-
기존보다 340% 피부 탄력 향상 LED 마스크 개발
피부 노화는 많은 사람들의 관심사로 주름, 처짐, 탄력 저하 등의 문제를 해결하기 위하여 최근 웨어러블 LED 마스크가 주목받고 있다. 우리연구진이 기존 제품 대비 피부 탄력을 340% 향상시키는 LED 마스크 개발에 성공했다.
우리 대학 신소재공학과 이건재 교수 연구팀이 3,770개의 마이크로 LED와 광확산층*을 활용하여 피부 노화를 억제할 수 있는 진피 자극 얼굴밀착형 면발광 마이크로 LED 마스크를 개발했다고 29일 밝혔다.
*광확산층: 광원이 방출하는 빛을 고르게 분산시켜 균일한 발광을 유도하는 층
기존 제품은 딱딱한 구조와 점발광 방식*으로 인해 피부에 밀착되지 않고 광손실이 발생하여, 치료용 빛이 진피까지 균일하게 전달되지 못하는 한계가 있다.
*점발광 방식: 점발광이란 점으로 보이는 발광의 형태을 일컫음
이 교수팀은 유연한 기판에 3차원 종이접기 구조를 적용해 얼굴의 굴곡과 돌출된 부위에 밀착할 수 있는 LED 마스크를 개발했다. 이를 통해 1.5mm 깊이의 진피까지 빛을 균일하게 전달할 수 있으며, 진피 내 미토콘드리아를 자극하고 콜라겐과 탄력 섬유의 합성을 촉진했다.
그 결과, 피부 탄력, 주름, 처짐, 모공 등 8가지의 모든 피부 노화 지표에서 탁월한 개선 효과를 확인했다. 특히 33명의 피시험자를 대상으로 한 대학병원 임상시험에서 기존 LED 마스크 대비 진피 층의 피부 탄력이 340% 향상되는 통계학적으로 유의미한 효과를 보였다.
이건재 교수는 "이번에 개발된 얼굴 밀착 면발광 마스크는 저온화상의 부작용 없이 얼굴 진피 전체에 미용 효과를 제공하여, 인류의 삶의 질을 향상시키는 홈케어 노화 치료를 가능하게 할 것”이라고 강조했다.
또한, "교원창업 기업 프로닉스를 통해 11월부터 제품을 본격적으로 판매할 예정이며, 현재 탈모 치료를 위한 면발광 마이크로 LED 제품의 임상 계획도 수립하고 있다.”라고 말했다.
신소재공학과 김민서 석·박사 통합과정, 안재훈 박사과정이 공동 제1저자로 참여한 이번 연구는 국제 학술지 어드밴스드 메터리얼즈(Advanced Materials)에 10월 22일 자로 출판됐다.
(논문명: Clinical Validation of Face-fit Surface-lighting Micro Light-emitting Diode Mask for Skin Anti-aging Treatment)
한편, 이번 연구는 글로벌 생체융합 인터페이싱 소재 센터(선도연구센터)의 지원을 받아 수행되었다.
2024.10.29
조회수 1334
-
세계 최초로 체내 OLED 빛치료 구현
빛 치료는 외과적 혹은 약물적 개입 없이도 다양한 긍정적 효과를 불러일으킬 수 있어 최근 꾸준히 주목받고 있다. 하지만 피부 내에서 빛의 흡수 및 산란 등의 한계로 인해 보통 피부 표면 등 체외 활용에 국한되며 내과적 중요성이 있는 체내 장기에는 적용하기 어려운 문제가 있었다.
우리 대학 전기및전자공학부 유승협 교수, 서울아산병원 소화기내과 박도현 교수, 그리고 한국전자통신연구원 실감소자연구본부로 이루어진 공동연구팀이 유기발광다이오드(organic light-emitting diode, OLED) 기반 *카테터를 세계 최초로 구현해, 빛 치료를 체내 장기에도 적용할 수 있는 길을 열었다고 13일 밝혔다.
☞ 카테터(catheter): 주로 환자의 소화관이나 기관지, 혈관의 내용물을 떼어 내거나 약제나 세정제 등을 신체 내부로 주입하는 등에 쓰이는 고무 또는 금속 재질의 가는 관.
공동연구팀은 카테터 형태의 OLED 플랫폼을 개발해 십이지장과 같은 튜브 형태의 장기에 직접 삽입할 수 있는 OLED 빛 치료기기를 개발, 이를 현대의 주요 성인병 중 하나인 제2형 당뇨병 개선 가능성을 확인하고자 했다.
공동연구팀은 기계적으로 안정적이면서도 수분 환경에서도 잘 동작할 수 있는 초박막 유연 OLED를 개발했고, 이를 원통형 구조 위를 감싸는 형태로 전 방향으로 균일한 빛을 방출하는 OLED 카테터를 구현했다. 그뿐만 아니라, 면 광원으로서 OLED가 갖는 특유의 저 발열 특성으로 체내 삽입 시 열에 의한 조직 손상을 방지했으며, 생체적합성 재료 활용을 통해 생체에 미치는 부작용을 최소화했다.
공동연구팀은 OLED 카테터 플랫폼을 통해 제2형 당뇨병 쥐 모델 (Goto-Kakizaki rat, GK rat)을 대상으로 동물실험을 진행했다. 십이지장에 총 798 밀리주울 (mJ)의 빛 에너지가 전달된 실험군의 경우 대조군에 비해 혈당 감소와 인슐린 저항성이 줄어드는 추세를 확인했다. 또한 간 섬유화의 저감 등 기타 의학적 개선 효과도 확인할 수 있었다. 이는 체내에 OLED 소자를 삽입하여 빛 치료를 진행한 세계 최초의 결과다.
☞ 밀리주울 (mJ): 천분의 일 주울 (Joule)로, 에너지의 단위이다. 광원에서 나오는 빛의 양은 단위 시간당 에너지의 단위인 밀리와트 (mW)로 통상 나타내는데, 밀리주울은 밀리와트에 시간 (초)을 곱하여 계산된다. 본 연구에서는 OLED 카테터로부터 1.33 밀리와트의 붉은색 빛을 10분간 (600초) 쪼여 총 798 mJ의 빛 에너지를 전달하였다.
