-
수 초 만에도 급속충전 가능 소듐전지 개발
소듐(Na)은 리튬(Li) 대비 지구상에 500배 이상으로 존재하기 때문에 이를 활용한 소듐 이온 배터리는 최근 큰 주목을 받고 있다. 그러나 리튬 이온 배터리에 비해 낮은 출력, 제한된 저장 특성, 긴 충전 시간 등의 근본적인 한계점이 있어 이를 극복하는 차세대 에너지 저장 소재 개발이 필요하다.
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 급속 충전이 가능한 고에너지·고출력 하이브리드 소듐 이온 전지를 개발했다고 11일 밝혔다.
최근 활발하게 연구가 진행되고 있는 하이브리드 에너지 저장 시스템은 배터리용 음극과 축전기용 양극을 결합해 높은 저장 용량과 빠른 충·방전 속도를 모두 지닐 수 있는 장점을 가지고 있다. 이는 기존 소듐 이온 배터리의 한계를 극복해 리튬이온 배터리를 대체할 수 있는 차세대 에너지 저장 장치로 주목받고 있다.
하지만 고에너지 및 고출력 밀도의 하이브리드 전지를 구현하기 위해서 배터리용 음극의 상대적으로 느린 에너지 저장 속도를 향상해야 하는 동시에 음극에 비해 상대적으로 낮은 용량을 갖는 축전기용 양극재의 에너지 저장 용량을 끌어 올려야 한다.
이에 강 교수 연구팀은 두 가지 서로 다른 금속-유기 골격체를 활용해 하이브리드 전지에 최적화된 전극 소재의 합성법을 제시했다. 우선 금속-유기 골격체에서 기인한 다공성 탄소 소재에 미세한 활물질을 함유해 속도 특성이 향상된 음극 소재를 개발했다. 고용량 양극 소재를 합성했고, 이를 조합해 양극 간의 에너지 저장 속도 특성의 차이를 최소화하면서도 용량 균형을 최적화한 소듐 이온 에너지 저장 시스템을 개발했다.
연구팀은 개발된 음극과 양극을 완전셀로 구성해 고성능 하이브리드 소듐이온 에너지 저장 소자를 구현했다. 하이브리드 소듐 이온 에너지 저장 소자는 기존 상용화된 리튬이온 배터리를 뛰어넘는 에너지 밀도와 축전기의 출력 밀도 특성을 모두 가짐을 확인했으며, 차세대 에너지 저장 장치로 수 초에서 수 분 만에 급속 충전이 가능해 전기 자동차, 스마트 전자기기, 항공 장치 등에 적용할 수 있을 것으로 예상된다.
강 교수는 "전극 기준으로 높은 에너지 밀도(247 Wh/kg)를 가지며, 고출력 밀도(34,748 W/kg)에 의한 급속 충전이 가능한 하이브리드 소듐 이온 에너지 저장 소자는 현 에너지 저장시스템의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다ˮ라며 "전기 자동차를 포함한 모든 전자기기의 활용 범위를 확대해 적용될 수 있을 것이다ˮ고 말했다.
신소재공학과 최종휘 박사과정과 김동원 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지 저장 소재 분야의 국제 학술지 `에너지 스토리지 머터리얼스(Energy Storage Materials)'에 3월 29일 字 게재됐다. (논문명: Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages)
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2024.04.11
조회수 4862
-
기존 불소계 전해질 대체할 고성능 비불소계 전해질 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 포항공과대학교 조창신 교수 연구팀과 공동연구를 통해 장수명 소듐(나트륨) 금속 음극 및 고출력 해수 전지를 위한 비불소계 전해질을 개발했다고 28일 밝혔다.
불소(F)는 전지의 전기화학적 성능을 향상시키는데 크게 기여하여 현재 상용화된 리튬-이온 전지 외에도 다양한 차세대 전지 전해질의 필수 요소로 자리매김하고 있다. 다만, 비싼 가격, 인체 및 환경에 유해하며 강한 독성이라는 문제점을 가져 이를 대체할 비불소계 전해질 (F-free electrolyte) 개발이 필수적이다.
이 교수 연구팀은 기존 불소계 전해질을 대체할 수 있는 비불소계 전해질을 설계해 매우 뛰어난 가격 경쟁력과 불소계 전해질의 전기화학적 성능을 상회하는 전기화학적 성능을 달성했다.
