반응이 관찰되는 것을 확인했고, 클론성조혈증으로 인해 변화한 후성유전학적 특징이 단핵구 특이적인 과잉 염증반응을 일으키는 유전자 발현을 유도하는 것을 연구팀은 확인했다.
해외 연구단에서도 유사하게 클론성조혈증과 코로나19 간의 관련성에 주목한 연구들이 있었으나 코로나19와의 관련성을 명확히 밝히지 못했고, 과잉 염증반응으로 이어지는 분자 모델 역시 제시하지 못했다. 이에 반해 공동 연구팀은 생물정보학 기반 계층화된 환자 분류법과 환자 유래 다양한 면역 세포를 단 하나의 세포 수준에서 유전자 발현 패턴 및 조절 기전을 해석할 수 있는 단일세포 오믹스 생물학 기법을 적용해 클론성조혈증이 코로나19의 신규 중증 인자임을 명확하게 제시했다. 해당 연구 결과는 앞으로 기저질환이 없는 저위험군 환자라도 클론성조혈증을 갖는 경우 코로나19 감염 시 보다 체계적인 치료 및 관리가 필요함을 의미한다.
이번 연구 결과는 두 개의 국제 학술지, `헤마톨로지카(haematologica, IF=11.04)'에 9월 15일 字 (논문명: Clinical impact of clonal hematopoiesis on severe COVID-19 patients without canonical risk factors) 온라인 게재가 되었으며. ‘실험 및 분자 의학(Experimental & Molecular Medicine, IF=11.590)'에 지난 8월 1일 字 (논문명: Single-cell transcriptome analyses reveal distinct gene expression signatures of severe COVID-19 in the presence of clonal hematopoiesis) 게재 승인됐다.
이번 연구는 장기화된 코로나19 팬데믹 상황 속에서 연구계·의료계·산업계로 이루어진 연구팀 서로 간의 긴밀한 협력을 통해 코로나19 환자의 신규 중증 인자를 밝히고, 그에 대한 분자적 기전을 제시해 환자별 맞춤 치료전략을 제시한 연구로 중개 연구(translational research)의 좋은 예시로 평가받는다.
이번 연구를 수행한 우리 대학 최백규 석박사통합과정은 "최신의 분자실험 기법인 단일세포 오믹스 실험과 생물정보학 분석 기술의 융합이 신규 코로나19 중증 환자의 아형과 관련 유전자 조절 기전을 규명 가능케 하였다ˮ며, "다른 질환에도 바이오 데이터 기반 융합 연구 기법을 적용할 것이다ˮ고 말했다.
분당서울대병원 송경호 교수는 "이번 연구는 임상 현장에서 코로나 환자별 맞춤 치료 전략을 정립하는 데 있어서 중요한 정보를 제공한 연구ˮ라며 "앞으로도 중증 코로나19 환자의 생존율을 높이기 위해 임상 정보를 바탕으로 한 맞춤 치료전략 연구를 이어나가겠다ˮ라고 밝혔다.
지놈오피니언 대표를 겸임하고 있는 서울대병원 고영일 교수는 "회사에서 개발한 클론성조혈증 탐지 및 분석 기술이 코로나19 팬데믹 해결에 도움이 되어 보람차다ˮ면서 "앞으로도 새로운 바이오마커를 발굴 및 분석하는 기술을 개발해 인류의 건강한 삶에 지속적으로 기여하고 싶다ˮ고 말했다.
한편 이번 연구는 서경배과학재단과 과학기술정보통신부의 지원을 받아 수행됐다.
2022.09.29
조회수 7623
-
항체를 활용한 신개념 생체 형틀법 최초 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 다세포 생물이 갖는 특정 단백질 구조체를 활용할 수 있는 새로운 개념의 생체 형틀법을 최초로 개발했다고 10일 밝혔다. 긴 시간 동안 특정 기능에 최적화된 생명체가 갖는 복잡하고 정교한 구조체를 형틀로 삼아 이를 모방한 무기물 구조체를 만드는 방법을 생체 형틀법 이라고 한다. 이는 에너지, 광학, 마이크로로봇 분야 등에 응용돼왔다.
