-
왼쪽 눈이 본 것을 오른쪽 뇌가 알게 하라
인간을 비롯한 대부분 동물의 신체 기관들은 대칭적 구조를 가지고 있다. 이를 통해 몸의 좌우 균형을 맞추고, 움직이고, 반응을 할 수 있게 된다. 동물의 시각이 시작되는 안구 역시 머리의 양쪽에 하나씩 위치하며 한쪽 눈으로 볼 때 보다 더 넓은 영역의 물체를 인식할 수 있게 된다. 사람이나 고양이 같은 경우는 양쪽 눈이 정면을 향하고 있고, 개나 쥐 같은 동물은 눈이 사람보다 측면부를 향해 있고, 많은 물고기의 경우는 두 눈이 완전히 반대쪽을 향하고 있다. 이로 인해 좌우측 눈이 받아들이는 이미지 역시 차이를 보이게 된다. 인간의 경우 좌측과 우측 눈이 인식하는 이미지의 50%에 가까운 영역이 겹치는 반면, 생쥐의 경우는 5% 이하의 영역이 중복이 되며, 물고기는 중복된 영역이 거의 없다. 이들 겹치는 시각 영역 이미지의 위상차를 뇌가 인식해 동물은 물체의 입체감을 느낄 수 있다. 또, 물체가 움직이는 경우에는 좌측 눈과 우측 눈에 감지된 물체의 이미지의 시간차 정보가 뇌에서 처리되어 물체의 이동 경로를 감지하고 예측할 수 있게 된다. 결국, 중복된 시각 영역이 넓을수록 외부 물체의 입체감과 이동을 더 잘 감지할 수 있게 되어, 대부분 포식 동물들이 넓은 중복 영역을 확보하기 위해 안구를 정면에 위치하는 경우가 많다.
이렇게 좌우 안구에서 인식된 이미지를 뇌의 특정 영역에 전달하기 위해 눈에서 나온 시신경은 뇌의 좌우 반구에 모두 연결이 되어 있다. 흥미롭게 좌우 반구로 연결되는 시신경 비율은 좌우 안구 이미지의 중복 비율에 역비례해서, 인간의 경우 50% 시신경이 반대쪽 뇌로 연결되고, 생쥐의 경우 95% 내외, 물고기는 100% 반대쪽으로 연결된다. 시신경이 좌측 또는 우측 중 어느 쪽 뇌로 뻗어 나갈 것인지를 결정하는 과정은 시신경이 눈에서 출발해 시상하부 영역에 도달할 때 시상하부 중간선에 존재하는 경로 결정자(pathway selection cue)에 의해 일어난다고 알려져 있다. 오랜 동안 이러한 동물의 양안 시각계 (binocular visual system)의 핵심인 시상하부 중간선에서 경로 결정에 관련된 메커니즘을 이해하려는 시도가 있어 왔고 일부 경로 결정 인자들이 밝혀진 바도 있다. 하지만, 핵심인자의 부재로 이 과정에 대한 명확한 이해는 부족한 상황이었다.
생명과학과 김진우 교수 연구실에서는 시신경 및 시상하부 중간선에 많이 발현되는 VAX1 유전자에 대한 연구를 수행해 오고 있다. 이 유전자가 결핍된 생쥐와 사람은 시신경이 제대로 성장하지 못하고 시신경이 시상하부에서 교차하지 못하는 발달 이상을 보였다. VAX1이 호메오도메인을 가지는 전사인자의 특성을 가지고 있기 때문에 당연히 시상하부에서 경로 결정자의 유전자 발현을 조절해 시신경 교차(optic chiasm)를 생성할 것이라고 추정하였으나, 김교수 연구팀에서는 VAX1이 시상하부 세포에서 전사인자로 기능하기 보다는 눈의 망막신경절세포에서 뻗어 나온 시신경 축삭(axon)에서 mRNA 번역인자로 작용하여 시신경의 성장을 유도한다는 놀라운 사실을 발견하여 2014년 발표한 바 있다. 하지만, VAX1이 전혀 없는 동물은 두개골 기형 때문에 생존하기 어려워 이러한 VAX1 이상으로 인해 시신경 교차가 없는 동물의 시각 반응 및 행동에 대한 이해는 이루어지지 못하고 있었다.
