-
이동형 음압병동, 경기도 특별생활치료센터로 운영
우리 대학이 코로나대응 과학기술뉴딜사업단(단장 배충식)이 개발한 '이동형 음압병동(Mobile Clinic Module, 이하 MCM)'을 경기도(도지사 이재명)와 협력해 경기도 제2호 특별생활치료센터로 운영한다.
MCM은 고급 의료 설비를 갖춘 음압격리시설로 KAIST 남택진 산업디자인학과 교수팀이 지난해 7월부터 한국형 방역패키지 기술 개발사업의 일환으로 연구해왔다. MCM은 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 우수한 의료 시설로 인정받아 세계적인 권위의 독일 레드닷(Red Dot) 디자인 공모전의 제품디자인 분야와 커뮤니케이션 디자인(사용자 인터페이스) 분야에서 동시에 대상(Best of the Best)을 수상한 바 있다.
올해 1월 서울 한국원자력의학원에 4개의 중환자 병상을 갖춘 병동을 설치하고 시범 운영을 진행해 경증환자 2명의 치료를 완료했다. 또한, 대전 건양대병원 응급실에 음압격리실로 설치해 지난 6월부터 2개월 동안 138명이 진료를 받았으며 현재도 계속해서 활용 중이다.경기도 인재개발원 실내체육관에 설치된 특별생활치료센터는 28병상 14병실(2인 1실)과 다목적 1실(엑스레이 및 처치실)로 구성되어 오는 13일 문을 연다. 경기도 MCM은 코로나 19 확진자를 약 2주간 격리하는 기존 생활치료센터와는 다르게 자가치료 연계 단기 진료센터로 운영된다. 자가치료 중 관리가 필요한 증상을 보이는 환자를 MCM으로 이송해 1일~3일간의 단기 입원 경과를 관찰한 뒤 후속 조치를 취하는 방식이다.
대면 및 산소치료·엑스레이·수액 등 MCM의 자체 진료 역량을 활용해 환자를 치료할 수 있다. 병실 안에 개별 화장실이 구비되어 있으며 음압·환기상황·출입문 자동 개폐를 중앙에서 모니터링하고 제어할 수 있다. 치료 중 이상 징후가 발생한 환자는 전담 중증 병원으로 전원 조치하고 특이 사항이 없는 경우 다시 자가 치료 시설로 이송하게 된다.
이를 위해, 경기도의료원 안성병원이 특별생활치료센터의 운영을 맡는다. 1일 기준 의사 1~2명, 간호사 3명, 간호조무사 2명, 행정원 1명, 방역 인원 2~3명, 영상기사 1명 등이 3교대로 근무할 예정이다. 이 외에도 KAIST 연구원, 소방, 경찰, 기타 용역 등 약 20여 명의 전담 인력이 현장에 투입된다.
13일부터 다음달 10일까지 운영되며 경기도는 한 달간의 운영 성과와 코로나19 확산 상황을 고려해 필요에 따라 운영 기간을 조정할 방침이다. 최근 심화되고 있는 음압병상 부족 사태 해결에 기여하고 더 나아가 한국 방역 시스템의 새로운 패러다임을 제시하겠다는 것이 두 기관의 협업 목표다.
우리 대학은 이번 특별생활치료센터 운영을 통해 음압병상의 효율화와 최적화 모델을 구축하기 위한 연구를 진행한다. 향후, 오폐수 처리 시스템, 감염환자에 최적화된 이동형 화장실, 모바일 기기용 MCM 사용자인터페이스 등의 연구개발을 이어갈 예정이다.
디자인과 프로젝트 총 감독을 맡은 남택진 산업디자인학과 교수는 "활용 가능한 실내 체육관이 있다면, 독립된 설비가 없더라도 2주 내에 의료가스·오폐수처리·음압설비 등이 구비된 특별생활치료센터로 바꿀 수 있다ˮ라고 설명했다.
사업단을 이끈 배충식 단장은 "지난해 7월에 연구개발을 시작한 MCM은 1년 남짓한 짧은 시간 안에 시범 운영을 거쳐 치료 현장에 상용화된 획기적이고 성공적인 사례ˮ라고 전했다. 또한, "KAIST는 코로나19에 발 빠르게 대응하기 위해 이동형 음압병동 뿐만 아니라 다각적인 방역기술 분야에서 연구개발 및 실증연구를 수행하고 있다ˮ라고 강조했다. KAIST 코로나대응 과학기술뉴딜사업단은 교내 연구진이 보유한 우수 방역기술을 바탕으로 기술이전 및 사업화를 진행하고 과학기술에 바탕을 둔 한국형 방역 패키지 모델 정립을 위한 역할을 수행하고 있다.
2021.09.09
조회수 8435
-
코로나 중증 환자용 이동형 음압병동 개발
작년 11월 초부터 시작된 3차 코로나 대유행으로 중증 환자 수가 급증하면서 음압 병상 부족 사태가 심화되는 가운데, 이를 신속하게 해결할 수 있는 이동형 음압병동이 우리 대학 연구진에 의해 개발됐다. 음압병동은 중증 감염병 환자 치료에 필수적인 시설이다.
우리 대학 산업디자인학과 남택진 교수 연구팀은 코로나 대응 과학기술 뉴딜사업단(단장 배충식 공과대학장)의 한국형 방역패키지 기술 개발사업의 일환으로 작년 7월부터 연구해온 '이동형 음압병동(Mobile Clinic Module, 이하 MCM)'을 개발하고 시범 운영에 들어갔다. MCM은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있는 것이 특징인데, 진단검사 · 영상의학 · 의료물품 공급 · 의무기록 관리와 환자 식사 제공 등 기존 병원의 인프라와 함께 활용해야 한다. 연구팀은 작년 12월 28일부터 서울 노원구에 있는 한국원자력의학원에 4개의 중환자 병상을 갖춘 병동을 설치한 후, 의료진과 일반인으로 구성한 모의 환자그룹을 대상으로 의료 활동과 환자 일상 등 치료 전 과정을 점검하는 시뮬레이션에 들어갔다. 이달 15일까지 모의 운영을 진행한 뒤 의료진과 환자의 사용성·안정성·만족도 등을 임상 검증한 후 본격적인 상용화에 나설 계획이다. 남 교수 연구팀이 개발한 MCM은 약 450㎡(136평) 규모로 가로 15m x 세로 30m 크기다. 이 MCM은 음압 시설을 갖춘 중환자 케어용 전실과 4개의 음압병실, 간호스테이션 및 탈의실, 그리고 각종 의료장비 보관실과 의료진실로 꾸며져 있다.