장 교수 연구팀은 항원-항체 반응에 착안해 특정 단백질을 항체로 표적화한 뒤, 항체에 붙어 있는 1.4 나노미터(nm) 크기의 금 입자에서 다양한 금속 입자들을 성장시킴으로써 특정 단백질 구조체를 모방한 금속 구조체를 합성하는 데 성공했다. 개발된 생체 형틀법은 일반적인 항원-항체 반응과 금속 입자 성장법을 기반으로 하기 때문에 다양한 생명체에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
신소재공학과 송창우, 송대현 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials)'에 7월 7일 字 온라인 출판됐다. (논문명 : Multiscale Functional Metal Architectures by Antibody-Guided Metallization of Specific Protein Assemblies in Ex Vivo Multicellular Organisms).
생명체가 갖는 특정 기능에 최적화된 다양한 구조체들은 복잡하고 계층적 구조를 기반으로 하여 인공적인 합성 방법을 통해 재현하기 어렵다. 따라서 이러한 생체 구조체를 형틀로 해 동일한 모양의 무기물 구조체를 합성하는 생체 형틀법이 개발돼왔으며, 합성된 생체 재료들은 촉매, 에너지 저장 및 생산, 센서 등 다양하게 활용돼왔다.
하지만 개발된 생체 형틀법 중 특정 단백질 구조체를 형틀로 사용한 경우는 적으며, 있다 하더라도 바이러스나 효모와 같은 단세포 생물의 특정 단백질 구조체를 형틀로 활용한 연구들 뿐이었다.
생명체의 특정 단백질 구조체를 활용하는 생체 형틀법은 원하는 생체 구조체만을 활용 가능하며 합성하고자 하는 생체 재료의 목적에 맞는 단백질을 선택해 사용할 수 있다는 장점이 있다.
연구팀은 기존의 생체 형틀법 한계를 해결을 위해 특정 단백질을 이미징할 때 활용하는 항원-항체 반응을 생체 형틀법에 적용했다.
연구팀이 사용한 항체는 1.4 나노미터(nm) 크기의 금 입자가 달려있고 이는 금속 입자 성장을 위한 종자(seed) 역할을 하게 되어 특정 단백질을 표적화한 항체로부터 다양한 금속 입자를 성장시킬 수 있다.
연구팀은 인간 세포 내부의 미세소관, 미토콘드리아, 핵, 세포막, 세포질에 존재하는 특정 단백질에서만 금 입자를 성장시키는 데 성공했으며, 세포 수준뿐만 아니라 조직 수준인 쥐의 뇌, 신장, 심장에서도 개발한 방법을 적용할 수 있다는 것을 보였다.
나아가 연구팀은 금 입자뿐만 아니라 은, 금-백금, 금-팔라듐 입자를 세포 내부 미세소관 구조체를 따라 합성함으로써 합성된 세포를 액상 반응의 촉매로 활용 가능하다는 것을 증명했다. 또한, 세포 표면에 철 입자를 성장시킨 후 자석으로 조절할 수 있음을 보여 향후 이러한 금속 입자가 성장된 세포들을 조절하거나 군집 행동을 구현하는 것이 가능함을 보였다.
연구팀이 개발한 신개념 생체 형틀법은 다세포 생물뿐만 아니라 항체 염색이 가능한 식물, 균류, 바이러스 등의 생명체에도 활용 가능해 다양한 생체 구조체를 모방한 생체 재료 합성에 이용될 것으로 기대된다.