김 교수 연구실에서 VAX1의 전사인자 기능은 유지한 채 시신경 축삭에 작용하지 못하는 VAX1(AA) 생쥐를 제작하였고, 이 생쥐는 외형적 이상이 전혀 없이 정상적으로 태어나 성장하였다. 다만, VAX1(AA) 생쥐는 모든 시신경이 안구와 같은 쪽 뇌에만 연결되는 시신경 교차 결핍증(agenesis of optic chiasm, AOC)을 나타냈다. 이 생쥐의 시각을 다양한 방법을 통해 검증한 결과, 눈 속의 신경 조직인 망막이 빛을 감지하는 기능은 정상이나 입체 시각이 전혀 없었고, 시력 역시 저하되어 있었다.
흥미로운 점은 VAX1(AA) 생쥐의 눈이 아무런 자극이 없는 상태에서도 지속적으로 상하궤도 운동을 하는 시소안구진탕증(Seesaw Nystagmus)를 보인다는 것이었다. 이러한 시소안구진탕증은 시신경 교차에 이상이 있는 사람과 벨지안쉽도그(Belgian sheepdog)에서도 관찰이 된 바 있어서 시신경 교차 결여가 VAX1(AA) 생쥐의 안구 운동 이상의 원인임을 알 수 있었다.
더욱 흥미로운 점은 VAX1(AA) 생쥐의 시각 운동 반응이 반전되어 있다는 점이었다. 왼쪽 눈에 빛을 주면 오른쪽 동공이 먼저 축소되고, 물체 이동을 감지한 후에는 움직이던 눈이 오히려 정면을 응시하는 등, 시각 정보와 반대되는 안구의 움직임을 보였다. VAX1(AA) 생쥐는 시신경 교차에만 이상이 있고 시각을 처리하는 뇌 부위는 정상적으로 형성이 되어 있기 때문에, 이 결과는 우측 눈에서 오는 신호를 처리해 우측 눈으로 운동 정보를 보내야 할 좌측뇌가 정작 좌측 눈에서 오는 신호를 받아 우측 눈을 자극하는 입력-출력 반전(input-output inversion) 현상 때문으로 해석되었다. 하지만, 아직 VAX1(AA) 생쥐의 좌측 눈에서 들어 온 시각 신호가 어떤 뇌 부위를 안구로 다시 전달되는지에 대한 정보가 거의 전무하기 때문에 이러한 반전된 시각-운동 신경망에 대한 이해는 부족한 상황이다. 이를 해결하기 위해 김교수팀은 시각 자극을 받은 VAX1(AA) 생쥐의 뇌를 자기 공명 영상 분석하는 공동 연구를 시작하였다. 이 연구를 통해 동물의 시각 정보가 어떤 경로로 뇌에서 처리되어 운동 신경을 활성화 할 수 있는지에 대한 이해를 심화할 수 있을 것으로 기대한다.
이번 연구는 국제학술지인 Experimental & Molecular Medicine (https://doi.org/10.1038/s12276-023-00930-4) 2월3일자로 발표됐다. KAIST 생명과학과 김진우 교수 연구팀 민광욱 박사가 제1저자로 연구를 주도하였고, 생명과학과 이승희 교수 연구팀, 바이오및뇌공학과 박영균 교수 연구팀, 연세대학교 이한웅 교수 연구팀, 한국뇌연구원 김남석 박사, 기초과학연구원 이창준 박사 연구팀이 함께 참여하였다. 본 연구는 과학기술정보통신부 중견연구자연구지원사업과 선도연구센터사업, 그리고 KAIST 국제공동연구지원사업의 지원을 받아 수행됐다.
2023.03.02
조회수 5850
-
뇌 속 자명종 신경회로 발견
우리 대학 생명과학과 김대수 교수 연구팀이 한국과학기술연구원(KIST) 김정진 박사팀과 공동연구를 통해 동물이 잠을 자는 동안에도 소리에 반응해 각성하는 원리를 규명했다고 20일 밝혔다.
수면은 뇌의 활동을 정비하고 건강을 유지하는 매우 중요한 생리작용이다. 잠을 자는 동안 감각신경의 작용이 차단되므로 주변의 위험을 감지하는 능력이 감소하게 된다. 그러나 많은 동물은 잠자는 동안에도 포식자의 접근을 감지하고 반응한다. 과학자들은 동물이 깊은 잠과 낮은 잠을 번갈아 자면서 언제 있을지 모를 위험에 대비한다고 생각했다.
