본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%84%B8%ED%8F%AC+%EA%B0%84+%EC%9D%B4%EC%A7%88%EC%84%B1
최신순
조회순
항암 효과 낮추는 ‘세포 간 이질성’ 극복 전략 찾았다
효과가 높은 신약 및 치료법 개발을 위한 단서가 제시됐다. 우리 대학 수리과학과 김재경 교수(기초과학연구원(IBS) 수리 및 계산 과학 연구단 의생명 수학 그룹 CI(Chief Investigator)) 연구팀은 인공지능(AI)을 이용해 동일 외부 자극에 개별 세포마다 반응하는 정도가 다른 ‘세포 간 이질성’의 근본적인 원인을 찾아내고, 이질성을 최소화할 수 있는 전략을 제시했다. 우리 몸속 세포는 약물, 삼투압 변화 등 다양한 외부 자극에 반응하는 신호 전달 체계(signaling pathway)가 있다. 신호 전달 체계는 세포가 외부 환경과 상호작용하며 생존하는 데 핵심적인 역할을 한다. 세포의 신호 전달 체계는 노벨생리의학상의 단골 주제일 정도로 중요하지만, 규명을 위해서는 수십 년에 걸친 연구가 필요하다. 신호 전달 체계는 세포 간 이질성에도 영향을 미친다. 세포 간 이질성은 똑같은 유전자를 가진 세포들이 동일 외부 자극에 다르게 반응하는 정도를 뜻한다. 하지만 복잡한 신호 전달 체계의 전 과정을 직접 관측하는 일이 현재 기술로는 어렵기 때문에 지금까지는 신호 전달 체계와 세포 간 이질성의 명확한 연결고리를 알지 못했다. 세포 간 이질성은 질병 치료에 있어 더욱 중요한 고려 요소다. 가령, 항암제를 투여했을 때 세포 간 이질성으로 인해 일부 암세포만 사멸되고, 일부는 살아남는다면 완치가 되지 않는다. 세포 간 이질성의 근본적인 원인을 찾고, 이질성을 최소화할 수 있는 전략을 도출해야 치료 효과를 높인 신약 설계가 가능해진다. 제1 저자인 홍혁표 IBS 전(前) 학생연수원(現 미국 위스콘신 메디슨대 방문조교수)은 “우리 연구진은 선행 연구(Science Advances, 2022)에서 세포 내 신호 전달 체계를 묘사한 수리 모델을 개발한 바 있다”며 “당시엔 신호 전달 체계의 중간 과정이 한 개의 경로만 있다고 가정해 얻을 수 있는 정보도 한계가 있었지만, 이번 연구에서는 AI를 활용해 중간 과정의 비밀까지 풀어냈다”고 말했다. 연구진은 기계 학습 방법론인 ‘Density-PINNs(Density Physics-Informed Neural Networks)’를 개발해 신호 전달 체계와 세포 간 이질성의 연결고리를 찾았다. 세포가 외부 자극에 노출되면 신호 전달 체계를 거쳐 반응 단백질이 생성된다. 시간에 따라 축적된 반응 단백질의 양을 이용하면 신호 전달 소요 시간의 분포를 추론할 수 있다. 이 분포는 신호 전달 체계가 몇 개의 경로로 구성됐는지를 알려준다. 즉, Density-PINNs를 이용하면 쉽게 관측할 수 있는 반응 단백질의 시계열 데이터로부터 직접 관찰하기 어려운 신호 전달 체계에 대한 정보를 추정할 수 있다는 의미다. 이어 연구진은 실제 대장균의 항생제에 대한 반응 실험 데이터에 Density-PINNs를 적용하여 세포 간 이질성의 원인도 찾았다. 신호 전달 체계가 단일 경로로 이뤄진 때(직렬)에 비해 여러 경로로 이뤄졌을 때(병렬)가 세포 간 이질성이 적다는 것을 알아냈다. 제1 저자인 조현태 연구원은 “추가 연구가 필요하지만, 신호 전달 체계가 병렬 구조일 경우 극단적인 신호가 서로 상쇄되어서 세포 간 이질성이 적어지는 것으로 보인다”며 “신호 전달 체계가 병렬 구조를 보이도록 약물이나 화학 요법 치료 전략을 세우면 치료 효과를 높일 수 있다는 의미”라고 설명했다. 연구를 이끈 김재경 교수는 “복잡한 세포 신호 전달 체계의 전 과정을 파악하려면 수십 년의 연구가 필요하지만, 우리 연구진이 제시한 방법론은 수 시간 내에 치료에 필요한 핵심 정보만 알아내 치료에 활용할 수 있다”며 “이번 연구를 실제 현장에서 사용되는 약물에 적용하여 치료 효과를 개선할 수 있기를 기대한다”고 말했다. 연구 결과는 지난해 12월 26일 국제학술지 셀(Cell)의 자매지인 ‘패턴스(Patterns)’에 실렸다. ※ 논문명: Density physics-informed neural networks reveal sources of cell heterogeneity in signal transduction