우리 대학 유승협 교수 연구실의 심지훈 박사와 채현욱 박사과정, 울산대학교 의과대학 서울아산병원 박도현 교수 연구실의 권진희 박사과정이 공동 제1 저자로 수행한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스 (Science Advances)’ 2023년 9월 1일 자 온라인판에 게재됐다. (논문명: OLED catheters for inner-body phototherapy: A case of type 2 diabetes mellitus improved via duodenal photobiomodulation)
유승협 교수는 “생체 의료 응용으로의 OLED 기술 확보는, 주로 디스플레이 분야 또는 조명 분야에 국한된 OLED 산업의 새로운 지평을 여는데 중요한 과제 중 하나로서, 이번 연구는 새로운 응용분야를 발굴하고 원천기술 확보함에 있어 소자-의학 그룹 간의 체계적인 융합 연구와 협업의 중요성을 잘 보여주는 사례”라고 말했다.
또한 서울아산병원 박도현 교수는 “십이지장 내 OLED 광조사가 장내 마이크로바이옴에 영향을 주어 장내 유익균의 증가 및 유해균의 감소를 통한 제2형 당뇨병의 혈당 개선, 인슐린 저항성 감소 및 간 섬유화 억제를 일으키는 것으로 보인다. OLED의 이상적 광 특성을 활용해 인체 내에서 빛 치료 가능성을 본 연구로서 향후 다양한 응용 가능성이 기대된다. 다만, 본 결과는 소형 동물에서 얻어진 것으로, 소동물-대동물-사람 등의 순차적인 검증 단계가 필요하며, 그 원리에 관한 연구가 함께 수반되어야 한다”라고 말하며, 이번 연구의 중요성을 강조했다.
이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 한국전자통신연구원 연구운영비지원사업 (ICT 소재⦁부품⦁장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2023.09.13
조회수 4308
-
생생한 가상현실 구현 패터닝 기술 개발
디스플레이 패널에 들어가는 수많은 픽셀은 빛을 낼 수 있는 발광 소재들을 고해상도로 패터닝(patterning) 함으로써 얻어진다. 특히, 증강현실/가상현실용 근안(near-eye) 디스플레이의 경우 우수한 화질을 얻기 위해서는 기존 디스플레이 이상의 초고해상도 픽셀 패턴이 반드시 필요하다.
우리 대학 신소재공학과 조힘찬 교수 연구팀(공동저자 강정구 교수 연구팀)이 발광성 나노소재의 높은 발광 효율을 유지하며 초고해상도 패턴을 제작하는 패터닝 기술을 개발했다고 17일 밝혔다.
높은 색 순도와 발광 효율로 인해 차세대 발광체로 주목받고 있는 양자점(퀀텀닷)이나 페로브스카이트 나노결정과 같은 용액공정용 나노소재들의 경우, 고유의 우수한 광학적 특성을 유지하면서 균일한 초고해상도 패턴을 제작하는 것이 어렵기 때문에 이를 극복할 수 있는 새로운 소재 및 공정 기술을 개발하는 것이 차세대 디스플레이 구현에 있어서의 필수 요소라고 할 수 있다.
조 교수 연구팀은 양자점과 페로브스카이트 나노결정이 가지는 강한 광촉매 특성을 활용하여, 양자점 또는 페로브스카이트 나노결정에 빛이 조사되었을 때 나노결정 리간드 사이에서 가교(crosslinking) 화학 반응이 쉽게 유도되도록 소재를 설계하였고, 이를 통해 발광성 나노소재의 고유한 광학적 특성을 완전히 보존할 수 있는 초고해상도 패터닝 기술을 개발했다.
연구팀은 해당 공정을 통해 560 나노미터(nm) 수준의 패턴 너비를 가지는 초고해상도(12,000 ppi급) 페로브스카이트 나노결정 패턴을 균일하게 제작할 수 있음을 보였다. 이는 증강현실/가상현실 디스플레이에서 일반적으로 요구되는 해상도(수천 ppi)를 훨씬 상회하는 값이다. 형성된 발광 나노소재 패턴은 물리적, 광학적 특성 측면에서 높은 균일도를 보였다.
또한 연구팀은 정밀한 분석을 통해 개발된 광촉매 패터닝 공정에서의 정확한 반응 메커니즘을 규명하였고, 이러한 패터닝 메커니즘이 양자점과 페로브스카이트 뿐만 아니라 발광성 고분자에까지 범용적으로 적용될 수 있는 높은 확장성을 가지는 기술이라는 것을 확인하였다. 더 나아가, 연구팀은 개발된 광촉매 패터닝 기술이 연속적인 다층 공정 및 발광 다이오드 소자 제작에 적용 가능하다는 것을 증명하여 높은 산업적 활용 가능성을 입증하였다.
조힘찬 교수는 “본 광촉매 패터닝 기술은 간단한 공정을 통해 다양한 발광 나노소재의 우수한 광학적 특성을 그대로 유지하면서도, 초고해상도 패터닝을 쉽게 가능하게 한다는 점에서 차세대 디스플레이, 이미지 센서 등 다양한 산업에서 유용하게 활용될 수 있을 것으로 기대하고 있다”라고 언급하였다.
신소재공학과 맹성규 석사과정 및 박선재 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스 (Science Advances)' 8월 9권 33호에 출판됐다. (논문명 : Direct photocatalytic patterning of colloidal emissive nanomaterials).
한편 이번 연구는 한국연구재단 및 삼성전자의 지원을 받아 수행됐다.
2023.08.17
조회수 4539
-
면 발광 마이크로 LED 패치 개발로 피부 미백에 획기적 효과
우리 대학 신소재공학과 이건재 교수팀과 세브란스 오상호 교수팀이 멜라닌 생성 억제를 위한 *면 발광 마이크로 LED 피부 패치를 개발했다고 10일 밝혔다.