김대수 교수 연구팀은 깊은 잠을 자는 동안에도 동물이 소리에 반응하는 신경회로가 있다는 사실을 발견했다. 깨어 있을 때는 청각 시상핵 (Medial geniculate thalamus)이 소리에 반응하지만 깊은 잠 즉 비 램수면 (Non-REM) 동안에는 배내측 시상핵(Mediodorsal thalamus)이 소리에 반응해 뇌를 깨운다는 사실을 밝혔다.
연구 결과 쥐가 깊은 잠에 빠졌을 때 청각 시상핵 신경도 잠을 자고 있었지만 배내측 시상핵 신경은 깨어 있어 소리를 들려주자 곧바로 반응했다. 또한 배내측 시상핵을 억제하면 소리를 들려줘도 쥐가 잠에서 깨어나지 못했으며 배내측 시상핵을 자극하면 소리 없이도 쥐가 수초 이내에 잠에서 깨어나는 것을 관찰할 수 있었다.
이것은 수면상태와 각성상태가 서로 다른 신경회로를 통해 청각신호를 전달 할 수 있다는 최초의 연구로서 국제 학술지 ‘커런트 바이올로지 (Current Biology)’에 2월 7일자로 보고됐으며 (https://www.nature.com/articles/d41586-023-00354-0) 국제학술지 네이처에 하이라이트 되었다. ( https://www.nature.com/articles/d41586-023-00354-0)
김대수 교수는 “이번 연구를 통해 수면 질환 등 다양한 뇌 질환에서 보이는 각성 및 감각장애에 대한 이해를 증진하고 향후 감각을 조절할 수 있는 디지털 헬스케어 개발 등 다양한 분야로 활용이 가능하다”라고 설명했다.
한편 이번 연구는 한국연구재단 중견연구재단 과제로 지원됐다.
2023.02.20
조회수 5473
-
디지털 펜으로 ´쓱쓱´ 그려 움직이는 3D 형상 ´뚝딱´ 만드는 시스템 개발
우리 대학 산업디자인학과 배석형 교수 연구팀이 종이 위에 그림을 그리는 듯한 펜 드로잉과 장난감을 손으로 다루는 듯한 멀티터치 제스처만으로 `움직이는 3D 스케치'를 쉽고 빠르게 만들 수 있는 새로운 시스템을 개발했다고 18일 밝혔다.
한때 공상과학 영화의 전유물이었으나 기술의 발전 덕분에 일상에서도 접할 수 있게 된 접이식 드론, 변신형 자동차, 다족 보행 로봇처럼 여러 움직이는 부분과 관절로 이뤄진 제품은 디자인할 때 형태뿐만 아니라 구조, 자세, 동작까지 동시에 고려해야 하므로 전문가도 많은 어려움을 겪는다.
기존의 3D 캐드(CAD) 소프트웨어는 정교한 형상 작업에 특화돼 있어 움직이는 모델 하나를 제작하는 데에도 많은 시간과 노력을 요구하는데, 특히 이는 다양한 가능성을 넓고 빠르게 탐색해야 하는 디자인 초기 과정에서 심각한 병목과 비용을 초래한다.
반면, 배 교수 연구팀은 모든 디자인은 종이 위에 펜으로 빠르게 그린 2D 스케치로부터 출발한다는 점에 주목하고 디자이너가 디지털 태블릿 위에 디지털 펜으로 자유롭게 표현한 2D 스케치로부터 입체 형상을 생성하는 `3D 스케칭' 기술을 개발해 왔다.
이번 연구에서 연구팀은 생성 중인 3D 스케치를 마치 장난감을 다루듯 두 손으로 조작할 수 있는 직관적인 멀티터치 제스처를 설계 및 구현함으로써 순식간에 살아 움직이는 입체 형상을 만들 수 있는 `움직이는 3D 스케칭' 기술을 완성했다(그림 1, 2).
우리 대학 산업디자인학과 이준협 박사과정 학생이 제1 저자로 참여한 해당 연구는 컴퓨터 그래픽스 분야 제1위 국제 학술지인 `ACM 트랜잭션 온 그래픽스(ACM Transactions on Graphics, 피인용지수: 7.403)'에 게재됐으며, 이와 연동돼 8월 초 캐나다 밴쿠버에서 개최된 최대 규모의 국제학술대회인 ACM 시그래프 2022(ACM SIGGRAPH 2022, h5-색인: 103)에 발표됐다(논문명: Rapid Design of Articulated Objects).