음압 프레임·에어 텐트·기능 패널 등의 시설을 갖춘 MCM은 부품을 조합해 신속하게 음압 병상이나 선별진료소 등으로 변형 또는 개조해서 사용할 수 있다. 이뿐만 아니라 기존 중환자 병상을 음압 병상으로 전환하는 데도 매우 효과적이다. 이에 따라, MCM이 본격 상용화되면 코로나19 중환자용 음압 병상 부족난을 해소하는 데에도 큰 도움이 될 것으로 기대된다.
컨테이너나 텐트 등을 활용해 짓는 기존의 조립식 감염 병동은 건설과 장비 확보에 비용이 많이 들고, 기능적으로는 임시 수용 시설에 불과하다는 게 단점으로 꼽힌다. 따라서 중환자를 수용하기 위한 전문적인 의료 시설로 사용하기에는 역부족이다. 남 교수 연구팀은 안전한 음압 환경을 형성하는 독자적인 기기인 '음압 프레임'을 설계하고 이를 '에어 텐트'와 연결하는 모듈형 구조에 접목해 최소한의 구조로 안정적인 음압병실을 구축할 수 있는 MCM 기술 개발에 성공했다. 음압 프레임이 양방향으로 압력을 조절해 두 에어 텐트 공간(예: 전실과 병실)을 효과적으로 음압화하는 원리다. 텐트에 '기능 패널'을 조합해 중환자 치료에 필요한 의료 설비나 기본 병실 집기를 구축할 수 있다. 또 모듈 조합을 통해 음압병동 및 선별진료소, 음압화 중환자 병상, 음압화 일반병실 등 목적에 맞는 의료 시설로 사용할 수 있다. 연구팀 관계자는 "병실 모듈 제작에 걸리는 시간은 14일 정도며 이송 및 설치 또한 통상적으로 5일 안에 가능하다ˮ고 말했다. 특히, 전실과 병실로 구성된 MCM의 기본 유닛은 모듈 재료가 현장에 준비된 상태에서 15분 이내에 설치가 가능한 게 특징이다. 이밖에 기존 조립식 병동으로 증축할 경우와 비교할 때 약 80% 정도 비용을 절감할 수 있다고 연구팀 관계자는 설명했다. 또한, 감염병 사태 이후 보관이 어려운 기존 조립식 병동과는 다르게 부피와 무게를 70% 이상 줄인 상태로 보관할 수 있어 군수품처럼 비축해놨다가 감염병이 유행할 때 빠르게 도입해 설치할 수 있다는 것도 큰 장점이다. 모듈화된 패키지는 항공 운송도 가능해 병동 전체의 수출도 기대할 수 있다.
다년간의 사용자 중심 시스템 디자인 노하우를 보유 중인 남택진 교수 연구팀은 환자·의료인 등 실사용자를 위해 기능성·경제성·효용성 등을 종합적으로 고려한 안전한 음압병동 개발을 목표로 작년 7월부터 관련 기술 개발을 진행해왔다. 사용 편의성·감성적 경험 및 독창성 등을 만족시키기 위해서 입원 치료 환경 구축을 위한 의료 자문을 포함, 의료진과의 협력을 통해 감염 치료 프로세스를 이해하는 등 음압병동 디자인에 필요한 요구사항을 현장에서 확립하는 연구도 동시 진행했다. 그 결과, 의료 활동과 환자의 일상을 지원하는 다양한 기능 패널 아이디어와 옥외 주차장·공터·실내 체육관 등 기존 병원의 유휴 공간을 활용할 수 있는 병동 구축을 통해 기존 의료자원과 연계하는 모듈러 시스템을 완성하는 데 성공했다.
남 교수 연구팀은 특히 한국원자력의학원 의료진들과 공동으로 이동형 감염병원 표준 운영 절차(SOP, Standard Operation Procedure)를 개발해 감염병 대응 과정의 안전성을 확보하는 한편 이동 음압병동을 처음 운영하는 의료진들의 현장 활용도를 높였다. 한국원자력의학원 조민수 박사(비상진료부장)는 "코로나 대응에 있어서 환자와 의료진이 안전한 환경에서 중증 환자 치료까지 이뤄지도록 설계·제작했다ˮ고 설명했다. 조 부장은 이어 "국내외 확대 보급 시 원자력의학원에 설치된 이동형 음압병동이 의료진 교육훈련센터 기능을 수행할 수 있다ˮ면서 "필요시에는 실제 의료현장에서의 운영 지원도 가능하다ˮ고 밝혔다.
남택진 교수팀의 이번 연구는 KAIST 코로나 대응 과학기술 뉴딜사업의 지원을 받아 이뤄졌는데 사용자 연구부터 디자인·시제품 개발에 이르기까지 6개월 만에 임상적 운영이 가능한 병동 개발을 완료했다.
에어 텐트 형태의 음압병동 시제품은 과제 협약업체인 신성이엔지에서 제작을 맡았는데 6~8개의 중환자 병상을 갖춘 이동형 감염병원의 경우 3~4주 이내 납품이 가능하다. 연구 총괄을 맡은 남택진 KAIST 산업디자인학과 교수는 "MCM은 병동 증축을 최소화하며 주기적으로 반복될 감염병 위기에 필수적인 방역시스템으로 자리를 잡게 될 것ˮ이라고 말했다. 남 교수는 이어 "세계 최초로 개발한 MCM의 하드웨어와 운용 노하우를 향후 K-방역의 핵심 제품으로 추진하고 수출까지 기대할 수 있다ˮ고 덧붙였다. 한편, KAIST는 과기정통부로부터 후원을 받아 작년 7월부터 교내에 코로나 대응 과학기술 뉴딜사업단을 공식 출범시켜 관련 연구를 진행 중이다. 배충식 사업단장(공과대학장)이 이끄는 이 사업단은 KAIST가 보유한 과학기술을 활용해 코로나19에 발 빠르게 대응하고 국가적 위기를 기회로 전환하자는 목표 아래 KAIST 교수진 위주의 연구 책임자 45명 및 외부 참여 교수를 포함해 총 464명의 연구진이 감염 예방-진단-치료 등 항·감염 전주기에 대응하는 과학기술 기반 한국형 방역패키지를 개발하고 있다.