제1 저자인 송창우 박사과정은 "이번 연구는 기존의 생체 형틀법으로 구현할 수 없었던 다세포 생물의 특정 구조체를 모방한 금속 구조체를 합성한 최초의 사례이며, 이를 통해 생체 형틀법을 활용할 수 있는 생체 구조체의 범위를 넓혔다ˮ 라며 "합성된 생체 재료는 이번 연구에서 보여준 촉매뿐만 아니라 전기화학 및 바이오센서에도 활용 가능할 것으로 예상된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 과학난제도전 융합연구개발사업, 우수신진연구사업, 뇌과학원천기술개발사업 등의 지원을 받아 수행됐다.
2022.08.10
조회수 7205
-
촉매 반응 활성도의 정량적 분석이 가능한 측정 플랫폼 개발
우리 대학 신소재공학과 정우철 교수, 기계공학과 이강택 교수와 충남대학교 김현유 교수 공동 연구팀이 촉매 반응점 탐색 및 각 지점의 활성을 정량적으로 측정할 수 있는 금속 나노입자 기반 분석 플랫폼 개발에 성공했다고 28일 밝혔다.
촉매란 반응 과정에서 소모되거나 변하지 않으면서 반응 속도를 빠르게 만드는 물질을 말하며, 반응에 참여하지만 소모되지 않기 때문에 소량만 있어도 반응 속도에 지속적으로 영향을 미칠 수 있는 물질이다. 반응을 빠르게 하는 촉매 반응은 더 적은 활성화 에너지를 필요로 하기 때문에 다양한 산업에 활용되고 있다. 백금 등을 이용해 화석 연료의 연소로 인해 발생하는 배기가스의 해로운 부산물을 분해하는 반응을 예로 들 수 있다.
연구팀은 균일한 크기의 금속 나노입자 합성 기술과 3차원 전자 단층촬영 기법을 활용해 촉매 핵심 반응점인 금속-가스-산화물 및 금속-가스상 접합 계면의 수를 정량적으로 분석했으며, 이 같은 결과를 측정된 촉매 반응성과 연계시키는 방식으로 촉매 반응 활성도의 정량적 분석이 가능한 측정 플랫폼을 설계했다. 이러한 기술은 특정 반응에 활용이 제한되지 않기 때문에 향후 여러 촉매 반응 분야에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
신소재공학과 이시원, 하현우 박사후연구원, 기계공학과 배경택 박사과정생 공동 제1 저자로 참여한 이번 연구는 재료화학분야 국제 학술지 `켐(Chem, IF=22.804)'에 12월 23일 자 온라인판에 게재됐다. (논문명 : A measure of active interfaces in supported catalysts for high-temperature reactions).
금속 나노입자 촉매는 매우 적은 양으로 우수한 촉매 활성을 보일 수 있다는 가능성으로 에너지·환경 등 여러 분야에서 큰 관심을 받고 있다.
하지만 나노입자로 구성된 촉매 소재는 높은 작동온도에서 서로 응집되는 특성이 있으며 이는 결과적으로 촉매 활성을 저해하는 한계로 작용한다. 그뿐만 아니라, 실제 반응 작동 환경에서 금속 입자 촉매의 구체적인 반응 활성 지점이 어디인지, 각 지점에서의 반응활성도는 얼마나 되는지 그 양을 정량적으로 비교·분석할 수 있는 기술이 없어 해당 분야 발전에 한계가 있었다.
연구팀은 문제 해결을 위해 균일한 크기로 금속 나노입자 촉매를 합성해 입자의 구조를 제어하는 데 성공했으며, 이를 산화물 막으로 감싸는 코팅기술을 적용해 고온에서 나노입자가 응집되는 현상을 해결했다. 여기에 3차원 전자 단층촬영 기법, 스케일링 관계식, 그리고 밀도범 함수 이론을 적용하고 이를 다양한 조건에서 측정한 반응성과 연계시킴으로써 구체적인 반응 지점 및 활성을 규명했다.
연구팀은 이번 연구에서 대표적 귀금속 촉매인 백금과 고온 촉매 반응인 메탄산화반응을 활용했으나, 이번 기술은 향후 소재 종류 및 반응 종류에 상관없이 다양한 분야에 폭넓게 응용 및 적용될 수 있다.