☞ 면 발광 마이크로 LED 피부 패치: 인간의 머리카락의 ~1/100 의 두께를 가지는 매우 작은 LED 칩을 사용하여 제작한 인체에 부착 가능한 광치료 패치다. 기존의 점 발광의 특성을 가지는 LED와 달리, 구형 실리카 입자를 이용한 빛의 산란을 통해 면 발광의 특성을 갖는다.
멜라닌은 피부 내 존재하는 갈색 또는 흑색 색소로, 자외선 혹은 스트레스와 같은 외부 요인에 의해 비정상적으로 합성될 경우, 기미, 주근깨, 검버섯 등의 질환 형태로 나타나기 때문에 정상적으로 치료할 필요가 있다.
최근 피부질환 치료 및 미용을 위한 LED 기기들이 지속적으로 출시되고 있지만, 치료 효과에 있어서는 여전히 논란이 있다. 이는 LED가 피부에 밀착될 수 없어, 거리에 따른 광 손실 및 발열 문제로 인하여 역효과를 낼 수 있기 때문이다. 유의미한 피부 미용 효과를 얻기 위해서는 LED 광원을 피부에 밀착하여 조사함으로써, 균일한 빛을 피부 진피 내까지 효과적으로 전달해야 한다.
이에, 이건재 교수팀은 천여 개의 마이크로 LED를 4×4 cm2의 플라스틱 기판 위에서 구현하고, 빛의 확산을 위한 실리카 입자를 코팅함으로써 피부에 밀착하여 붙일 수 있는 면 발광 마이크로 LED 패치를 제작했다. 100 마이크로미터(μm) 크기의 마이크로 LED는 매우 작아 유연성을 가지며, 수직으로 배열된 전극은 LED의 발열을 줄여, 인간 피부 위에서 열적 손상 없이 장시간 구동 가능하다.
연구팀은 인간 피부 세포와 쥐의 등 피부에 면 발광 마이크로 LED 패치를 밀착시키고 조사하여 멜라닌 생성 억제 효능을 확인하였으며, 기존 상용 LED 대비, 피부 조직에 미치는 독성이 적을 뿐만 아니라, 효과적이고 일관된 경향으로 멜라닌 생성량을 감소시키는 데 성공했다. 또한, 피부 조직 분석을 통하여 멜라닌 생성에 관여하는 MITF (microphthalmia-associated transcription factor), Melan-A, 티로시나아제를 포함하는 단백질 및 효소 발현의 억제가 확인되었다.
이건재 교수는 "이번에 개발한 무기물 기반 면 발광 마이크로 LED 패치는 광 효율, 신뢰성, 수명 등이 우수하며, 기존 광 치료 기기와 달리 부작용은 줄이고 치료 효과를 극대화하여 코스메틱 분야에 큰 영향을 줄 것”이라고 말했다. 면 발광 마이크로 LED 패치는 현재 이 교수가 교원 창업한 ㈜프로닉스에 기술이전되어, 양산 장비를 갖추고 내년 3월 제품 출시를 앞두고 있다.
이번 연구는 웨어러블플랫폼 소재기술센터, 휴먼플러스 융합연구개발사업의 지원을 받아 수행됐으며, 국제 학술지 `어드밴스드 헬스케어 메터리얼즈(Advanced Healthcare Materials)'에 11월 게재됐다.
2022.11.10
조회수 6107
-
페로브스카이트 LED 소재의 발광 효율 극대화 메커니즘 규명
우리 대학 화학과 김형준 교수 연구팀이 한밭대학교 홍기하 교수 연구팀과 공동 연구를 통해 페로브스카이트 LED 나노 소재에서 일어나는 발광 효율의 향상 원인을 이론적으로 규명하는 데 성공했다고 12일 밝혔다.
할로겐 페로브스카이트 화합물은 태양 빛을 이용해 높은 효율로 전기를 생산할 수 있어 차세대 태양전지에 사용 가능한 소재로 주목받고 있는 물질이다. 한편, LED는 태양전지와는 반대로 전기를 이용해서 빛을 방출하는 장치로서 디스플레이에 널리 사용되고 있다. 놀랍게도 페로브스카이트는 빛을 전기로 변환시키는 효율뿐 아니라 전기를 빛으로 변환시키는 발광 효율 또한 높은 것으로 알려져 차세대 LED 소재로서도 각광받고 있다.
본래 `페로브스카이트'는 러시아 과학자 페로브스키의 이름을 딴 광물 결정 구조의 이름이다. 연구팀은 이러한 페로브스카이트 결정 구조가 내부의 뒤틀림 정도에 따라 다양한 상(phase)을 가질 수 있음에 주목했다. LED 소재로 널리 사용되는 CsPbBr3라는 페로브스카이트 소재는 결정 구조 내부에 뒤틀림이 존재하는데, 이를 작은 나노 구조로 만들게 되면 이러한 뒤틀림이 최소화된 상이 형성된다. 연구팀은 비단열 양자 동역학 시뮬레이션을 이용해 이러한 결정 구조의 뒤틀림 제어가 발광 효율을 높이기 위한 주요 소재 성질 제어 전략임을 밝혔다.
연구진은 "이번 연구를 통해 페로브스카이트의 소재 결정 구조적 특성과 빛을 발생하는 광 동역학적 특성 사이의 복잡한 상관관계를 규명할 수 있었다ˮ고 말했으며 "추후 이러한 이론 기초 연구를 더욱 확장해 페로브스카이트 결정상 제어를 통한 발광 효율 극대화 전략을 도출해내어 페로브스카이트 기반의 고효율 LED 개발에 기여할 수 있을 것ˮ이라고 말했다.
우리 대학 하윤후 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국화학회지 (Journal of the American Chemical Society)' 에 지난해 12월 27일 字 온라인 게재됐다. (논문명: Enhanced Light Emission through Symmetry Engineering of Halide Perovskites).
한편 이번 연구는 한국연구재단(NRF)의 중견연구사업과 선도연구센터 지원 사업, 나노소재기술개발사업으로 진행됐다.
2022.01.12
조회수 9144
-
디스플레이 구동 가능한 OLED 전자 섬유 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 정보 출력이 가능한 유기발광다이오드(OLED) 전자 섬유를 개발했다고 12일 밝혔다.