2021.01.07
조회수 61666
-
고성능 완전 분산 금속 앙상블 촉매 개발
생명화학공학과 이현주 교수 연구팀이 자동차 촉매로 활용할 수 있는 고성능의 완전 분산 금속 앙상블 촉매를 개발했다.
연구팀의 금속 앙상블 촉매는 휘발유 차량 배기가스 정화 반응인 삼원 촉매 반응에서(three-way catalysis, TWC) 기존의 단일원자 촉매, 상용 삼원 촉매 대비 월등한 저온 촉매 성능을 보였다. 또한, 노화 및 장기 반응 등의 내구성 평가에서 탁월한 성능을 보였다. 연구팀의 금속 앙상블 촉매는 불균일계 촉매 분야에서 기존의 단일원자 촉매를 뛰어넘어 그 가치가 높을 것으로 기대된다.
정호진 박사과정이 1 저자로 참여한 이번 연구결과는 화학 분야 국제학술지 ‘네이처 카탈리시스(Nature Catalysis)’ 2월 17일 자 온라인판에 게재됐다. (논문명 : 단일원자 촉매를 뛰어넘는 완전분산된 고내구성 자동차 촉매용 금속 앙상블 촉매, Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts)
다양한 불균일계 촉매 중 귀금속(백금, 팔라듐, 로듐) 촉매는 높은 활성을 보여 널리 사용되지만, 귀금속의 희소성과 비싼 가격으로 인해 제약이 많다. 이에 사용 효율을 극대화하는 것이 매우 중요한 과제로 남아있다. 단일원자 촉매는 모든 금속 원자가 촉매 반응에 참여할 수 있어 널리 사용되지만, 금속 원자가 독립적으로 존재하기 때문에 앙상블 자리가 필요한 촉매 반응에서 촉매 성능을 발휘하지 못한다.
한편 일산화탄소(CO), 프로필렌(C3H6), 프로판(C3H8), 일산화질소(NO)는 대표적인 휘발유 차량 배기가스 오염물질로 반드시 삼원 촉매 반응을 통해 이산화탄소(CO2), 물(H2O), 질소(N2)로 전환한 뒤 배출돼야 한다. 이때 탄화수소(프로필렌, 프로판) 산화 반응은 탄소-탄소, 탄소-수소 결합을 깨뜨려야만 반응이 진행되기 때문에 촉매 반응을 위해서는 금속 앙상블 자리를 확보하는 것이 필수이다.
연구팀은 문제 해결을 위해 100%의 분산도를 갖는 금속(백금, 팔라듐, 로듐) 앙상블 촉매를 개발해 삼원 촉매 반응에 적용했다. 100%의 분산도를 갖는다는 것은 모든 금속 원자가 표면에 드러나 있어 모든 원자가 반응에 참여할 수 있다는 의미이다. 이는 단일원자 촉매도 갖는 특징이지만 앙상블 촉매는 100% 분산도와 더불어 두 개 이상의 원자가 붙어있는 앙상블 자리가 존재한다는 장점을 갖고 있다.
그 결과 금속 앙상블 촉매는 일산화탄소, 프로필렌, 프로판, 일산화질소를 동시에 제거하는 삼원 촉매 반응에서 매우 우수한 저온 촉매 성능을 보였다. 이는 탄화수소 산화 반응 성능이 없어서 삼원 촉매 성능이 저하되는 단일원자 촉매의 문제점을 해결한 것이다. 특히 연구팀이 개발한 분산도 100%의 금속 앙상블 촉매는 수열 노화, 장기 반응, 재사용 반응 등의 내구성 평가에서도 탁월한 성능을 보여 실제 휘발유 차량 배기가스 정화에 적용 가능할 것으로 기대된다.
이현주 교수는 “이번에 개발한 금속 앙상블 촉매는 기존의 단일원자 촉매의 한계를 극복하는 새로운 금속 촉매로써 학술적으로 기여하는 바가 크다”라며 “휘발유 차량 배기가스 정화 촉매 분야에도 산업적으로 적용 가능해 연구의 가치가 매우 크다”라고 말했다.
이번 연구는 선도연구센터사업의 초저에너지 자동차 초저배출 사업단과 한국연구재단 중견연구사업의 지원을 받아 수행됐다.
2020.02.27
조회수 11501
-
저전력·고속 터널 전계효과 트랜지스터 개발
물리학과 조성재 교수 연구팀이 기존의 금속 산화물 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET) 대비 작동전력 소모량이 10배 이상, 대기전력 소모량이 1만 배 가까이 적은 저전력, 고속 트랜지스터를 개발했다.
조 교수 연구팀은 2차원 물질인 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 두 물질의 접합이 아닌 단일 물질의 두께 차이에 의한 이종접합 터널을 제작하는 데 성공했다. 이러한 단일 물질의 이종접합을 터널 트랜지스터에 활용하면 서로 다른 물질로 제작한 이종접합 트랜지스터에서 발생했던 격자 불균형, 결함, 계면 산화 등의 문제를 해결할 수 있어 고성능 터널 트랜지스터의 개발이 가능하다.
김성호 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 1월 27일 자 온라인판에 게재됐다. (논문명 : Thickness-controlled black phosphorus tunnel field-effect transistor fro low-power switches).
무어 법칙에 따른 트랜지스터 소형화 및 집적도 증가는 현대의 정보화 기술을 가능하게 했지만 최근 트랜지스터의 소형화가 양자역학적 한계에 다다르면서 전력 소모가 급격히 증가해 이제는 무어 법칙에 따라 트랜지스터 소형화가 진행되지 못하는 상황이다. 최근에는 자율주행차, 사물인터넷 등의 등장으로 많은 양의 데이터를 저전력, 고속으로 처리할 수 있는 비메모리 반도체의 기술 발달이 시급히 요구되고 있다.
트랜지스터의 전력 소모는 크게 작동 전력 소모와 대기 전력 소모로 나뉜다. 작동 전력과 대기 전력을 같이 낮추기 위해서는 트랜지스터의 작동 전압과 대기 상태 전류를 동시에 낮추는 것이 필수적이다. 이를 위해서는 전류를 10배 증가시키는데 필요한 전압으로 정의되는 SS 값(subthreshold swing, 단위: mV/decade = mV/dec)의 감소가 필요한데, 금속 산화물 반도체 전계효과 트랜지스터에서는 SS 값이 상온에서 60 mV/dec 이하로 낮아질 수 없다. 이를 해결하기 위해서는 상온에서 SS 값을 60 mV/dec 이하로 낮출 수 있는 새로운 트랜지스터의 개발이 필요하다. 이전에 개발되었던 낮은 SS를 가지는 저전력 터널 트랜지스터의 경우 트랜지스터 채널을 구성하는 두 물질의 이종접합 계면에서 산화막 등의 문제가 발생하여 작동 상태에서 낮은 전류를 가지는 문제가 있었다. 작동 상태 전류는 트랜지스터 작동속도에 비례하기 때문에, 낮은 작동 상태 전류는 저전력 트랜지스터의 경쟁력을 떨어뜨린다.
