본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B6%80%EC%9E%91%EC%9A%A9
최신순
조회순
면역항암치료 부작용 인공지능으로 예측
면역항암치료는 환자의 면역 시스템을 활성화해 암을 치료하는 혁신적인 3세대 항암 치료 방법으로 알려져 있다. 하지만 면역항암 치료제는 면역활성화에 의해 기존 항암제와는 구분되는 자가면역질환과 유사한 부작용을 유발할 수 있다는 새로운 문제가 제기됐다. 이러한 부작용은 심각한 경우 환자를 죽음에까지 이르게 할 수 있기에 부작용에 대한 연구가 절실한 상황에 놓여있다. 우리 대학 바이오및뇌공학과 최정균 교수팀과 서울아산병원 종양내과 박숙련 교수팀은 면역항암제 치료를 받은 고형암 환자에 대한 대규모 전향적 코호트를 구축하고, 다차원적 분석을 통해 면역항암제 부작용의 위험요인을 규명했다고 22일 밝혔다. 또한 인공지능 딥러닝을 이용해 치료 전 환자에게서 부작용이 나타날지를 예측할 수 있는 모델까지도 개발했다고 알렸다. 기존의 관련 연구들은 소규모로 진행이 되거나, 적은 수의 지표로 국한된 범위에 대해서만 행해졌다. 또한 수행된 연구들은 면역 관련 부작용을 위해 디자인된 연구 설계가 아닌, 다른 목적을 위해 모집된 환자군을 모아 수행하는 후향적 연구 설계로 진행됐다는 한계점이 있었다. 연구팀은 이러한 한계점을 극복하기 위해, 서울아산병원을 필두로 국내 9개 기관과 협력하여 면역 관련 부작용의 포괄적인 위험요인을 밝히기 위한 대규모 전향적 코호트를 구축했다. 또한 환자의 유전체, 전사체, 혈액 지표 등 폭넓은 범위에서 면역 관련 부작용에 대한 위험요인을 밝혀냄으로써, 궁극적으로는 치료 전 미리 환자가 면역항암치료에 대한 부작용을 보일지 알아낼 수 있는 딥러닝 예측 모델을 개발했다. 해당 연구 결과는 다양한 고형암 환자의 임상데이터와 혈액 유전체 데이터에 기반했기에, 향후 환자의 암종과 상관없이 폭넓게 적용될 수 있을 것으로 기대된다. 우리 대학 바이오및뇌공학과 성창환 박사(現 : 서울아산병원 핵의학과)와 안진현 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 캔서(Nature Cancer)’ 에 게재됐다. (논문명 : Integrative analysis of risk factors for immune-related adverse events of checkpoint blockade therapy in cancer). 이번 연구에는 고려대학교 안암병원, 인제대학교 해운대백병원, 국립암센터, 서울삼성병원, 분당서울대학교병원, 고려대학교 구로병원, 연세대학교 세브란스병원, 서울대학교병원의 연구자들도 참여했다. 최정균 교수는 “이번 연구를 통해 면역항암 치료의 아킬레스건이라고 할 수 있는 면역관련 부작용에 대한 폭넓은 분석과 예측모델의 제시를 통해 향후 전세계 연구진이 사용할 수 있는 대규모 면역관련 부작용 리소스를 제공할 수 있을 것이라 기대한다”라고 말했다. 임상연구를 총괄한 서울아산병원 박숙련 교수는 “현재 면역항암제가 임상에서 광범위하게 사용되고 있고 그 치료 영역을 완치적 세팅으로까지 확장하고 있어 치료 효과뿐 아니라 환자 안전성이 더욱 중요한데 그동안 치료 부작용을 예측할 수 있는 좋은 지표가 없던 상황에서, 이번 연구 결과는 개별 환자의 임상데이터와 유전체 데이터에 기반해 면역항암제의 부작용 발생을 예측할 수 있어 암 환자의 정밀 의료 치료를 실현할 수 있는 기반이 될 것으로 기대한다”고 전했다. 이번 연구는 과학기술정보통신부 인공지능 신약개발 플랫폼 구축 사업의 지원을 받아 수행됐다.