전자 섬유는 실제 입을 수 있는 형태의 소자로서 기존 2차원 평면 소자와는 다르게 인체의 다양한 움직임에 순응하고 뛰어난 착용성과 휴대성을 제공할 수 있는 섬유의 1차원 구조 덕분에 차세대 폼 팩터(form-factor)로 주목받고 있다. 특히나 빛을 방출하는 전자 섬유는 패션, 기능성 의류, 의료, 안전, 차량 디자인 등 다양한 응용 잠재력에 많은 주목을 받고 있다.
하지만 지금까지의 발광 전자 섬유 연구는 디스플레이로 활용되기엔 부족한 전기광학적 성능을 보여 왔거나 단순히 소자 단위로만 연구가 진행 또는 종횡비가 긴 2차원 평면 단위에서 연구가 이루어져 응용 기술 개발에 어려움이 있었다.
최경철 교수 연구팀은 OLED 전자 섬유 디스플레이 구현을 위해 높은 전기광학적 성능 구현과 함께 주소 지정 체계 구축에 주목했다. 연구팀은 먼저 300 마이크로미터(µm) 직경의 원통형 섬유 구조에 적합한 RGB 인광 OLED 소자 구조를 설계했고 연구팀이 보유한 원천기술인 딥 코팅 공정을 활용해 평면 OLED 소자에 버금가는 수준의 OLED 전자 섬유를 개발했다.
특히 고효율을 얻을 수 있는 인광 OLED를 섬유에 성공적으로 구현해 최고 1만 cd/m2(칸델라/제곱미터) 수준의 휘도, 60 cd/A(칸델라/암페어) 수준의 높은 전류 효율을 보였다. (이는 기존 기술 대비 약 5배 이상의 전류 효율에 해당하는 수치다.)
연구팀은 아울러 OLED 전자 섬유를 기반으로 안정적인 디스플레이 구동을 위해, OLED 전자 섬유 위에 접촉 영역을 설계해 직조된 주소 지정 체계를 구축했다. 그리고 문자와 같은 정보를 디스플레이 해 실제 입을 수 있는 기능성을 확인했다.
최 교수 연구팀 관계자는 이 전자 섬유가 디스플레이라는 표시 장치 관점에서 반드시 요구되는 밝은 밝기와 낮은 전력 소모를 위한 높은 전류 효율, 낮은 구동 전압, 그리고 주소 지정성을 갖췄다고 밝혔다.
이번 연구를 주도한 최 교수 연구팀의 황용하 박사과정은 "섬유 기반 디스플레이 구현을 위해 필수적으로 요구되는 요소 기술들을 구현하는 데 집중했다ˮ며 "전자 섬유가 가진 뛰어난 착용성과 휴대성을 제공함과 동시에 디스플레이 기능성을 구현해 패션, 기능성 의류 등 다양한 응용 분야에 적할 수 있을 것이라 기대된다ˮ고 말했다.
최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도한 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' (피인용지수(IF) 16.836) 2월 4일 字로 온라인 게재됐으며, 5월 3일 字로 전면 표지 논문(Front Cover)으로 게재됐다. (논문명: Bright-Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Light-Emitting Fibers: Toward Wearable Textile Information Displays)
한편, 이번 연구는 산업통상자원부 전자부품산업핵심기술개발사업과 LG디스플레이의 지원을 받아 수행됐다.
2021.05.12
조회수 48564
-
물과 고온·고습 환경에서도 안정적인 페로브스카이트 나노 입자 수지 개발
우리 대학 신소재공학과 배병수 교수 연구팀이 서울대학교 재료공학부 이태우 교수팀과 공동연구를 통해 물과 고온‧고습 환경 및 각종 화학물질에서도 매우 안정된 차세대 디스플레이용 색 변환 소재인 *페로브스카이트 나노 입자 발광 수지를 개발했다고 24일 밝혔다.
☞ 페로브스카이트(perovskite): 1839년 러시아 우랄산맥에서 새로 발견된 광물로 차세대 태양전지의 소재로 꼽히나 수분에 취약한 구조로 알려져 있음.
공동연구팀은 이번 연구를 통해 그동안 페로브스카이트 나노 입자의 가장 큰 난제였던 수분, 고온 및 다양한 화학적 환경에서 안정성을 담보할 수 없었던 기존 약점을 크게 개선했다. 따라서 배 교수팀의 연구는 페로브스카이트 나노 입자를 차세대 초고화질 디스플레이의 색 변환 소재로 활용할 수 있는 길을 연 것으로 학계는 평가하고 있다.
이번 연구 결과는 재료 분야 국제학술지 어드밴스드 머터리얼즈(Advanced Materials)에 12월 4일 字 온라인으로 게재됐으며 연구의 우수성을 인정받아 내부 표지논문(Inside Cover Article)으로도 선정됐다.(논문명: Extremely Stable Luminescent Crosslinked Perovskite Nanoparticles under Harsh Environments over 1.5 Years)
페로브스카이트는 유기 원소, 금속 그리고 할로겐원소로 구성돼있는 특별한 구조를 지닌 소재로 다양한 광전자소자와 태양전지 등에 사용되고 있다. 또 원료의 값이 싸며, 발광 효율이 높은 게 특징이다.
특히 매우 좁은 발광 파장 폭 때문에 현재 디스플레이에 사용되고 있는 퀀텀닷이나 유기 발광체와 대비해 폭넓은 색 재현율을 구현할 수 있어 기존 퀀텀닷을 대체하는 차세대 디스플레이의 색 변환 소재로 주목받고 있다. 이와 함께 페로브스카이트 발광체는 현존하는 발광체 중에서 유일하게 새로운 디스플레이의 색 표준인 REC. 2020을 만족하는 소재다.