정우철 교수는 "이번 연구를 통해서 주어진 반응에 대한 금속 나노입자 촉매의 반응 특성을 정량적으로 분석할 수 있는 고신뢰성 측정 플랫폼을 구축했다ˮ며, "이는 앞으로 우수한 복합촉매 소재 선별 등 촉매설계 종합 솔루션을 제공하는 데 활용될 것으로 기대한다ˮ 라고 말했다.
우리 대학 물리학과 양용수 교수, GIST 김봉수 교수 연구팀에서도 공동으로 참여한 이번 연구는 한국연구재단 나노·소재원천기술개발사업의 지원을 받아 수행됐다.
2021.12.28
조회수 8667
-
페로브스카이트 상에서 이산화탄소 열화학적 환원반응 기작 규명
우리 대학 생명화학공학과 이재우 교수 연구팀이 페로브스카이트* 상에서 발생하는 이산화탄소의 열화학적 환원반응의 기작을 규명하고, 반응을 최적화하기 위한 요인을 다변화하는 데에 성공했다고 13일 밝혔다.
☞ 페로브스카이트: ABO3 (A = 란탄족, B = 전이금속)의 분자식을 가진 입방체 구조의 산화금속으로 차세대 태양전지에 응용되는 물질로 알려져 있다.
이 교수 연구팀은 이산화탄소의 환원반응 성능을 예측하기 위해, 기존에 주로 활용돼왔던 산소 공공 형성 에너지 계산 외에도 수소 흡착에너지, 이온 전도도 및 이산화탄소의 흡착상태를 분석해 성능 예측의 정확도를 더욱 높일 수 있다는 것을 확인했다. 연구팀이 다변화에 성공한 요인을 통해, 탄소중립 실현을 개발될 다분야의 이산화탄소 전환 및 환원 촉매의 성능을 더욱 정확하게 예측할 수 있을 것으로 기대된다.
우리 대학 생명화학공학과 임현석 박사와 김이겸 박사과정이 공동 제1 저자로 참여하고 영남대학교 화학공학부 강도형 교수 연구팀과의 협업을 통해 이루어진 이번 연구 결과는 국제 학술지 `ACS 카탈리시스(ACS Catalysis)'에 9월 17일 字 온라인판에 게재됐으며, 연구의 파급력을 인정받아 표지논문(Front cover)으로도 선정됐다. (논문명 : Fundamental Aspects of Enhancing Low-Temperature CO2 Splitting to CO on a Double La2NiFeO6 Perovskite).
페로브스카이트는 고온에서, 그리고 지속적인 산화환원을 거치면서도 그 구조를 안정적으로 유지할 수 있어 산화탄소 환원반응 및 물 분해반응에 활용될 수 있는 물질로 주목받고 있다. 하지만 기존에는 다양한 조성의 페로브스카이트 상에서 이산화탄소 환원반응의 성능을 예측하는 요인으로 `산소공공 형성 에너지' 만을 활용했기 때문에 그 정확도가 다소 떨어진다는 단점이 있었다.
이 교수 연구팀은 란타넘-니켈-철산화물(La2NiFeO6 분자식) 더블 페로브스카이트를 합성하고 란타넘-니켈산화물(LaNiO3)과 란타넘-철산화물(LaFeO3)과의 비교 분석을 실시했다. 페로브스카이트 내 니켈(Ni) 구역은 산소 공공의 형성뿐만이 아닌 수소 흡착과 이온 전도도를 향상하는 것을 통해 입자의 환원을, 철(Fe) 구역은 이산화탄소의 강한 흡착을 방지해 이산화탄소의 해리 반응을 촉진하는 것을 확인했다. 이에 La2NiFeO6 더블 페로브스카이트에서는 각 구역의 역할이 시너지로 발현돼 각각의 단일 페로브스카이트 대비 월등한 이산화탄소 전환을 보이는 것을 확인해 일련의 요인들이 모두 성능을 예측하는 데 활용될 수 있다는 것을 연구팀은 확인했다.