생명화학공학과 김진욱 박사과정, 김지오 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `에너지 인바이론멘탈 사이언스(Energy & Environmental Science)' 10월 10권 15호에 출판됐으며, 후면 표지논문(outside back cover)로 선정됐다. (논문명 : Designing Fluorine-Free Electrolytes for Stable Sodium Metal Anodes and High-Power Seawater Batteries via SEI reconstruction)
소듐 금속 음극은 기존 리튬 이온 전지의 흑연 음극을 대체할 수 있는 높은 이론적 용량과(흑연: 372 mAh g-1, 소듐 금속: 1,166 mAh g-1) 리튬에 비해 매우 높은 지각 내 존재비로 인해(리튬: 0.002%, 소듐: 2%) 각광받고 있는 차세대 음극 소재 중 하나다.
하지만 소듐 금속 음극은 매우 강한 화학적, 전기화학적 반응성 때문에 지속적으로 유기 전해액과 반응해 소듐 표면에 불균일하고 두꺼운 고체-전해질 계면을 형성하고, 이는 충전 과정에 소듐 금속의 수지상 성장(나뭇가지 모양 성장)을 일으킨다. 소듐 금속의 수지상 성장은 고체-전해질 계면을 파괴해 새로운 소듐 금속을 유기 전해액에 노출시키고 추가적인 전해질 분해를 일으키며, 낮은 쿨롱 효율, 전지 단락 등을 발생시켜 전지 구동에 치명적이다.
기존 불소계 전해질은 소듐 금속 표면에 불화 소듐을(NaF) 형성해 앞서 언급한 소듐 금속의 수지상 성장을 억제한다. 불화 소듐은 강한 기계적 성질로 인해 소듐 금속의 수지상 성장을 물리적으로 억제할 수 있음이 널리 알려져 있으나 불소계 전해질의 높은 가격, 불산(HF) 부산물 형성 등의 치명적인 문제점이 수반된다.
연구팀은 수소화 소듐(NaH)이 불화 소듐을 대체할 수 있다는 최근 연구 보고에 착안해 수소화붕소 소듐(NaBH4) 염을 이써 (ether, C-O-C 결합을 포함) 계열 유기용매에 녹인 전해질을 설계했다. 수소화붕소 소듐은 환원제의 일종으로 유, 무기 합성이 필요한 산업계에서 널리 사용되는 물질이다. 따라서, 같은 부피의 불소계 전해질을 제작하는 것에 비해 5~10% 정도의 비용만이 소요돼 큰 가격 경쟁력을 가진다.
연구팀은 비행시간형 이차이온 질량 분석을 통해(Time of Flight Secondary Ion Mass Spectrometry, TOF-SIMS) 수소화붕소 소듐 기반의 전해질이 수소화 소듐이 우세한 고체-전해질 계면을 형성함을 밝혔다.
또한, 산화된 소듐 금속을 수소화붕소 소듐에 장시간 담가뒀을 때, 산화막이 점차 수소화 소듐으로 전환되는 것을 비행시간형 이차이온 질량 분석을 통해 확인했으며, 온라인 전기화학 질량 분석(Online Electrochemical Mass Spectrometry)을 통해, 수소화붕소 소듐 전해질을 이용해 전지 제작 후 8시간 정도의 휴지기에 수소 기체가 형성되는 것을 확인했다.
결론적으로, 소듐 금속은 산화하려는 성질이 강해 표면에 불가피하게 산화막을 형성하는데, 수소화붕소 소듐은 환원성이 강해 표면 산화막을 환원시킬 수 있다. 소듐의 표면 산화막이 환원되면서 수소 기체가 발생함과 동시에 다시 소듐 금속과 반응해 수소화 소듐이 생성되며 연구팀은 이를 `고체-전해질 계면 재건 현상'이라고 명명했다.
이를 통해, 수소화붕소 소듐 기반의 전해질은 소듐-소듐 대칭전지에서 600 사이클, 소듐-알루미늄 반쪽 전지에서 99.67%의 쿨롱 효율을 보여 불소계 전해질에 비해 매우 우수한 전기화학적 성능을 제공했다.
더 나아가, 연구팀은 수소화붕소 소듐 기반 전해질을 해수 전지에 적용했다. 높은 전류밀도인 1 mA cm-2에서 기존 불소계 전해질은 35회 정도의 수명 특성을 보인 반면, 수소화붕소 소듐 기반 전해질은 150회 이상의 장수명 특성을 달성했다. 마찬가지로, 기존 불소계 전해질의 출력밀도는 2.27 mW cm-2 에 그친 반면, 수소화붕소 소듐 기반 전해질의 출력밀도는 2.82 mW cm-2로 큰 차이를 보였다.