다만 빛이나 수분 및 고온에 취약해서 대기 중에서 짧은 시간 내에 성능이 급격히 떨어지는 문제 때문에 실제 사용은 거의 불가능하다. 이런 문제해결을 위해 그동안 학계나 기업들은 페로브스카이트 물질을 유기 결합체가 둘러싸고 있는 나노 단위의 입자의 형태로(1 나노미터는 10억분의 1 미터) 제조해 수분이나 산소의 침투를 막거나, 나노 입자에 무기물 코팅, 복합구조 제작 및 고분자 수지로 제작하는 등 다양한 연구를 진행해왔다.
하지만 대부분 외부로부터 수분을 물리적으로 막는 방법들이며 제조공정이 매우 복잡하고 대기에서 매우 제한적인 안정성을 나타낸다. 게다가 강산, 강염기, 극성용매 및 고온 고습 환경에서 안정성을 담보하는 페로브스카이트 나노 입자 색 변환 소재는 지금까지 개발된 적이 없다.
공동연구팀은 우선 자체 개발한 솔-젤(Sol-Gel) 합성공정을 이용해 실록산(실리콘 기반의 고분자) 분자구조와 페로브스카이트 나노 입자를 한꺼번에 둘러싸는 캡슐화된 복합체 수지를 개발했다.
연구팀은 이 기술로 열에 강한 실록산 분자구조에 의해 페로브스카이트 나노 입자를 화학적으로 보호하고 별도의 차단층 없이도 페로브스카이트 나노 입자의 발광 안정성을 크게 향상하는 데 성공했다. 연구팀은 새로운 기술을 퀀텀닷에도 똑같이 적용하는 한편 고온‧고습 환경에도 안정된 실록산 캡슐화 퀀텀닷 수지를 개발하는 데 성공했다.
실록산으로 캡슐화된 페로브스카이트 나노 입자 수지는 제조과정 중 자외선 경화에 의해 발광 효율이 낮게 나타났지만 이후 다양한 화학적 환경 과 고온‧고습 환경(85℃/85%)에서도 원래의 높은 값(> 70%)으로 회복되는 특이한 현상을 보였다. 또 물속에서도 600일 이상 유지되는 등 매우 우수한 발광 안정성을 보였다. 연구팀은 화학적 캡슐화 작업과 함께 페로브스카이트 나노 입자 복합체가 물에 의해 안정화되는 현상을 광‧물리학적으로 분석했으며, 이론적으로 그 메커니즘을 규명했다.
공동연구팀은 마지막으로 디스플레이의 색 변환 층으로 성능을 확인한 결과 양자효율 및 색 재현율이 기존 퀀텀닷 대비 향상됐음을 밝혔다. 또한, 실록산 캡슐화를 통해 페로브스카이트 나노 입자 내의 납 (Pb)의 독성을 막아줌으로써 생체친화적인 특성도 나타내 상용화를 추진하는데도 문제가 없음을 확인했다.
이번 연구를 주도한 신소재공학과 배병수 교수는 "페로브스카이트 나노 입자가 차세대 디스플레이 색 표준을 맞출 수 있는 유일한 발광체이자 가격도 싼 편이지만 수분에 취약하다는 약점 때문에 대기 중에서 사용할 수 없어 디스플레이 색 변환 소재로 상용화하는 데는 매우 회의적이었다ˮ고 말했다.
배 교수는 이어 "연구팀이 개발한 신기술은 페로브스카이트 나노 입자가 기존 퀀텀닷을 대체하는 새로운 디스플레이 색 변환 소재로 활용하는 연구개발을 촉진하는 계기가 될 것이며 결과적으로 조기 상용화도 기대된다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 선도연구센터 웨어러블 플랫폼 소재 기술센터와 리더연구과제 (창의연구) 지원사업의 지원을 받아 수행됐다.
2020.12.28
조회수 50999
-
차세대 발광 물질 카본닷의 발광 특성 변화 메커니즘을 규명
우리 대학 생명화학공학과 김도현 교수 연구팀이 차세대 발광 물질인 이중 발광 *카본닷의 농도 의존성 발광 특성 변화 메커니즘을 규명했다고 5일 밝혔다.
☞ 카본닷(carbon-dot): 탄소 기반의 발광 물질로 풍부한 원료와 낮은 독성 및 환경친화적인 장점 때문에 기존에 상용화돼 있는 유기 발광체, 양자점(퀀텀닷)을 대체할 수 있는 차세대 발광 물질로 부상하고 있음.
김도현 교수 연구팀은 청색 및 적색을 이중 발광하는 카본닷을 합성한 후 농도에 따른 발광 특성 변화를 관찰해 카본닷 발광 소스 간 상호작용에 따른 현상을 분석했다. 김도현 교수팀의 연구 결과는 카본닷의 발광 특성 제어는 물론 이론적 이해를 가능케 함으로써 이중 발광 카본닷의 복잡한 발광 특성 해석에 새로운 근거를 제시한 것으로 평가받고 있다.
우리 대학 유효정 박사과정, 곽병은 석박사통합과정이 각각 제1, 제2 저자로 참여한 이번 연구는 국제 학술지 `피지컬 케미스트리 케미컬 피직스(Physical Chemistry Chemical Physics, PCCP)' 9월 22권 36호 표지논문으로 선정됐다. (논문명 : Interparticle distance as a key factor for controlling the dual-emission properties of carbon dots)
카본닷은 다양한 발광 준위 에너지를 동시에 갖기 때문에 다색발광이 가능하며 농도 변화에 따른 발광 특성 변화를 보인다. 이 같은 특성은 기존 발광 물질인 유기 발광체, 양자점과는 구별되는 카본닷만이 지닌 독자적이고 유용한 특성이다.
최근 들어 다양한 분야에 카본닷의 발광 특성을 이용하려는 연구가 활발히 진행되고 있다. 특히 백색광 및 광학 센서 분야에서 다색발광은 하나의 형광체만으로도 장치 구현이 가능하고 레퍼런스 신호를 제공해 센서의 정확도를 높일 수 있다는 장점 때문에 카본닷 다색발광의 구현과 제어가 중요한 연구과제로 떠오르고 있다.