조 교수 연구팀이 적은 전력소모를 위한 낮은 SS 값과 고속 작동을 위한 높은 작동 상태 전류를 단일 트랜지스터에서 동시에 달성한 것은 유례없는 일로 2차원 물질 기반의 저전력 트랜지스터가 기존의 금속 산화물 반도체 전계효과 트랜지스터의 전력 소모 문제를 해결하고, 궁극적으로 기존 트랜지스터를 대체하고 미래의 저전력 대체 트랜지스터가 될 수 있음을 의미한다. 조성재 교수는 “이번 연구는 기존의 어떤 트랜지스터보다 저전력, 고속으로 작동해 실리콘 기반의 CMOS 트랜지스터를 대체할 수 있는 저전력 소자의 필요충분조건을 최초로 만족시킨 개발이다”라며 “대한민국 비메모리 산업뿐 아니라 세계적으로 기초 반도체 물리학 및 산업 응용에 큰 의의를 지닌다”라고 말했다.
이번 연구는 한국연구재단 미래반도체신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.02.20
조회수 16289
-
초고속, 초정밀 펄스비행시간(TOF) 센서 개발
우리 대학 기계공학과 김정원 교수 연구팀이 펄스 레이저와 전광 샘플링 기법을 이용해 거리 측정에 활용할 수 있는 초고속, 초정밀의 펄스비행시간(time-of-flight, TOF) 센서 기술을 개발했다. 이 새로운 펄스비행시간 센서 기술을 이용하면 수소 원자 2개의 크기보다도 작은 180 피코미터(55억분의 1미터) 정도의 위치 차이도 200분의 1초 만에 정확하게 측정할 수 있다. 기존 고성능 거리 측정 기술의 성능을 뛰어넘는 새로운 원천 기술이 될 것으로 기대된다.
나용진 박사과정이 1 저자로 참여한 이번 연구 결과는 국제학술지 ‘네이처 포토닉스(Nature Photonics)’ 2월 10일 자에 게재됐다. (논문명: Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection)
레이저를 이용한 거리 측정 기술은 현재 보안, 자율주행 등에 사용되는 라이다(LiDAR)나 반도체 공정 등 각종 산업 분야뿐 아니라, 지진 감지, 중력파 검출 등 자연 현상 탐지까지 다양한 분야의 핵심 기술로 활용된다. 거리 측정의 분해능, 속도 및 범위 성능이 개선되면 기존 응용기술들의 성능 개선뿐 아니라 이전에는 불가능했던 새로운 물리 현상들의 측정도 가능하게 한다.
기존의 고성능 거리 측정 기술들은 크게 두 가지 방식으로 나뉜다. 기존의 펄스비행시간 기술은 미터 이상의 긴 측정 거리를 갖지만 그만큼 분해능 성능이 떨어지는 문제가 있다. 반면 간섭계 기술은 나노미터 수준의 좋은 분해능을 갖지만, 마이크로미터 수준의 좁은 측정 범위를 갖는다. 또한, 두 기술 모두 측정 속도가 느리다는 공통적인 한계가 있다.
연구팀은 이러한 한계들을 극복하기 위해 기존의 방식들과는 완전히 다른 방식의 펄스비행시간 센서를 제안했다. 펄스 레이저에서 발생한 빛 펄스와 광다이오드로 생성한 전류 펄스 사이의 시간 차이를 전광 샘플링 기법을 이용해 측정했다. 이때 빛 펄스와 전류 펄스 간의 시간 오차가 100 아토초(1경분의 1초) 정도로 매우 적어, 빠른 속도로 나노미터 이하의 거리 차이도 정밀하게 측정할 수 있다. 또한, 전류 펄스의 길이가 수십 피코초 이상으로 길어 밀리미터 이상의 측정 범위가 동시에 가능하다. 따라서 기존의 펄스비행시간 기술이 갖는 낮은 분해능과 간섭계 기술이 가지는 좁은 측정 범위의 한계를 동시에 뛰어넘을 수 있었다.
연구팀은 새로운 펄스비행시간 기술을 이용해 고분해능 3차원 형상 이미징 기술을 시연했고, 지진파나 화산 활동 측정과 같이 미세한 변형을 측정하는 데 활용할 수 있는 고정밀 변형률 센서도 구현했다. 또한, 초고속 측정에서도 높은 분해능을 갖는다는 장점을 이용해 100MHz(1초에 1억 번의 진동에 해당) 이상의 속도로 변화하는 물체의 위치도 나노미터 분해능으로 실시간 측정 가능함을 선보였다.
연구팀은 특히 서로 멀리 떨어져 있는 다수 지점의 펄스비행시간을 동시에 정밀하게 측정할 수 있는 특징을 활용하면 스마트팩토리와 같은 환경에서 하나의 레이저와 광섬유 링크들을 이용해 다지점, 다기능성 복합센서 시스템을 구현할 수 있다고 전망했다.
김 교수는 “이 기술을 이용해 기존에는 관측하지 못했던 마이크로 소자 내에서의 비선형적인 움직임과 같은 복잡하고 빠른 동적 현상들을 실시간으로 측정하고 규명하는 것이 다음 연구 목표이다”라고 말했다.
이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.02.12
조회수 12795
-
미세 입자 질량 측정용 파이펫 형태 공진기 개발
우리 대학 기계공학과 이정철 교수 연구팀과 서울대학교 기계항공공학부 고상근 교수 공동 연구팀이 일반 실험실에서 쉽고 간단하게 제작 가능한 액상 부유입자 정밀 질량 측정용 마이크로 파이펫 공진기를 개발했다.
위 기술은 유리 캐필러리를 열 인장하는 방법으로 간단하게 제작한 공진기를 이용해 캐필러리 내부 채널을 통과하는 액상 부유 입자의 질량을 정밀하게 계측할 수 있는 기술이다.