연구팀이 개발한 수소화붕소 소듐 기반의 전해질은 비용 절감, 수명 특성 향상을 통해 해수전지의 상용화에 이바지할 수 있을 것으로 기대된다.
제1 저자인 김진욱 박사과정은 "기존 소듐 전해질의 필수 원소였던 불소 없이도 불소계 전해질의 성능을 상회하는 전해질을 개발한 것은 큰 의미가 있다ˮ 라며 "앞으로 비불소계 소듐 전해질과 그에 따른 고체-전해질 계면에 관한 연구가 활발해질 것으로 판단된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 중견연구자지원사업과 한국전력 사외공모 기초연구지원사업의 지원을 받아 수행됐다.
2022.10.31
조회수 6087
-
급속충전 가능한 소듐이온 하이브리드 전지 개발
우리 대학 EEWS 대학원 강정구 교수 연구팀이 우수한 성능으로 급속 충전이 가능한 소듐 이온 기반의 하이브리드 전지를 개발했다.
연구팀은 질소가 올려진 메조 다공성 금속산화물 기반 전극을 이용해 높은 에너지 밀도와 고출력을 갖는 소듐 이온 에너지 저장 소자를 구현했다.
이 기술은 현재 주로 사용되는 리튬 이온 배터리보다 경제성 및 접근성 등에서 우수성을 가져 급속 충전이 필요한 휴대용 전자기기 등에 적용할 수 있을 것으로 기대된다.
강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 1월 27일 자에 게재됐다. (논문명: Synthesis of nitrogen-doped mesoporous structures from metal-organic frameworks and their utilization to enable high performances in hybrid sodium-ion energy storages)
현재 가장 높은 점유율의 상업용 배터리는 리튬 이온 물질 기반의 저장 소자로 넓은 전압 범위와 에너지 밀도가 높다는 장점이 있다.
그러나 배터리 발화 및 짧은 수명 등의 문제와 리튬 광물의 높은 가격, 부족한 희토류 원소 매장량, 느린 전기화학적 반응 속도 등의 한계 때문에 충·방전이 오래 걸리고 고출력 특성을 요구하는 전기 자동차 및 차세대 모바일 기기에 적용하기 위해 많은 개선이 필요하다.
반면 소듐 이온 기반 에너지 저장 소자는 안전하고 친환경적이며 가격이 상대적으로 매우 저렴하고 자원의 접근성이 높아 리튬 이온을 대체하면서 기존의 문제점을 극복할 수 있는 차세대 에너지 저장 소자로 주목받고 있다.
하지만 현재까지는 응용 분야에서 요구하는 성능에 미치지 못해 활용 폭이 좁다. 특히 기존의 금속산화물은 전기 전도성이 낮고 비표면적이 좁아 많은 양의 이온이 접근하는 데 한계가 있어 고성능을 구현하기에 어려움이 있었다.
연구팀은 질소가 도핑된 3차원 형태의 열린 메조 다공성 금속산화물 나노 구조체와 질소 도핑된 그래핀을 결합해 소듐 이온 기반 시스템에서 고용량과 고출력의 에너지 저장장치를 개발했다.
이번 연구에서 개발한 메조 다공성의 금속산화물 나노 구조체는 5~10나노미터 크기의 나노 입자들 사이에 다량의 열린 메조 기공이 형성돼 있고, 기공들이 나노 입자 사이에 3차원적으로 연결된 구조를 이뤄 질소 도핑 방법을 활용해 부족한 전기 전도도를 높일 수 있다.
이러한 메조 다공성 구조는 전해질이 기공을 통해 전극에 깊은 곳까지 수월한 침투가 가능하므로 전극 물질의 전체적인 표면이 에너지 저장에 활용돼, 높은 용량의 에너지 저장이 가능함과 동시에 충·방전 시간 역시 줄일 수 있다.
연구팀은 질소가 도핑된 다공성 금속산화물과 그래핀을 각각 음극과 양극에 각각 적용해 고성능의 소듐 이온 하이브리드 전지를 구현했다.
이 하이브리드 저장 소자는 소듐 기반의 배터리에 비해 같은 수준의 저장용량을 유지하면서 300배 이상 빠른 출력 밀도를 보이며, 수십 초 내 급속 충전이 가능해 소형의 휴대용 전자기기 등에 활용 가능할 것으로 기대된다.