카본닷은 다색발광과 농도 변화에 따라 다양한 발광 특성을 보이지만 매우 드물게 만들어진다는 게 약점이다. 또 복수 발광 소스 사이의 복잡한 상호작용으로 인해 카본닷의 다색발광과 농도 변화에 따른 다양한 발광 메커니즘을 규명한 연구가 거의 이뤄지지 않고 있다.
연구팀은 이런 문제해결을 위해 청색·적색 이중 발광 카본닷을 합성해 카본닷의 입자 간 거리가 카본닷 발광 특성 변화에 중요한 역할을 한다는 점을 밝히는 연구를 진행했다.
기존의 농도 변화에 따른 카본닷의 발광 특성 변화를 용매 의존 발색 현상에 빗대 수소 결합 영향에 의한 현상으로 해석한 사례가 있지만, 김 교수 연구팀은 카본닷 발광 현상의 농도 의존성이 수소 결합과는 상관없이 입자 간 거리에 의해 제어되는 현상일 수 있다는 가능성에 주목했다.
연구팀이 농도 변화에 따른 카본닷의 이중 발광 특성의 변화를 관찰한 결과, 임계 농도에서 적색 발광에 가장 적합한 입자 간 거리를 형성하고, 이 농도를 전후로 청색 발광이 강해지면서 카본닷의 농도별 이중 발광 특성이 변화하는 현상을 확인했다.
연구팀은 이를 기반으로 분광 분석을 통해 이중 발광의 청색 및 적색의 두 발광 소스를 각각 표면 작용기와 코어의 결합구조로 구분해 농도 변화에 따라 각 발광 소스의 이중 발광에 대한 기여도가 변화한다는 구체적인 설명을 제시했다. 연구팀은 특히 고농도 영역에서 두 발광 소스의 상호작용에 대한 메커니즘 제시를 통해 입자 간 거리 변화 때문에 이중 발광 특성이 제어된다는 결과를 얻었다.
연구팀이 합성한 이중 발광 카본닷은 단일 형광체로서 청색과 적색 발광을 동시 구현할 수 있고 특성 제어가 가능함에 따라 혼합색 구현은 물론 색 변화에 의한 센싱에 사용할 수 있다.
연구팀은 또 이중 발광 카본닷의 농도 조절을 통해 순수한 백색에 근접한 백색 LED 구현에도 성공하는 한편 색 변화에 의한 pH 센싱에 활용해 pH에 따른 청색·적색의 상대적 발광 세기 변화를 통해 pH 추정이 가능함을 보였다. 기존에 제시됐던 카본닷이 고도화된 기능성을 가진 발광체로써 사용될 수 있다는 가능성을 이번 연구를 통해 다시 한 번 입증한 것이다.
제1 저자인 유효정 박사과정 학생은 "카본닷 입자 간 거리에 따라 발광 소스의 상호작용이 일어나 농도에 따른 발광 특성에 변화가 일어난다는 해석은 기존 연구에서 간과됐던 부분ˮ이라면서 "이중 발광 현상에 대한 분석과 함께 이 연구 결과가 카본닷 발광 현상 규명에 있어 새로운 관점을 제시한 것ˮ이라고 의미를 부여했다.
이번 연구는 한국연구재단 이공분야기초연구사업의 지원을 받아 수행됐다.
2020.11.05
조회수 27895
-
고효율 페로브스카이트-실리콘 탠덤 태양전지 개발
신소재공학과 신병하 교수 연구팀 주도의 공동 연구팀(서울대학교 김진영 교수, 세종대학교 김동회 교수, 미국 국립재생에너지 연구소 Kai Zhu 박사, 노스웨스턴 대학 정희준 박사)이 큰 밴드갭의 페로스카이트 물질을 개발하고 이를 적용해, 26.7%의 광 변환 효율을 갖는 고효율 페로브스카이트-실리콘 탠덤(tandem) 태양전지를 구현했다.
이번 연구는 과거 불안정하다고 알려진 큰 밴드갭 유무기 하이브리드 페로브스카이트 물질(Organic-Inoraganic Hybrid Perovskite)의 안정화 및 고효율화하는 기술을 개발함과 동시에, 이를 실리콘 태양전지와 적층해 고효율 탠덤 태양전지를 개발했다는 점에서 향후 30% 이상의 초고효율 태양전지 개발에 이바지할 수 있을 것으로 기대된다.
신병하 교수가 교신저자로, 김대한 박사과정이 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스(Science)’ 3월 26일 자 온라인판에 게재됐다.(논문명: Efficient, stable silicon tandem cells enabled by anion-engineered wide bandgap perovskites)
기존의 단일 태양전지로는 약 30% 초반의 한계효율을 넘을 수 없다는 쇼클리-콰이저(Shockley-Queisser) 이론이 존재한다. 이에 단일 태양전지 효율의 한계를 극복하기 위해 연구자들이 2개 이상의 태양전지를 적층 형태로 연결하는 기술인 탠덤 태양전지 개발을 위해서 노력하고 있다.
하지만 탠덤 태양전지의 상부 셀(cell)로 적합한 큰 밴드갭의 페로브스카이트는 빛, 수분, 산소 등의 외부 환경에 민감하게 반응하는 낮은 안정성 때문에 고품질의 소자를 합성할 수 없다는 한계가 존재했다.
연구팀은 새로운 음이온을 포함한 첨가제를 도입해 페로브스카이트 박막 내부에 형성되는 2차원 안정화 층(passivation layer)의 전기적·구조적 특성을 조절할 수 있다는 것을 밝혔고, 이를 통해 최고 수준의 큰 밴드 갭 태양전지 소자를 제작했다. 공동 연구팀은 더 나아가 개발한 페로브스카이트 물질을 상용화된 기술인 실리콘 태양전지에 적층해 탠덤 태양전지를 제작하는 데 성공했고, 최고 수준인 26.7%의 광 변환 효율을 달성했다.
연구팀의 기술은 향후 첨가제 도입법을 통한 반도체 소재의 2차원 안정화 기법에 대한 방향을 제시할 수 있으며, 유무기 하이브리드 페로브스카이트 물질을 이용한 태양전지, 발광 다이오드, 광 검출기와 같은 광전자 소자 분야에 응용될 수 있을 것으로 기대된다.