이번 시그래프(이하 SIGGRAPH)에는 전 세계 유수의 대학교 연구진, 마블(Marvel), 픽사(Pixar), 블리자드(Blizzard)와 같은 세계적인 애니메이션 사, 영화사, 게임사, 록히드 마틴(Lockheed Martin), 보스턴 다이내믹스(Boston Dynamics)와 같은 첨단 제조사를 비롯해, 메타(Meta), 로블록스(Roblox)와 같은 메타버스 관련 기업 관계자 1만여 명이 참가한 것으로 알려졌다.
배 교수 연구팀의 기술 논문(Technical Paper) 성과는 SIGGRAPH에서 유망한 신기술을 현장에서 시연하는 `이머징 테크놀로지(Emerging Technologies)' 프로그램에 초청됐을 뿐만 아니라, 그중에서도 Top 3 우수 기술로 선정, 특별 강연으로 소개됐다. 제2 저자인 KAIST 산업디자인학과 김한빛 박사과정 학생이 불과 10분 만에 유려한 형태의 동물 로봇을 그리고 움직여서 입체 동영상을 완성하는 모습은 현장에 모인 청중의 감탄을 자아냈고 심사위원단이 선정한 우수 전시상(Honorable Mention)을 수상하는 영광을 얻었다(그림 3).
이번 SIGGRAPH에서 기조연설을 맡은 에드윈 캐트멀(Edwin Catmull) 픽사 공동 창업자 / 前 회장도 이 연구를 두고 "매우 훌륭한 업적이자(really excellent work), 픽사의 창의력 넘치는 디자이너들에게 필요한 도구(the kind of tool that would be useful to Pixar's creative model designers)ˮ라며 높이 평가했다.
연구를 지도한 배석형 교수는 "디자이너가 생각하고 작업하는 방식에 가까이 다가갈수록 효과적인 디자인 도구를 만들 수 있다ˮ며, "직관적인 상호작용 방식을 통해 여러 상이한 알고리즘을 하나의 조화로운 시스템으로 통합하는 것이 핵심ˮ이라고 강조했다. 또한 "학생 개개인이 디자이너인 동시에 엔지니어를 지향하는 KAIST 산업디자인학과만의 융합적인 토양이기에 가능한 연구였다ˮ고 덧붙였다.
3D 공간에서 자유자재로 움직이는 입체 형상과 같은 수준 높은 창의적 결과물을 기존 방식에 비교할 수 없을 만큼 쉽고 빠르게 생성할 수 있어서 가까운 미래에 콘텐츠 산업, 제조 산업, 나아가 메타버스 산업의 디자인 실무 혁신에 크게 기여할 것으로 기대된다.
한편, 이번 연구는 과학기술정보통신부 및 한국연구재단의 지원을 받아 수행됐다.
- 웹사이트(다양한 움직이는 3D 스케치 예시 수록): https://sketch.kaist.ac.kr/publications/2022_siggraph_rapid_design
- ACM SIGGRAPH 2022 특별 강연(한글 자막 있음): https://www.youtube.com/watch?v=rsBl0QvSDqI
2022.08.18
조회수 9767
-
김대수, 이필승 교수, 소유욕을 만드는 뇌 신경회로 발견
“시상하부의 특정 신경을 자극했더니 생쥐가 장난감에 엄청난 집착을 보였습니다. 물건을 가지려는 욕구를 만들어내는 신경으로서 유용한 자원을 탐색하고 소유하려는 욕구를 이해하는데 중요한 발견입니다 ”
사람과 동물은 다양한 사물을 탐색하고 획득하고자 하는 욕구가 있다. 생존을 위한 먹이나 유용한 물건 획득을 위해서다. 세계적으로 열풍이 불었던 포켓몬 고 같은 게임에서 아이템 획득하는데 몰입하는 것도 같은 원리이다. 인간에게 이러한 욕구는 경제활동을 비롯한 다양한 행동의 동기가 된다.
그러나 물건에 대한 욕구는 본능이기에 쉽게 조절할 수 없을뿐더러 잘못된 습관이나 질환으로 이어질 수 있다. 부족함이 없어 보이는 유명인들도 물건을 습관적으로 훔치다가 낭패를 보는 사례를 접하곤 한다. 또한 쓸모없는 물건을 집안에 모으고 버리지 못하는 수집 강박증이나 쇼핑 중독에 빠지는 경우도 있다. 물건에 대한 과도한 집착은 정신 질환의 일종으로 분류돼 있지만 그 원인에 대해서는 정확히 밝혀진 바가 없었다.