2023.06.22
조회수 4237
인공지능으로 코로나19 치료제 팍스로비드와 기존 약물간 반응 예측 고도화
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 인공지능 기반 약물 상호작용 예측 기술을 고도화해, 코로나19 치료제로 사용되는 팍스로비드(PaxlovidTM) 성분과 기존 승인된 약물 간의 상호작용 분석 결과를 논문으로 발표했다고 16일 밝혔다. 이번 논문은 국제저명학술지인 「미국국립과학원회보 (PNAS)」誌’ 3월 13일자 온라인판에 게재됐다. ※ 논문명 : Computational prediction of interactions between Paxlovid and prescription drugs ※ 저자 정보 : 김예지(한국과학기술원, 공동 제1 저자), 류재용(덕성여자대학교, 공동 제1 저자), 김현욱(한국과학기술원, 공동 제1 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명 연구팀은 이번 연구에서 2018년에 개발한 인공지능 기반의 약물 상호작용 예측 모델인 딥디디아이(DeepDDI)를 고도화한 딥디디아이2(DeepDDI2)를 개발했다. 딥디디아이2는 기존 딥디디아이가 예측하는 86가지 약물 상호작용 종류보다 더 많은, 총 113가지의 약물 상호작용 종류를 예측한다. 연구팀은 딥디디아이2를 이용하여 코로나19 치료제인 팍스로비드*의 성분(리토나비르, 니르마트렐비르)과 기존에 승인된 약물 간의 상호작용 가능성을 예측하였다. 연구팀은 코로나19 환자 중 고위험군인 고혈압, 당뇨병 등을 앓고 있는 만성질환자가 이미 약물을 복용하고 있어, 약물 상호작용 및 약물 이상 반응이 충분히 분석되지 않은 팍스로비드를 복용 시 문제가 될 수 있다는 점에 착안해 이번 연구를 수행했다. * 팍스로비드 : 팍스로비드는 미국 제약사인 화이자가 개발한 코로나19 치료제로, 2021년 12월 미국 식품의약국(FDA)의 긴급사용승인을 받았다. 연구팀은 팍스로비드의 성분인 리토나비르와 니르마트렐비르가 2,248개의 승인된 약물과 어떤 상호작용을 하는지, 딥디디아이2를 이용해 예측했다. 예측 결과 리토나비르는 1,403개의 승인된 약물과, 니르마트렐비르는 673개의 승인된 약물과 상호작용이 있을 것으로 예측됐다. 또한, 연구팀은 예측 결과를 활용해, 약물 상호작용 가능성이 높은 승인 약물에 대해, 동일 기전을 갖되 약물 상호작용 가능성이 낮은 대체 약물들을 제안했다. 이에 따라, 리토나비르와의 약물 상호작용 가능성을 낮출 수 있는 대체 약물 124개와 니르마트렐비르와의 약물 상호작용 가능성을 낮출 수 있는 대체 약물 239개를 제안했다. 이번 연구 성과를 통해 약물 상호작용을 정확하게 예측할 수 있는 인공지능 모델을 활용하는 것이 가능해졌으며, 이는 신약 개발 및 약물 처방 시 유용한 정보를 제공함으로써, 디지털 헬스케어, 정밀의료 산업 및 제약 산업에서 중요한 역할을 할 것으로 기대된다. 이상엽 특훈교수는 "이번 연구 결과는 실험과 임상을 통해 검증된 것은 아니므로 100% 의존해서는 안된다“고 강조하면서 ”팬데믹과 같이 긴급한 상황에서 신속하게 개발된 약물을 사용할 때, 예측된 약물 상호작용 유래 약물 이상 반응결과를 전문의가 미리 검토하여 약을 처방할 때 도움을 줄 수 있다는 점에서 의미가 있다"고 말했다. 한편 이번 연구는 과기정통부가 지원하는 KAIST 코로나대응 과학기술 뉴딜사업과 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2023.03.16
조회수 5651
조광현 교수, 암세포를 정상세포로 되돌리는 초기 원천기술 개발