신병하 교수는 “페로브스카이트 태양전지 기술은 지난 10년간 눈부신 발전을 이뤄, 이제는 상용화를 고민해야 하는 시기이다. 실리콘 태양전지와의 이종 접합 구조를 통한 고효율 달성은 페로브스카이트 태양전지 기술의 상용화를 앞당기는 데 도움이 될 것이다”라며 “연구결과는 향후 30% 이상의 초고율 탠덤 태양전지 구현에 초석이 될 것이다”라고 말했다.
이번 연구는 한국연구재단 나노소재기술개발사업, 중견연구자지원사업, 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP) 에너지기술개발사업, 알키미스트 프로젝트, BK21 사업의 지원을 통해 수행됐다.
2020.03.30
조회수 17140
-
박오옥 교수, 포도당 기반의 그래핀 양자점 합성 기술 개발
우리 대학 생명화학공학과 박오옥 교수 연구팀이 포도당을 기반으로 한 그래핀 양자점의 합성 기술을 개발해, 이를 이용해 안정적인 청색 빛을 내는 그래핀 양자점 발광소자를 제작하는 데 성공했다.
연구팀은 위 그래핀 양자점을 발광체로 응용해 디스플레이를 제작했고, 현 디스플레이 분야의 난제인 청색 발광을 구현하면서 안정적인 전압 범위에서 발광하는 것을 확인했다.
이석환 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano Letters)’ 7월 5일 자 온라인판에 게재됐다. (논문명 : Synthesis of Single-Crystalline Hexagonal Graphene Quantum Dots from Solution Chemistry)
그래핀은 우수한 열, 전기 전도도와 투명도를 가져 차세대 전자재료로 주목받고 있지만, 단층 및 다층 그래핀은 도체의 특성을 가져 반도체로 적용하기 어려운 단점이 있다. 그러나 그래핀을 작은 나노 크기로 줄이게 되면 반도체의 특성인 밴드갭을 가져 발광특성을 보이게 돼 활용할 수 있게 된다. 이를 그래핀 양자점이라 한다.
기존 단결정 그래핀은 구리-니켈 기반 금속 박막 위에 화학 기상 증착법(CVD)을 이용하거나 흑연을 물리·화학적 방법으로 벗겨내는 기술로 만들었다. 물리·화학적 방법으로 제작한 그래핀은 결함이 매우 많아 순수한 단결정의 특성을 가지지 못하는 단점이 있었다.
연구팀이 개발한 그래핀 양자점은 기존과는 매우 다른 우수한 합성 과정을 보였다. 포도당 수용액에 아민과 초산을 일정 비율로 혼합해 반응 중간체를 형성하고 이를 안정적인 용액으로 구현했다.
이후 형성된 중간체의 자가조립을 유도해 단결정의 그래핀 양자점을 용액상으로 합성하는 데 성공했다. 연구팀은 이 과정에서 기존의 복잡한 분리 정제법을 개선한 저온 침전 분리법을 개발했다.
연구팀의 이번 합성 기술은 단일상(single phase) 반응을 통해 균일한 핵 성장(homogeneous nucleation)반응을 최초로 유도했다는 의의가 있다.
박 교수 연구팀은 이번 연구를 통해서 수 나노미터에서 100 나노미터 수준의 단결정 크기를 원하는 대로 조절 가능한 용액상 합성 기술을 개발했다.
박오옥 교수는 “최초로 개발된 단결정 그래핀 양자점 용액 합성법은 그래핀의 다양한 분야 접목에 크게 기여할 것이다”라며 “이를 잘 응용하면 유연 디스플레이 또는 베리스터와 같은 반도체 성질을 갖는 그래핀의 역할이 제시될 것이다”라고 말했다.
이번 연구는 고려대학교 화공생명공학과 임상혁 교수 연구팀과 공동으로 진행됐으며, 한국과학연구재단의 나노원천 과제, 한국전자통신연구원의 나노물질 기술 연구 과제, KAIST EEWS 과제, 대한민국 정부 BK21+ 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 용액 화학으로 합성된 잘 정렬된 다양한 크기의 단결정 그래핀 양자점
2019.07.30
조회수 16073
-
최경철 교수, 자가발전으로 에너지 절약 및 세탁 가능한 입는 디스플레이 개발
〈 (오른쪽 위부터 시계방향으로) 정은교 연구원, 최경철 교수, 전남대 조석호 교수, 전용민 연구원 〉
우리 대학 전기및전자공학부 최경철 교수와 전남대학교 의류학과 조석호 교수 연구팀이 외부 전원 없이 자가발전 되고 세탁이 가능한 디스플레이 모듈 기술을 개발했다.
이번 연구는 기존 플라스틱 기판 웨어러블 전자소자가 아닌 옷감을 직접 기판으로 사용하는 전자소자의 상용화를 앞당길 수 있다는 점, 일상생활에 입는 전자소자가 외부 전원 없이 자가 발전해 에너지를 절약할 수 있다는 점에서 큰 의미가 있다.
정은교 박사과정과 전용민 연구원이 주도한 이번 연구는 국제 학술지 ‘에너지&인바이런멘탈 사이언스(Energy and Environmental Science, IF : 30.067)’ 1월 18일 자 온라인판에 게재됐고, 우수성을 인정받아 뒤표지 논문으로 선정됐다.
기존의 섬유형 웨어러블 디스플레이는 주로 디스플레이의 소자 구현에 초점을 맞춰 연구가 이뤄졌다. 이로 인해 소자를 구동하기 위한 별도의 외부 전원이 필요할 뿐 아니라 내구성 또한 부족한 특성을 가져 웨어러블 디스플레이로 응용하기에는 한계가 있다.
고분자 태양전지와 유기 발광 디스플레이 소자는 수분, 산소 등 외부 요인에 매우 취약해 소자를 보호하기 위한 봉지막이 필요하다. 그러나 기존에 개발된 봉지막 기술은 상온에서는 역할을 충분히 수행하지만, 습기가 많은 환경에서는 그 특성을 잃게 된다. 따라서 비 오는 날이나 세탁 이후에도 동작할 수 있어야 하는 착용형 디스플레이에서는 사용이 제한된다.