고주희 석사과정과 서울대학교 이동혁 박사가 공동 1 저자로 참여한 이번 연구 결과는 센서 분야 대표 국제 학술지 ‘에이씨에스 센서스(ACS Sensors)’ 2019년 12월 27일 자 내부표지 논문으로 게재됐다. (논문명 : Micropipette Resonator Enabling Targeted Aspiration and Mass Measurement of Single Particles and Cells, 단일 세포의 선택적 흡입 및 질량 측정을 위한 마이크로 파이펫 공진기)
모든 물체는 각각의 고유한 진동수를 가지고 진동하며 이 고유 진동수는 질량의 영향을 받는다. 마이크로 유체 채널 또한 마찬가지로 유체 채널을 공진 센서 플랫폼으로 제작해, 입자를 포함한 유체가 공진 센서 내부로 주입됐을 때 바뀌는 고유 진동수의 변화로 미세 입자의 질량을 측정하는 연구들이 지금까지 널리 진행돼왔다.
하지만 지금까지의 기술은 주로 고가의 복잡한 마이크로 및 나노 공정에 의존해왔고 측정 표본이 밀폐된 공간에 보관됨으로써 필요한 영양분들이 고갈될 수도 있다는 문제점이 있었다.
이번 연구에서는 열린 구조의 파이펫 공진기를 고안하고 제작해 배양 접시와 같이 실제 세포가 배양되는 환경에서 선택적으로 원하는 세포만을 흡입해 측정하는 시스템을 최초로 구현했다.
실험 시에 여러 입자(또는 세포) 중 특정 입자(세포)를 측정하기 위해 파이펫 공진기를 통과하는 유량을 제어했고, 도립현미경 위에서 실험을 진행했다. 선택된 특정 입자는 파이펫의 열린 입구에서부터 측정부로 이동하게 된다.
연구팀은 초당 수십만 번 떨리는 진동을 측정하기 위해 CD 및 DVD와 같은 광디스크 재생장치에 사용되는 광 픽업 장치(Optical PickUp, OPU)를 이용했다.
연구팀은 레이저 다이오드에서 렌즈를 통과해 조사된 빛이 공진기에서 반사된 후 광센서로 입사되는 신호를 분석해 공진기의 진동주파수를 정밀하게 측정할 수 있었다. 추가로 고유 진동수에서 공진기의 떨림 현상을 극대화하기 위해 전압이 걸리면 기계적인 변형이 발생하는 압전 소자가 사용됐다.
이정철 교수는 “기존의 복잡한 마이크로/나노공정을 이용해 웨이퍼로 제작하던 초미세 정밀 센서를 일반 실험실 환경에서 유리 모세관을 이용해 간단하게 제작해 대체할 수 있다는 가능성을 봤다”라며 “또한 해당 장치는 이미 바이오 연구자들에게 친숙한 파이펫 형태로서 별도의 학습 및 훈련 없이 널리 이용될 것으로 기대된다”라고 말했다.
이번 연구결과는 한국연구재단의 중견연구자지원사업 및 기초연구실지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. ACS Sensors 저널 내부표지
그림2. 유리 파이펫 공진기계장치의 개요와 제작방법
그림3. 입자의 질량 측정을 위한 파이펫 공진기의 실험 장치 구성도
그림4. 질량 따른 공진주파수의 변화 및 측정된 질량 스펙트럼 결과
2020.02.07
조회수 12375
-
급속충전 가능한 소듐이온 하이브리드 전지 개발
우리 대학 EEWS 대학원 강정구 교수 연구팀이 우수한 성능으로 급속 충전이 가능한 소듐 이온 기반의 하이브리드 전지를 개발했다.
연구팀은 질소가 올려진 메조 다공성 금속산화물 기반 전극을 이용해 높은 에너지 밀도와 고출력을 갖는 소듐 이온 에너지 저장 소자를 구현했다.
이 기술은 현재 주로 사용되는 리튬 이온 배터리보다 경제성 및 접근성 등에서 우수성을 가져 급속 충전이 필요한 휴대용 전자기기 등에 적용할 수 있을 것으로 기대된다.
강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 1월 27일 자에 게재됐다. (논문명: Synthesis of nitrogen-doped mesoporous structures from metal-organic frameworks and their utilization to enable high performances in hybrid sodium-ion energy storages)
현재 가장 높은 점유율의 상업용 배터리는 리튬 이온 물질 기반의 저장 소자로 넓은 전압 범위와 에너지 밀도가 높다는 장점이 있다.
그러나 배터리 발화 및 짧은 수명 등의 문제와 리튬 광물의 높은 가격, 부족한 희토류 원소 매장량, 느린 전기화학적 반응 속도 등의 한계 때문에 충·방전이 오래 걸리고 고출력 특성을 요구하는 전기 자동차 및 차세대 모바일 기기에 적용하기 위해 많은 개선이 필요하다.
반면 소듐 이온 기반 에너지 저장 소자는 안전하고 친환경적이며 가격이 상대적으로 매우 저렴하고 자원의 접근성이 높아 리튬 이온을 대체하면서 기존의 문제점을 극복할 수 있는 차세대 에너지 저장 소자로 주목받고 있다.
하지만 현재까지는 응용 분야에서 요구하는 성능에 미치지 못해 활용 폭이 좁다. 특히 기존의 금속산화물은 전기 전도성이 낮고 비표면적이 좁아 많은 양의 이온이 접근하는 데 한계가 있어 고성능을 구현하기에 어려움이 있었다.
연구팀은 질소가 도핑된 3차원 형태의 열린 메조 다공성 금속산화물 나노 구조체와 질소 도핑된 그래핀을 결합해 소듐 이온 기반 시스템에서 고용량과 고출력의 에너지 저장장치를 개발했다.
이번 연구에서 개발한 메조 다공성의 금속산화물 나노 구조체는 5~10나노미터 크기의 나노 입자들 사이에 다량의 열린 메조 기공이 형성돼 있고, 기공들이 나노 입자 사이에 3차원적으로 연결된 구조를 이뤄 질소 도핑 방법을 활용해 부족한 전기 전도도를 높일 수 있다.
이러한 메조 다공성 구조는 전해질이 기공을 통해 전극에 깊은 곳까지 수월한 침투가 가능하므로 전극 물질의 전체적인 표면이 에너지 저장에 활용돼, 높은 용량의 에너지 저장이 가능함과 동시에 충·방전 시간 역시 줄일 수 있다.