이재우 교수는 "페로브스카이트는 대량생산이 가능해 스크리닝 과정을 거쳐 최적화한 조성으로 페로브스카이트를 생산할 시, 이산화탄소를 전환해 활용하는 탄소 포집 및 활용저장 기술(CCUS)의 조기 실현에 기여할 것ˮ이라고 설명했다.
공동 제1 저자인 임현석 박사는 "연구를 통해 페로브스카이트 상에서의 이산화탄소 전환뿐만이 아닌, 물 분해 기반의 수소생산 등 다양한 반응연구를 촉진해 탄소중립에 다방면으로 기여할 수 있을 것ˮ이란 기대를 표했으며, 김이겸 박사과정생도 "페로브스카이트 촉매에서의 이산화탄소 전환 반응 기작 규명을 통해 분리와 반응이 동시에 진행될 수 있는 열화학 전환기술 상용화에 큰 역할을 할 수 있을 것ˮ 으로 기대했다.
한편 이번 연구는 한국연구재단과 한국에너지기술연구원의 지원을 받아 수행됐다.
2021.10.13
조회수 9341
-
코로나19 폐 손상 유발 면역세포의 특성 및 역동적 변화 규명
우리 대학 의과학대학원 박수형 교수 연구팀이 충북대학교 의과대학 최영기 교수(현 한국바이러스기초연구소장), 지놈인사이트 이정석 박사팀과 공동연구를 통해 코로나19 바이러스 증식의 절정기, 그리고 회복기에 걸쳐 나타나는 면역반응의 양적·질적 변화를 규명해 폐 손상을 일으키는 특정 면역세포의 특성과 기원을 규명했다고 4일 밝혔다. 이는 코로나19 환자에서 과잉 면역반응에 의해 발생하는 폐 손상을 조절할 수 있는 타깃(대상)을 제시하는 연구 결과다.
코로나19에 감염되면 처음 바이러스가 유입되어 감염되는 폐 조직 내에서 즉각적인 면역세포의 활성화가 일어남이 알려져 있다. 이 면역세포의 대부분은 대식세포(macrophage)인데, 코로나19에 환자가 감염된 후 혈류를 통해 활성화된 단핵구가 폐 조직으로 들어오며 추가로 대식세포로 분화하며 바이러스에 감염된 폐 조직 세포들을 제거하여 초기 방어로 대응을 하게 된다.
코로나19 감염 후 일어나는 초기의 면역반응과 그 시간에 따른 변화를 폐에서 면역세포를 여러 차례 얻어 연구하는 것은 환자를 통해서는 불가능하다. 따라서 페럿(식육목 족제비과의 포유류)과 같은 호흡기감염 동물모델이 바이러스 감염 후 면역반응의 정확한 면모를 밝히는 데 중요한 역할을 한다. 충북대학교 최영기 교수 연구팀은 실험동물인 페렛이 SARS-CoV-2 바이러스에 감수성이 있다는 것을 세계 최초로 학계에 보고했다.
이번 연구에서 KAIST-충북대-지놈인사이트 공동연구팀은 코로나19 바이러스 감염 동물모델을 이용하여 감염이 진행되는 동안의 폐 내 면역세포의 변화를 첨단 연구기법인 단일세포 시퀀싱을 이용해 정밀하게 분석했고, 폐 면역세포의 대부분을 차지하는 대식세포를 10가지 아형으로 분류해 이중 어떤 대식 세포군이 폐 손상에 기여하는지를 분석했다.