우리대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 대장암세포를 일반적인 정상 세포로 되돌리는 초기 원천기술을 개발하는 데 성공했다. 연구팀은 대장암세포와 정상 대장 세포의 유전자 조절 네트워크를 분석해 대장암세포를 정상 대장 세포로 변환하는데 필요한 핵심 인자를 규명하고, 이를 통해 암세포의 정상 세포화라는 새로운 치료 원리를 개발했다. KAIST 이수범 연구원, 황채영, 김동산 박사, 한영현 박사과정, 서울삼성병원의 이찬수 박사, 홍성노 교수, 김석형 교수 등이 참여한 이번 연구결과는 미국암학회(AACR)에서 출간하는 국제저널 ‘분자암연구(Molecular Cancer Research)’ 1월 2일 자 표지논문으로 게재됐으며, 하이라이트 특집 기사도 함께 출판됐다. (논문명: Network inference analysis identifies SETDB1 as a key regulator for reverting colorectal cancer cells into differentiated normal-like cells). 현재 항암치료로 가장 널리 사용되는 항암 화학요법은 빠르게 분열하는 암세포를 공격해 죽임으로써 암세포의 증식을 억제하는 방식이다. 이 기술은 신체 내 정상적으로 분열하고 있는 세포들까지도 함께 사멸시켜 구토, 설사, 탈모, 골수 기능장애, 무기력 등의 부작용을 일으킨다. 게다가 암세포들은 항암제에 본질적인 내성을 갖거나 새로운 내성을 갖게 돼 약물에 높은 저항성을 가지는 암세포로 진화하게 된다. 따라서 현재의 항암치료는 내성을 보이는 암세포를 없애기 위해 더 많은 정상 세포의 사멸을 감수해야만 하는 문제를 갖는다. 이를 극복하기 위해 암세포만을 특이적으로 없애는 표적 항암요법과 우리 몸의 면역시스템을 활용한 면역 항암요법이 주목을 받고 있으나 각각 효과와 적용대상이 매우 제한적이며 장기치료 시 여전히 내성 발생의 문제가 보고되고 있다. 이처럼 현재 개발된 항암요법들은 암세포를 죽여야 하는 공통적인 조건 때문에 근본적인 한계를 가진다. 문제 해결을 위해 연구팀은 암세포를 정상 세포로 변환하는 새로운 방식의의 치료전략을 제안했다. 암세포가 정상 세포로 변환되는 현상은 20세기 초부터 간혹 관찰됐지만, 그 원리가 연구되지 않았으며 또한 이를 인위적으로 제어하는 기술도 연구된 바 없었다. 1907년 스위스 병리학자 막스 아스카나지(Max Askanazy)가 난소의 기형종(테라토마)이 정상 세포로 분화되는 현상을 발견한 이래로 다양한 암종에서 정상 세포로 변화되는 현상들이 산발적으로 보고됐고, 이러한 보고에서는 암세포가 돌연변이를 지닌 상태에서 주변 미세환경의 변화나 특정 자극 때문에 정상 세포의 상태로 되돌아가는 현상만이 관찰됐다. 조 교수 연구팀은 시스템생물학 연구방법을 통해 대장암세포를 정상 대장 세포로 변환할 수 있는 핵심조절인자를 탐구했고, 그 결과 다섯 개의 핵심전사인자(CDX2, ELF3, HNF4G, PPARG, VDR)와 이들의 전사 활성도를 억제하고 있는 후성유전학적 조절인자인 SETDB1을 발견했다. 연구팀은 이번 연구를 통해 SETDB1을 억제함으로써 암세포를 효과적으로 정상 세포로 변환할 수 있음을 분자세포실험을 통해 증명했다. 대장암세포에서 SETDB1을 억제했을 때 세포가 분열을 중지하고 정상 대장 세포의 유전자 발현패턴을 회복하는 것을 확인했다. 이번 연구에 따르면 암세포에서는 암 특이적으로 활성화된 후성유전학적 조절인자 SETDB1이 정상 세포의 핵심전사인자를 억제해 암세포가 정상 세포로 변환하는 것을 차단하고 있는 것으로 밝혀졌다. 즉, SETDB1을 조절함으로써 다시 원래의 정상 세포 상태로 되돌릴 수 있음을 증명한 것이다. 조 교수 연구팀은 서울삼성병원과의 협동 연구를 통해 SETDB1이 높게 발현되는 대장암세포를 가진 환자들에게서 더 안 좋은 예후가 나타남을 확인했으며, 환자 유래 대장암 오가노이드(3차원으로 배양한 장기유사체)에서 SETDB1의 발현을 억제했을 때 다시 정상 세포와 같은 형태로 변화함을 관찰했다. 이번 연구에서 찾아낸 타겟 단백질의 활성을 억제할 수 있는 저분자화합물은 아직 개발된 바 없으며 추후 신약개발과 전임상실험을 통해 암세포의 정상 세포화라는 새로운 치료 기술이 본격적으로 실현될 수 있을 것으로 보인다. 