연구팀은 질소가 도핑된 다공성 금속산화물과 그래핀을 각각 음극과 양극에 각각 적용해 고성능의 소듐 이온 하이브리드 전지를 구현했다.
이 하이브리드 저장 소자는 소듐 기반의 배터리에 비해 같은 수준의 저장용량을 유지하면서 300배 이상 빠른 출력 밀도를 보이며, 수십 초 내 급속 충전이 가능해 소형의 휴대용 전자기기 등에 활용 가능할 것으로 기대된다.
강 교수는 “소듐 기반이기 때문에 저가 제작이 가능하고 활용성이 뛰어나 기존보다 높은 에너지 밀도를 갖는 에너지 저장장치의 상용화에 기여할 것이다”라며 “저전력 충전 시스템을 통해 급속 충전이 가능해 전기자동차와 휴대 가능한 전자 기기에 적용할 수 있을 것이다”라고 말했다.
이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 소듐 이온 하이브리드 에너지 저장 장치의 구성 및 저장 메커니즘을 나타낸 모식도
그림2. 소듐 이온 하이브리드 저장 장치의 성능과 태양광 모듈을 활용한 실제 구동 이미지
2020.02.06
조회수 11099
-
빅데이터로 인간의 창의성·혁신성을 계산하다
우리 대학 문화기술대학원의 박주용 교수 연구팀이 네트워크 과학과 빅데이터에 기반해 인간의 문화⋅예술 창작물의 혁신성과 영향력을 계산하는 이론물리학 알고리즘을 개발했다.
연구팀은 이 알고리즘을 통해 클래식 음악가들의 창작물의 창의성, 혁신성을 계산함으로써 음악의 발전에 베토벤이 끼친 영향력을 수치적으로 규명하고, 후기 낭만파 시대의 거장인 세르게이 라흐마니노프가 끊임없이 혁신을 시도한 대표적 예술가임을 밝혀냈다.
연구팀의 알고리즘은 예술 작품의 빅데이터로부터 창의성을 직접 계산함으로써 빠르게 증가하고 있는 창작 콘텐츠의 우수성을 효율적으로 판단할 수 있을 것으로 기대된다.
박도흠 박사과정이 1 저자로 참여한 이번 연구는 스프링어-네이처(Springer Nature) 그룹의 데이터 과학 전문 학술지인 ‘EPJ 데이터 사이언스(EPJ Data Science)’ 1월 30일 자 온라인판에 게제됐다. (논문명: Probabilistic Influence Networks and Quantifying Patterns of Advances in Works)
인간 고유의 영역으로 알려진 문화예술 창작에서도 인공지능 등의 컴퓨터 알고리즘이 널리 활용되며 예술 작품의 창의성을 과학적으로 평가하는 방법의 필요성이 커지고 있다.
그동안 인간 창의성의 산물인 문화예술은 수치적인 평가가 어려워 인공지능을 한 단계 발전시킨 ‘인공창의성’ 연구에 큰 장벽이 되어왔다. 개별 창작품들에 대한 사람들의 심리적 반응을 측정하는 시도는 종종 있었지만, 대규모의 객관적 실험을 수행하기에는 한계가 있다.
위와 같은 문제 해결을 위해 창작품 자체를 빅데이터화 한 뒤 그로부터 창의성을 평가하는 과학적 방법론 개발의 필요성이 커지고 있다.
연구팀은 1700년~1900년 사이에 작곡된 서양 피아노 악보로부터 동시에 연주되는 음정으로 만들어진 ‘코드워드(codeword)’를 추출하고 이론물리학의 한 분야인 네트워크 과학을 적용했다.
그리고 난 뒤 작품들 사이의 유사도를 측정해 작품들이 서로 얼마나 영향을 주고받았는지를 나타내는 네트워크를 만들어 각 작품이 얼마나 혁신적인지, 또한 후대의 작품에 얼마나 큰 영향을 끼쳤는지를 통해 창의성을 평가했다.
연구팀은 현대에도 큰 영향을 끼치고 있는 핵심적 음악 스타일이 확립된 200년에 걸쳐 음악 창작의 패러다임이 어떻게 변화해왔는지 이해했다고 밝혔다.
이 연구에서는 바로크⋅고전기(1710-1800년)의 대표 작곡가인 핸델과 하이든, 모차르트를 거쳐 고전-낭만 전환기(1800-1820년) 이후 베토벤이 최고의 영향력을 가진 작곡자로 떠오르고, 베토벤의 영향을 받아 리스트와 쇼팽 등 낭만기(1820-1910년)의 거장들이 등장하는 과정을 규명하였다. 올해로 탄생 250주년을 맞은 베토벤은 사후에도 100년 가까이 최고의 영향력을 유지한 것으로 밝혀졌다.
또한, 연구팀은 후기 낭만파의 거장인 라흐마니노프가 과거의 관습은 물론 자신의 작품으로부터 차별화를 끊임없이 시도한 최고의 혁신적 작곡가였음을 밝혀냈다.
코드워드에 기반한 네트워크로부터 음악의 창의성을 계산해내는 이 알고리즘은 낱말, 문장, 색상, 무늬 등으로 만들어진 문학 작품이나 그림, 건축, 디자인 등의 시각 예술의 창의성 연구에도 적용할 수 있을 것으로 보인다.
박주용 교수는 “문화예술 창작물의 과학적 연구에 장벽이 되어온 창의성 평가라는 난제를 네트워크 과학과 빅데이터를 활용해 해결할 수 있음을 보였다”라며 “특히 문화예술 창작 영역에서 컴퓨터의 활약이 커지는 상황에서 인간의 단순 계산력만을 따라하는 인공지능의 한계를 극복함으로써, 인간 창의성과 미적 감각의 잠재력을 극대화하는 인공창의성 발전에 큰 도움이 될 것이다”라고 말했다.
이번 연구는 한국연구재단 국제연구네트워크(GRN)와 한국사회과학연구지원(SSK) 사업, BK21 플러스사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1.시대별 작곡가들 사이의 영향력을 나타내는 네트워크
그림2. 연도별 대표적 작곡가들의 영향력 변천사
2020.02.04
조회수 12127
-
재촬영 없이 MRI 강조영상 얻는 AI 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀 자기공명영상(magnetic resonance imaging: MRI)에서 재촬영 없이도 누락된 강조영상을 얻을 수 있는 인공지능 기술을 개발했다.