2024.01.17
조회수 3153
수학 모델로 개별 세포 간 이질성의 원인 밝혀
우리 연구진이 항생제와 같은 동일한 외부 자극에도 개별 세포마다 반응하는 정도가 다른 근본적인 원인을 밝혔다. 우리 대학 수리과학과 김재경 교수(기초과학연구원(IBS) 의생명수학 그룹 겸임) 연구팀이 외부 자극에 대한 세포 간 이질성(cell-to-cell heterogeneity)의 크기가 세포 내 신호 전달 과정의 반응 속도 제한 단계(rate-limiting step)의 수에 비례한다는 사실을 규명했다고 21일 밝혔다. 똑같은 유전자를 가진 세포들이 동일한 외부 자극에 다르게 반응하는 이유는 오랫동안 미스터리였다. 특히, 외부 자극에 대한 반응의 이질성은 항암 치료 시 화학 요법을 적용할 때 암세포의 완전 사멸을 막는 원인이 되기도 한다. 따라서, 세포 간 이질성을 유발하는 요인으로서 속도 제한 단계를 제시한 이번 연구는 화학 요법 치료의 효과를 개선하는 데에 이용될 수 있을 것으로 기대된다. 우리 대학 수리과학과 김대욱 박사와 홍혁표 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 3월 18일 字 온라인판에 실렸다. (논문명 : Systematic inference identifies a major source of heteogeneity in cell signaling dynamics: the rate-limiting step number) 우리 몸속에 있는 세포는 항생제, 삼투압 변화 등 다양한 외부 자극에 반응하는 신호 전달 체계를 갖고 있다. 이러한 신호 전달 체계는 세포가 외부 환경과 상호 작용하는 데에 가장 핵심적인 역할을 한다. 동일한 외부 자극을 세포들에 가했을 때 반응하는 정도가 다르기 때문에 약물에 대한 이질적인 반응과 약물 내성이 강한 존속성 세균(persister cell)이 발생한다. 이러한 현상을 유발하는 세포 간 이질성의 원인을 찾기 위해 많은 시도가 있었다. 특히, 신호 전달 체계를 이루는 많은 중간 과정들이 영향을 미친다는 것이 제안됐으나, 실험적으로 모든 중간 과정을 직접 관측하는 것이 현재 기술로는 불가능하기에 난제로 남아 있었다. 김 교수 연구팀은 이 난제 해결을 위해 세포 내 신호 전달 체계를 묘사하는 큐잉 모형(Queueing model)을 개발했다. 개발된 큐잉 모형을 바탕으로 통계적인 추정 방법론인 베이지안 모형(Bayesian model)과 혼합 효과 모형(Mixed-effects model)을 결합해 신호 체계의 중간 과정에 대한 관측 없이도 신호 체계를 분석할 수 있는 컴퓨터 소프트웨어(MBI; Moment-based Bayesian Inference method)를 개발했다. 이를 이용해 분석한 결과, 연구팀은 외부 자극에 반응하는 세포 간 이질성이 신호 전달 체계를 구성하는 속도 제한 단계의 수에 비례한다는 사실을 밝혔다. 김 교수는 "신호 전달 체계를 이루는 속도 제한 단계의 수가 늘어날수록 유전적으로 같은 세포 집단일지라도 전달하는 신호가 더 다양하게 나타날 수 있음을 확인했다ˮ고 설명했다. 김 교수팀은 수리 모델 분석을 위한 이론적 토대를 마련하는 것에서 그치지 않고, 실제 대장균(E. coli)의 항생제 반응 실험 데이터를 이용해 이론적 결과를 검증했다. 이러한 연구 결과는 항생제 내성 세균 연구에 새로운 패러다임을 제시할 것으로 예상된다. 김 교수는 "항암 치료시 중요하게 고려되는 세포 간 이질성에 대한 이해를 수리 모델을 통해서 높인 연구ˮ라고 소개하면서 "이번 성과를 통해 항암 치료 개선 방안이 개발되기를 기대한다ˮ라고 말했다. 한편 이번 연구는 삼성미래기술육성사업의 지원을 받아 수행됐다.
2022.03.21
조회수 8575
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1