연구팀은 문제해결을 위해 외부 전원 없이도 안정적으로 전력을 공급할 수 있는 고분자 태양전지(PSC)와 수 밀리와트(milliwatt)로도 동작할 수 있는 유기발광다이오드(OLED)를 옷감 위에 직접 형성하고 그 위에 세탁이 가능한 봉지기술을 적용했다. 이를 통해 전기를 절약하면서도 실제 입을 수 있는 디스플레이 모듈 기술을 개발했다.
연구팀은 원자층 증착법(ALD)과 스핀코팅(spin coating)을 통해 세탁 후에도 특성 변화 없이 소자를 보호할 수 있는 봉지막 기술을 자가발전이 가능한 입는 디스플레이 모듈에 적용했다. 이 봉지막 기술을 통해 세탁 이후나 3mm의 낮은 곡률반경에서도 웨어러블 전자소자들의 성능이 유지되는 것을 증명했다.
연구팀은 일주일마다 세탁 및 기계적인 스트레스를 주입한 뒤 결과를 관찰한 결과 30일 이후 PSC는 초기 대비 98%, OLED는 94%의 특성을 유지함을 확인했다.
최경철 교수는 “기존의 플라스틱 기판 기반의 웨어러블 전자소자 및 디스플레이 연구와 달리 일상생활에 입는 옷감을 기판으로 활용해 세탁이 가능하고 외부 전원 없이 고분자 태양전지로 디스플레이를 구동하는 전자소자 모듈을 구현했다”라며 “태양에너지를 이용해 자가 구동 및 세탁이 가능한, 전기 충전이 필요 없는 진정한 의미의 입을 수 있는 디스플레이 기술 시대를 열었다”라고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 선도연구센터지원사업과 교육부 BK21 지원사업으로 수행됐으며, 이번 연구 성과로 1 저자인 정은교 연구원은 BK21 우수인력으로 사회부총리 겸 교육부장관 표창을 받는다.
□ 그림 설명
그림1. 표지논문 이미지
그림2. 세탁 가능한 입는 디스플레이 모듈 모식도 및 구동 사진
2019.03.21
조회수 18385
-
유승협 교수, 무기LED 상응하는 고효율 OLED 구현
〈 유승협 교수, 송진욱 박사과정 〉
우리 대학 전기및전자공학부 유승협 교수 연구팀이 무기 LED에 상응하는 높은 효율의 유기발광다이오드(OLED)를 구현하는 데 성공했다.
이번 연구는 서울대학교 재료공학부 김장주 교수, 경상대 화학과 김윤희 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 OLED 조명의 대중화 및 시장 성장에 이바지할 수 있을 것으로 기대된다.
송진욱 박사과정이 1저자로 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 10일자 온라인 판에 게재됐다.
OLED는 수많은 모바일 기기와 고품질 TV 등의 디스플레이 기술에 광원으로 활용되고 있는 소자로, 두께가 얇고 유연 소자 제작이 가능하다는 장점을 갖고 있다. 최근에는 조명, 차량용 광원에도 OLED를 활용하기 위한 노력이 계속되고 있다.
이러한 응용에는 광원의 효율이 매우 중요하다. 최근 지속적인 연구 개발에 의해 OLED의 효율이 꾸준히 상승했고 일부는 기존 고효율 무기 LED 수준에 준하는 결과들이 보고되고 있다.
그러나 이러한 고효율 OLED의 연구 결과들은 OLED가 갖는 면광원(面光源)의 장점을 해치는 반구형 렌즈가 쓰이거나 소자 내부에 빛을 추출하는 나노 구조가 도입돼 안정적인 동작을 방해하는 등의 문제로 상용화에 한계가 있었다.
연구팀은 OLED의 광 추출용으로 개발됐던 여러 방법 중 실용화 가능성이 가장 큰 기술인 나노입자 기반의 광 산란층을 소자 외부에 도입하는 방법에 주목했다.
특히 광 산란을 이용한 기존 OLED 광 추출 향상 연구가 반복적인 실험을 통해 경험적인 방식으로 이뤄졌던 것과는 다르게 연구팀은 종합적이고 분석적 방법론을 정립해 최대 효율을 이끌어낼 수 있는 구조를 이론적으로 예측했다.
OLED에 광 추출 구조를 적용해 가능한 최대의 효율에 도달하기 위해선 광 추출 구조와 OLED 구조를 각각이 아닌 전체로 보고 최적화를 이뤄야 한다.
연구팀은 산란 현상을 수학적으로 기술하는 이론을 OLED 발광 특성 예측 모델과 최초로 결합해 여러 구조를 가지는 수많은 소자들의 특성을 짧은 시간에 예측했고, 이를 기반으로 최대 효율을 갖는 최적 구조를 이론적으로 예측하는 데 성공했다.
연구진은 이론적으로 예측된 최적의 광 산란 필름을 실험적으로 구현하고 이를 고효율 유기 발광소재를 이용한 소자 구조에 접목해 56%의 외부 양자 효율 및 221lm/W의 전력 효율을 이끌어내는데 성공했다. 이는 큰 렌즈나 내부 광 추출구조 없이 구현된 OLED 단위 소자 효율로는 최고의 결과이다.
유승협 교수는 “다양한 OLED 광 추출 효율 향상 기술이 개발됐지만 실용화 가능성은 높지 않은 경우가 많았다. 이번 연구는 상용화 가능성에서 가장 의미가 큰 기술을 활용하면서 고효율 LED의 효율에 상응하는 OLED 구현 방법을 체계적으로 제시했다는데 의의가 있다”며 “낮은 전력소모가 특히 중요한 조명용 광원이나 웨어러블 기기의 센서용 광원에 OLED가 활용되는 데 기여할 것이다”고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업 및 나노소재원천기술개발사업, 한국전자통신연구원(ETRI)의 초저가플렉서블 Lightning Surface 기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 외부 산란층과 결합된 OLED 구조 모식도
2018.08.21
조회수 15538