이 연구를 통해 각 질환별로 강조영상이 암의 진단에 미치는 영향을 객관적으로 밝힐 수 있으며, 실제 임상에서 고비용의 MRI를 효과적이고 체계적으로 활용할 수 있는 방안을 설계할 수 있을 것으로 기대된다.
이동욱 박사가 1 저자로 참여하고 건국대 의과대학 영상의학과 문원진 교수팀이 참여한 이번 연구 결과는 국제 학술지 ‘네이처 머신인테리젼스(Nature Machine Intelligence)’ 1월 18일 자 온라인판에 게재됐다. (논문명 : Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks).
MRI는 엑스선 컴퓨터 단층촬영, 초음파와 더불어 임상 진단에서 중요한 역할을 하는 진단 장비이다. 특히 비침습적 방법으로 고해상도의 영상을 얻기 때문에 종양이나 병변을 관찰하며 진단하는데 매우 중요한 임상 정보를 제공한다. 이는 영상의 대조도 (contrast)를 다양하게 조절할 수 있는 MRI의 특징 덕분이다.
예를 들어 뇌종양을 진단하는 데 활용되는 T1·T2 강조영상, FLAIR 기법 영상, T1 조영증강 영상 등 여러 가지 대조 영상을 얻어 진단에 사용함으로써 종양을 찾을 수 있다.
하지만 실제 임상 환경에서는 강조영상을 모두 얻기 어려운 경우가 많다. 여러 장의 강조영상 촬영을 위해 촬영시간이 길어지기도 하고, 잡음이나 인공음영 발생으로 인해 진단에 사용하기 어려운 경우가 많기 때문이다.
또한, 뇌질환진단을 위한 MRI 검사는 의심 질환이 무엇인지에 따라 필수 강조영상이 달라지며, 이후 특정 질환으로 진단명이 좁혀지면서 부득이하게 누락된 강조영상을 확보하기 위한 재촬영이 필요한 경우가 많다. 이러한 상황에 의해 많은 시간과 비용이 소모된다.
최근 인공지능 분야에서 생성적 적대 신경망(Generative adversarial networks, GAN)이라는 딥러닝을 이용해 영상을 합성하는 기술이 많이 보고되고 있지만, 이 기술을 MRI 강조영상 합성에 사용하면 준비하고 미리 학습해야 하는 네트워크가 너무 많아지게 된다.
또한, 이러한 기법은 하나의 영상에서 다른 영상으로의 관계를 학습하기 때문에 몇 개의 강조영상의 존재하더라도 이 정보 간의 시너지를 활용하는 영상 학습기법이 없는 현실이다.
예 교수 연구팀은 자체 개발한 ‘협조·생성적 적대신경망(Collaborative Generative Adversarial Network : CollaGAN)’이라는 기술을 이용해 여러 MRI 강조영상의 공통 특징 공간을 학습함으로써 확장성의 문제를 해결했다.
이를 통해 어떤 대조 영상의 생성이 가능한지와 불가능한지에 대한 질문과, 그에 대한 체계적인 대답 기법을 제안했다.
즉, 여러 개의 강조영상 중에서 임의의 순서 및 개수로 영상이 없어져도 남아있는 영상을 통해 사라진 영상을 복원하는 기법을 학습한 후 합성된 영상의 임상적 정확도를 평가해, 강조 영상 간 중요도를 자동으로 평가할 수 있는 원천 기술을 개발했다.
예 교수 연구팀은 건국대 문원진 교수 연구팀과의 협력을 통해 T1강조·T2강조 영상과 같이 내인성 강조영상은 다른 영상으로부터 정확한 합성이 가능하며, 합성된 강조영상이 실제 영상과 매우 유사하게 임상 정보를 표현하고 있다는 것을 확인했다.
연구팀은 확보한 합성 영상이 뇌종양 분할기법을 통해 뇌종양 범위를 파악하는데 유용한 정보를 제공한다는 것을 확인했다. 또한, 현재 많이 사용되는 합성 MRI 기법(synthetic MRI)에서 생기는 인공음영 영상도 자동 제거가 가능함이 증명됐다. 이 기술을 이용하면 추가적인 재촬영을 하지 않고도 필요한 대조 영상을 생성해 시간과 비용을 비약적으로 줄일 수 있을 것으로 기대된다.
건국대 영상의학과 문원진 교수는 “연구에서 개발한 방법을 이용해 인공지능을 통한 합성 영상을 임상현장에서 이용하면 재촬영으로 인한 환자의 불편을 최소화하고 진단정확도를 높여 전체의료비용 절감 효과를 가져올 것이다”라고 말했다.
예종철 교수는 “인공지능이 진단과 영상처리에 사용되는 현재의 응용 범위를 넘어서, 진단의 중요도를 선택하고 진단 규약을 계획하는 데 중요한 역할을 할 수 있는 것을 보여준 독창적인 연구이다”라고 말했다.
이 연구는 한국연구재단의 중견연구자지원사업을 받아 수행됐다.
□ 그림 설명
그림1. CollaGAN의 작동 원리의 예
2020.01.30
조회수 12824
-
오차율 10% 이내 정확도의 소재 설계 기술 개발
우리 대학 화학과 김형준 교수 연구팀이 소재 물성의 예측 오차율을 기존 기술보다 30% 이상 줄여 정확도를 한층 높인 소재 시뮬레이션 설계 기술을 개발했다.
이번 기술 개발을 통해 기존 40%에 달했던 소재 물성 예측 오차율을 10% 내로 줄임으로써 소재 개발에 걸리는 시간과 비용을 크게 절약할 수 있을 것으로 기대된다.
김민호 박사와 창원대 김원준 교수가 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘미국 화학회지(Journal of the American Chemical Societry)’ 1월 10일 자 온라인판에 게재됐다. (논문명 : uMBD: A Materials-Ready Dispersion Correction that Uniformly Treats Metallic, Ionic, and van der Waals Bonding)
새로운 기능성 소재 개발의 중요성이 커지면서 컴퓨터 시뮬레이션을 이용해 소재 물성을 정확히 예측해 새로운 소재를 설계하는 기술이 주목받고 있다.
소재 시뮬레이션 기술은 실제로 소재를 합성하고 평가하기 전에 가상 실험으로 다양한 소재 물성을 예측 및 설계하는 기술로, 주로 밀도범함수 이론(Density functional theory)이라는 양자 이론에 바탕을 두고 있다.