강 교수는 “소듐 기반이기 때문에 저가 제작이 가능하고 활용성이 뛰어나 기존보다 높은 에너지 밀도를 갖는 에너지 저장장치의 상용화에 기여할 것이다”라며 “저전력 충전 시스템을 통해 급속 충전이 가능해 전기자동차와 휴대 가능한 전자 기기에 적용할 수 있을 것이다”라고 말했다.
이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 소듐 이온 하이브리드 에너지 저장 장치의 구성 및 저장 메커니즘을 나타낸 모식도
그림2. 소듐 이온 하이브리드 저장 장치의 성능과 태양광 모듈을 활용한 실제 구동 이미지
2020.02.06
조회수 11115
-
최양규 교수, 10초 내 물에 녹는 보안용 메모리 소자 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 물에 녹여 빠르게 폐기할 수 있는 보안용 메모리 소자를 개발했다.
연구팀이 개발한 보안용 비휘발성 저항변화메모리(Resistive Random Access Memory : RRAM)는 물에 쉽게 녹는 종이비누(Solid Sodium Glycerine : SSG) 위에 잉크젯 인쇄 기법을 통해 제작하는 방식이다. 소량의 물로 약 10초 이내에 용해시켜 저장된 정보를 파기시킬 수 있다.
배학열 박사과정이 1저자로 참여한 이번 연구는 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 12월 6일자 온라인 판에 게재됐다. (논문명 : Physically transient memory on a rapidly dissoluble paper for security application)
과거에는 저장된 정보를 안정적으로 오랫동안 유지하는 능력이 비휘발성 메모리 소자의 성능을 가늠하는 주요 지표였다. 하지만 최근 사물인터넷 시대로 접어들며 언제 어디서든 정보를 쉽게 공유할 수 있게 돼 정보 저장 뿐 아니라 정보 유출을 원천적으로 차단할 수 있는 보안용 반도체 개발이 요구되고 있다.
이를 위해 용해 가능한 메모리 소자, 종이 기판을 이용해 불에 태우는 보안용 소자 등이 개발되고 있다. 그러나 기존의 용해 가능한 소자는 파기에 시간이 매우 오래 걸리고 불에 태우는 기술은 점화 장치와 고온의 열이 필요하다는 한계가 있다.
연구팀은 문제 해결을 위해 물에 매우 빠르게 반응해 녹는 SSG 기판 위에 메모리 소자를 제작해 용해 시간을 수 초 내로 줄이는데 성공했다.
이 메모리 소자는 알칼리 금속 원소인 소듐(Sodium)과 글리세린(Glycerine)을 주성분으로 하고 친수성기를 가져 소량의 물에 반응해 분해된다.
용해 가능한 전자소자는 열과 수분에 취약할 수 있어 공정 조건이 매우 중요하다. 연구팀은 이 과정을 잉크젯 인쇄 기법을 통해 최적화된 점성과 열처리 조건으로 금속 전극을 상온 및 상압에서 증착했다.
또한 메모리 소자의 특성을 결정하는 저항변화층(Resistive Switching Layer)인 산화하프늄(HfO2)도 우수한 메모리 특성을 얻도록 150도 이하의 저온에서 증착했다. 이를 통해 평상시 습도에서는 안정적이면서도 소량의 물에서만 반응하는 소자를 제작했다.
연구팀은 휘어지는 종이비누 형태의 SSG 기판을 이용하고, 잉크젯 인쇄기법을 이용해 ‘금속-절연막-금속’ 구조의 2단자 저항 변화메모리를 제작하기 때문에 다른 보안용 소자보다 비용 절감 효과가 매우 크다고 밝혔다.
1저자인 배학열 박사과정은 “이 기술은 저항변화메모리 소자를 이용해 기존 실리콘 기판 기반의 기술 대비 10분의 1 수준의 저비용으로 제작 가능하다”며 “소량의 물로 빠르게 폐기할 수 있어 향후 보안용 소자로 응용 가능할 것이다”고 말했다.
이번 연구는 미래창조과학부 한국연구재단과 나노종합기술원의 지원을 통해 수행됐고, 배학열 박사과정은 한국연구재단의 글로벌박사펠로우십에 선정돼 지원을 받고 있다.
□ 그림 설명
그림1. 메모리 소자가 물에 용해되는 과정
그림2. 최양규 교수팀이 개발한 보안용 메모리 소자
그림3. 보안용 메모리 소자 모식도
2016.12.22
조회수 17235