연구팀은 코로나19 바이러스 감염 2일 후부터 혈류에서 활성화된 단핵구가 급격하게 폐 조직으로 침윤하며 대식세포로 분화하며 양적으로 증가함을 확인했다. 특히 이러한 혈류 기원 침윤 대식세포들은 염증성 대식세포의 성질을 강하게 나타내며, 바이러스 제거에 기여할 뿐만 아니라 조직손상을 일으키는 주범이 될 수 있음을 제시했다. 또한 이러한 대식세포 분화의 양상은 중증 코로나19 환자들의 폐 조직에서 관찰되는 변화와도 높은 유사도를 보임을 규명했다.
보건복지부와 KAIST의 지원을 받아 수행한 이번 연구 결과는 국제 저명 학술지인 네이처 커뮤니케이션스(Nature Communications)誌 7월 28일 字에 게재됐다(논문명: Single-cell transcriptome of bronchoalveolar lavage fluid reveals sequential change of macrophages during SARS-CoV-2 infection in ferrets).
공동연구팀은 현재 면역억제제를 투약받은 코로나19 환자들의 면역반응 변화를 종적으로 추적하며, `싸이토카인 폭풍'과 같은 치명적인 중증 코로나19의 과잉면역반응의 적절한 제어와 약물의 면역학적 효과를 규명하는 후속 연구를 진행하고 있다.
이번 연구의 제1 저자인 지놈인사이트 이정석 박사와 우리 대학 고준영 박사과정은 "이번 연구 결과는 코로나19 환자의 폐가 경험하게 되는 선천 면역반응을 단일세포 전사체라는 오믹스 데이터를 이용해 다각적으로 분석해, 바이러스 감염 시에 발생하는 대식세포 면역반응의 이중성을 이해하는 중요한 자료ˮ고 설명했다.
충북대학교 최영기 교수는 “SARS-CoV-2 바이러스 감염 후 시간의 경과에 따른 바이러스의 증식성 변화 및 병리학적 분석을 수행한 이번 결과는 전반적인 바이러스 감염 및 회복에 관여하는 병인기전을 이해할 수 있는 중요한 연구자료“라고 말했다.
박수형 교수는 "코로나19가 감염된 직후 시간에 따른 변화를 감염 전과 비교하여 정밀하게 규명한 것이 이 연구의 가장 큰 수확이며, 감염 후 폐 손상이 특정 염증성 대식세포에 의한 것임을 규명하여 중증 코로나19 환자에서 사용되는 면역억제 치료 전략을 정교하게 만들 수 있는 근거를 마련했다ˮ라고 말했다.
2021.08.05
조회수 10648
-
코로나19 회복 후, 장기간 유지되는 기억 T세포 규명
우리 대학 의과학대학원 신의철 교수 연구팀이 고려대 안산병원 최원석 교수, 충북대병원 정혜원 교수와의 공동연구를 통해 코로나19 회복자들에서 기억 T세포가 10개월 동안 잘 유지되며, 특히 줄기세포 유사 기억세포가 효율적으로 잘 발생함을 규명했다고 7일 밝혔다. 이는 중증 코로나19에 대해 방어를 하는 기억 T세포가 장기간 유지될 것을 제시하는 연구 결과다.
코로나19에 한 번 걸렸다 회복되면 이에 대항하는 방어면역이 형성된다. 그리고 이러한 방어면역의 양대 축으로 중화항체와 기억 T세포가 존재함이 알려져 왔다. 하지만 코로나19 바이러스에 대한 중화항체는 시간이 지남에 따라 감소하는 것으로 알려져, 최근에는 기억 T세포에 관한 관심이 증대되고 있다.
기억 T세포는 코로나19 감염 자체를 예방하지는 못하지만, 중증 코로나19로의 진행을 막는 것으로 알려진 중요한 면역세포다. 하지만, 코로나19 회복자에서 기억 T세포가 얼마나 오래 유지될 수 있는지, 그리고 그 기능도 오랜 기간 잘 유지되는지는 명확히 알려진 바가 없었다.