이러한 새로운 개념의 치료전략이 적용된다면 현재 항암치료의 많은 부작용과 내성 발생을 모두 최소화함으로써 환자의 고통을 완화해 삶의 질을 크게 높일 수 있을 것으로 기대된다. 조 교수는 “그동안 암은 유전자 변이 축적에 의한 현상이므로 되돌릴 수 없다고 여겨졌으나 이를 되돌릴 가능성을 보여줬다”라며 “이번 연구는 암을 당뇨나 고혈압과 같은 만성질환으로서 잘 관리하면서 삶의 질을 유지할 수 있도록 하는 새로운 항암치료의 서막을 열었다”라고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업, KAIST Grand Challenge 30 사업의 지원으로 수행됐다. □ 그림 설명 조광현 교수 연구팀은 SETDB1 단백질이 대장암세포가 정상대장세포로 분화하는 것을 차단하는 후성유전학적 장애물을 형성하고 있다는 사실을 밝히고 이를 억제함으로써 대장암세포를 정상대장세포로 효과적으로 분화시킬 수 있음을 증명하였다. □ 분자암연구 표지 이미지
2020.01.09
조회수 17214
테라헤르츠파 생체 부작용 첫 발견
인체에 무해하면서도 X선보다 활용분야가 다양해 꿈의 전자파로 불리는 ‘테라헤르츠파’의 생체 부작용이 세계 최초로 밝혀졌다. 우리 학교 나노과학기술대학원 김필한 교수와 한국원자력연구원 정영욱 박사 공동연구팀은 테라헤르츠파가 동물의 피부조직에서 염증반응을 일으키는 현상을 관찰했다. 연구결과는 광학 분야의 세계적 학술지인 ‘옵틱스 익스프레스(Optics Express)’ 온라인 판(5월 19일자)에 게재됐다. 테라헤르츠파는 0.1THz~10THz(테라헤르츠, 1조헤르츠) 대역의 전자기파로 가시광선이나 적외선보다 파장이 길어 X선처럼 물체의 내부를 투과해 볼 수 있지만 에너지가 낮아 인체에 해를 입히지 않는다고 알려져 왔다. 보안검색, 차세대 무선통신, 의료영상기술 등 다양한 분야에 활용되고 있으나 생체에 어떤 영향을 미치는지에 대한 연구는 거의 이뤄지지 않았다. 또 기존에 수행된 테라헤르츠 전자파의 영향에 관한 연구는 주로 인위적으로 배양된 세포만을 대상으로 수행해 복잡하고 다양한 구조의 생명체 조직에 미치는 영향을 예측하는 것은 불가능했다. 한국원자력연구원 연구팀은 먼저 살아있는 생체에 적용할 수 있는 고출력 테라헤르츠 전자파 발생기를 개발했다. 통신 분야에서 사용되는 것보다 10배 많은 출력량으로 바이오센서 등에 상용화하기 위해서는 지금보다 출력을 대폭 늘려야하기 때문이다. 이와 함께 KAIST 연구팀은 살아있는 생체조직 내부의 세포를 구분할 수 있는 고해상도의 3차원 영상 초고속 레이저 현미경을 개발했다. 공동연구팀은 고출력 테라헤르츠파를 유전자조작 생쥐의 피부에 30분간 조사한 결과 6시간 후 피부조직에서 염증세포의 수가 기존보다 6배 이상 증가한 것을 발견했다. 인체에 손상을 주지 않고 상피암 등 피부표면에 발생하는 질병을 효과적으로 확인할 수 있을 것으로 기대를 모으고 있는 ‘테라헤르츠파’의 생체 부작용이 세계에서 처음으로 보고된 것이다. 김필한 교수는 “이번 연구 결과는 현재 다양한 분야에 활용되고 있는 테라헤르츠 전자파를 어떻게 하면 더 안전하게 사용할 수 있는가에 대한 기준을 제시한 것”이라며 “향후 일상생활에서 쓰이는 다른 종류의 전자파의 생체 영향에 대한 정확한 이해 및 분석에도 활용될 것”이라고 말했다. 한편, 이번 연구는 미래창조과학부의 재원으로 한국연구재단을 통해 세계수준의 연구센터(WCI) 및 선도연구센터(ERC) 사업의 지원을 받아 수행됐다. 그림 1. KAIST의 초고속 레이저스캐닝 공초점현미경 사진 그림 2. 한국원자력 연구원의 테라헤르츠 전자파 발생장치 그림 3. 살아있는 동물의 피부조직 세포수준 영상 획득 사진 그림 4. 테라헤르츠 전자파에 의해 유도된 염증세포 영상화 사진
2014.06.18
조회수 14590
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1