기존의 밀도범함수 이론은 소재 계면에서 반데르발스 힘을 정확하게 설명하지 못한다는 문제가 있었다. 반데르발스 힘은 전하의 일시적 쏠림으로 인해 분자가 순간적으로 극성을 띠면서 나타나는 당기는 힘을 뜻하는데, 이를 정확히 기술하지 못하기 때문에 소재 물성 예측 정확도가 떨어진다는 한계가 있다.
연구팀은 반데르발스 힘을 정확하고 효과적으로 기술할 수 있는 새로운 이론을 개발하고, 이를 밀도범함수 이론에 접목해 소재 시뮬레이션 기술의 정확도를 한층 높이는 데 성공했다.
연구팀은 100여 종의 다양한 소재를 테스트한 결과 40% 정도에 달했던 기존의 소재 물성 예측 오차율이 새 기술을 통해 10% 이내로 줄어듦을 확인했다.
특히 반데르발스 힘은 분자 소재부터 금속 및 반도체 소재에 이르기까지 거의 모든 재료 내에서 소재 물성을 결정하는 데 중요한 역할을 해, 연구팀의 새로운 이론은 다양한 차세대 기능성 소재 설계 연구에 적용 가능할 것으로 기대된다.
실제로 연구팀의 새 시뮬레이션 방법을 통해 리튬 이온 배터리 물질의 전압이나 2차원 소재의 박리 에너지를 예측하는 과정에서 높은 정확도를 보인 것으로 확인됐다.
김형준 교수는 “소재 개발 연구에 있어 경쟁력 강화를 위해서 기초 연구의 중요성이 점차 커지고 있다”라며 “새로 개발한 소재 시뮬레이션 기술을 배터리 소재, 에너지 전환 촉매 소재, 2차원 나노 소재 등 다양한 기능성 소재 설계 연구에 적용할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단의 미래소재디스커버리 사업과 선도연구센터 지원 사업 (SRC)의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 새롭게 개발한 이론 (uMBD)을 이용한 소재 시뮬레이션 기술과 기능성 소재 설계
2020.01.29
조회수 11308
-
박찬범, 스티브 박 교수, 혈액 기반 알츠하이머병 멀티플렉스 진단센서 개발
KAIST(총장 신성철) 신소재공학과 박찬범 교수와 스티브 박 교수 공동 연구팀이 혈액으로 알츠하이머병을 진단할 수 있는 센서를 개발하는 데 성공했다.
연구팀이 개발한 진단 센서를 활용해 혈액 내에 존재하는 베타-아밀로이드 및 타우 단백질 등 알츠하이머병과 관련한 4종의 바이오마커 농도를 측정·비교하면 민감도는 90%, 정확도 88.6%로 중증 알츠하이머 환자를 구별해 낼 수 있다.
김가영 박사과정·김민지 석사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지‘네이처 커뮤니케이션스(Nature communications)’1월 8일 자 온라인판에 게재됐다. (논문명: Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma)
알츠하이머병은 치매의 약 70%를 차지하는 대표적인 치매 질환이다. 현재 전 세계 65세 이상 인구 중 10% 이상이 이 질병으로 인해 고통을 받고 있다. 하지만 현재의 진단 방법은 고가의 양전자 단층촬영(PET) 또는 자기공명영상진단(MRI) 장비를 사용해야만 하기에 많은 환자를 진단하기 위해서는 저렴하면서도 정확한 진단 기술개발의 필요성이 제기돼 왔다.
연구팀은 랑뮤어 블라젯(Langmuir-blodgett)이라는 기술을 이용해 고밀도로 정렬한 탄소 나노튜브(Carbon nanotube)를 기반으로 한 고민감성의 저항 센서를 개발했다. 탄소 나노튜브를 고밀도로 정렬하게 되면 무작위의 방향성을 가질 때 생성되는 접합 저항(Tube-to-tube junction resistance)을 최소화할 수 있어 분석물을 더 민감하게 검출할 수 있다.
실제로 고밀도로 정렬된 탄소 나노튜브를 이용한 저항 센서는 기존에 개발된 탄소 나노튜브 기반의 바이오센서들 대비 100배 이상의 높은 민감도를 보였다.
연구팀은 고밀도로 정렬된 탄소 나노튜브를 이용해 혈액에 존재하는 알츠하이머병의 바이오마커 4종류를 동시에 측정할 수 있는 저항 센서 칩을 제작했다. 알츠하이머병의 대표적인 바이오마커인 베타-아밀로이드 42 (β-amyloid42,), 베타-아밀로이드 40 (β-amyloid40), 총-타우 단백질 (Total tau proteins) 및 과인산화된 타우 단백질 (Phosphorylated tau proteins)은 그 양이 알츠하이머병의 병리와 직접적인 상관관계를 가지기 때문에 알츠하이머병 환자를 구별해 내는 데 매우 유용하다.
고밀도로 정렬된 탄소 나노튜브 기반 센서 칩을 이용해 실제 알츠하이머 환자와 정상인의 혈액 샘플 내에 존재하는 4종의 바이오마커 농도를 측정 하고 비교한 결과, 민감도와 선택성은 각각 90%, 그리고 88.6%의 정확도를 지녀 중증 알츠하이머 환자를 상당히 정확하게 진단할 수 있음을 확인했다. 연구팀이 개발한 고밀도로 정렬된 탄소 나노튜브 센서는 측정방식이 간편하고, 제작비용도 저렴하다.
박찬범 교수는“본 연구는 알츠하이머병으로 이미 확정된 중증환자들을 대상으로 진행하였다. 향후 실제 진료 환경에 활용하기 위해서는 경도인지장애 (Mild cognitive impairment) 환자의 진단 가능성을 테스트하는 것이 필요하다”며“이를 위하여 경도인지장애 코호트, 치매 코호트 등의 범국가적인 인프라 구축이 필수적이며, 국가 공공기관의 적극적인 연구 네트워크 구축 및 지원의 장기성 보장이 요구된다”고 강조했다.
한편 이번 연구는 과학기술정보통신부 리더연구자 지원사업과 충남대병원 및 충북대병원 인체자원은행의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 혈액 내에 존재하는 총 4종의 바이오마커 농도를 측정해 알츠하이머병 환자를 구별하는 고밀도로 정렬된 카본 나노튜브 기반 저항 센서의 모식도
그림 2. 진단 센서 성능
2020.01.15
조회수 18303
-
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다.
이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다.
이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides)
최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다.
현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다.
이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다.
그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다.
브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다.
김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다.
전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다.
질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다.
이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다.
연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다.
김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다.
김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다.
이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습
그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 17010