이번 연구에서 KAIST-고려대안산병원-충북대병원 공동연구팀은 한국인 코로나19 회복자들을 대상으로 10개월 동안 추적 연구를 수행해, 코로나19 바이러스에 대항하는 기억 T세포가 어떤 특성을 보이는지, 그리고 얼마나 오랫동안 유지되는지 등 지금까지 명확히 알려지지 않았던 질문들에 대한 답을 구했다. 특히 이번 연구에서는 최첨단 면역학 연구기법을 활용해, 기억 T세포의 장기 유지에 중요한 줄기세포 유사 기억 T세포의 발생을 분석하고, 한 번에 여러 가지 기능을 나타내는 다기능성 기억 T세포의 존재를 분석했다.
공동연구팀은 코로나19 회복 직후부터 나타나는 기억 T세포가 10개월의 추적관찰 동안 잘 유지됨을 밝혔다. 특히 이러한 기억 T세포 유지는 애초에 걸렸던 코로나19의 경증/중증 여부와는 상관없이 대부분의 회복자들에게서 잘 나타남을 확인했다. 그리고 10개월이 지난 후에도 다시 코로나19 바이러스 항원을 만나면 기억 T세포는 증식을 활발히 하며 한 번에 여러 가지 기능을 수행하는 다기능성을 잘 나타냄도 확인했다. 이러한 결과는 회복자가 코로나19 바이러스에 다시 노출됐을 때 기억 T세포들의 방어면역 기능이 잘 나타날 것임을 시사하는 결과다.
특히, 코로나19 회복자들에서 줄기세포 유사 기억 T세포가 잘 발생함을 규명했다. 줄기세포 유사 기억 T세포는 장기간에 걸쳐 기억 T세포들의 숫자를 유지해주는 재생기능을 가진 세포로서, 이번 연구 결과는 코로나19 회복자들의 기억 T세포가 상당히 오랜 기간 동안 잘 유지될 것임을 기대하게 하는 연구 결과다. 특히 이번 연구는 코로나19 회복 후 세계 처음으로 줄기세포 유사 기억 T세포의 발생을 보고한 것으로 세계 면역학계의 주목을 받고 있다.
삼성미래기술육성재단과 KAIST의 지원을 받아 수행한 공동연구팀의 이번 연구 결과는 국제 저명 학술지인 네이처 커뮤니케이션스(Nature Communications)誌 6월 30일 字에 게재됐다(논문명: SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells).
연구팀은 코로나19 회복자들의 장기 방어면역을 확인함과 동시에, 현재 사용되고 있는 상용화된 코로나19 백신들의 효능 평가와 추후 백신 개발의 핵심 목표 중 하나인 T세포 방어면역 장기 지속성에 대한 지표를 제시한 점에 관해 연구 의미를 부여했다.
공동연구팀은 현재 코로나19 백신을 접종받은 사람들의 기억 T세포 형성 및 기능 특성을 규명함과 동시에 코로나19 회복자들의 기억 T세포와의 비교를 통해 백신의 면역학적 효과를 파악하는 후속 연구를 진행하고 있다.
이번 연구의 제1 저자인 정재형 우리 대학 박사과정 연구원과 나민석 박사후 연구원(現 연세의대 임상강사)은 "코로나19로부터 회복 후 최대 10개월까지도 기억 T세포 면역반응이 유지됨을 확인했다ˮ며 "이러한 방어면역 지속성에 중요한 역할을 할 것으로 예측되는 줄기세포 유사 기억 T세포의 특성 및 기능 규명을 통해 재감염의 이해 및 코로나19 백신에 의한 기억 T세포 평가의 중요 지표를 마련했다ˮ고 설명했다.
신의철 교수는 "이번 연구는 코로나19 회복자의 기억 T세포 기능 및 특성을 세계에서 최장기간 연구한 결과로서 시간에 따른 방어면역 분석을 통해 향후 최적화된 차세대 백신 개발 전략을 설계할 수 있는 토대를 마련했다는 점에서 의미가 있는 연구ˮ라고 말했다.
2021.07.07
조회수 11308