KAIST 생명과학과 김대수, 기계공학과 이필승 교수 연구팀은 전시각중추(MPA, Medial preoptic area)라 불리는 뇌의 시상하부 중 일부가 먹이를 획득 및 소유하려는 본능을 만들어낸다는 사실을 밝혔다. 또한 전시각중추 신경을 활용해 동물의 행동과 습관을 조절할 수 있는 기술을 개발했다.
연구팀은 한 쥐에게는 장난감을 갖고 놀게 하고 다른 쥐는 따로 물체를 주지 않은 뒤 뇌를 분석했다. 이 과정에서 MPA(전시각중추) 신경회로가 활성화됨을 발견했다. 그 후 광유전학을 이용해 빛으로 MPA를 자극하자 물체 획득을 위해 실험체가 집착하는 이상행동을 보이는 것을 확인했다.
연구팀은 MPA신경이 수도관주위 회색질(PAG, Periaqueductal gray)로 흥분성 신호를 보내 행동을 만들어낸다는 사실을 규명해 연구팀은 이것을 MPA-PAG 신경회로라 이름 지었다.
김대수 교수는 “쥐가 먹이가 아닌 쓸데없는 물체에 반응하는 놀이행동의 의미를 찾기가 쉽지 않았습니다. MPA-PAG 회로를 자극했을 때 귀뚜라미 등의 먹잇감에 대한 사냥행동이 증가하는 것을 발견했습니다. 이것은 물체를 갖고 노는 것이 먹이 등의 유용한 사물을 획득하는 행동과 동일한 신경회로를 통해 나타남을 의미합니다”고 설명했다. 어린동물이 물체를 가지고 노는 것이 사냥 등 생존에 유용한 기술을 획득하는 것과 깊은 관련이 있다는 발견이다.
연구팀은 MPA가 물건에 대한 집착과 소유욕과 밀접한 관련이 있음을 밝혀낸 뒤 이를 조절하는 기술 개발에 착수했다. 생쥐 머리위에 물체를 장착해 눈앞에서 좌우로 움직일 수 있도록 무선으로 조종하고 MPA-PAG 신경회로를 자극해 생쥐가 눈앞에 물체를 따라가도록 한 것이다. 이것은 고등동물인 포유류의 행동을 원하는 방향으로 조종한 기술로 연구팀은 미다스(MIDAS)라고 명명하였다.
이필승 교수는 “미다스 기술은 동물의 탐색본능을 활용하여 동물 스스로 장애물을 극복하며 움직이는 일종의 자율주행 시스템입니다. 뇌-컴퓨터 접속 기술의 중요한 혁신으로 생각합니다. 앞으로 국내에서도 이러한 연구들이 많이 시도될 수 있도록 지원이 있었으면 좋겠습니다.”고 말했다.
이번 연구는 신경과학과 시스템 공학이라는 접점이 부족해 보이는 두 분야가 만나 적극적인 논의를 통해 매우 모범적인 융합 연구의 사례라는 의미를 갖는다. 생명과학 전공 박세근 박사는 전시각중추가 물건에 집착하는 회로라는 것을 밝혔고, 기계공학 전공인 김대건 박사는 컴퓨터 프로그래밍과 동물 무선제어에 큰 기여를 했다.
공동연구의 중간역할을 한 정용철 박사과정은“서로 용어 조차 다른 신경 과학과 시스템 제어 공학이라는 전혀 다른 두 분야를 서로가 완벽히 이해해야만 했고, 이를 위해 팀원들과 함께 끊임없이 논의하고 연구했습니다. 그 시간이 가장 재미있는 과정이자 가장 큰 과제였습니다.
김 교수는 신경 회로 기능의 중요성을 다시 한 번 실감했을 뿐 아니라 우리 사회에 큰 영향을 끼칠 수 있을 것이라고 의의를 밝혔다.
“수집 강박, 도벽, 게임중독 등을 치료할 수 있는 단서를 제공했다고 생각합니다. 이러한 지식을 통해 만들어진 뇌-컴퓨터 접속기술은 국방, 재난 구조 등에 활용될 것입니다.”
□ 그림 설명
그림1. 소유욕을 이용해 포유동물 행동을 조절하는 MIDAS 시스템 모식도
그림2. 전시각 중추 신경회로가 소유행동을 나타내는 모식도
2018.03.15
조회수 14444
-
수면부족이 뇌의 기억능력을 심각하게 저하시킨다.
- 유승식(兪勝植) KAIST 바이오시스템학과 겸직교수 겸 하바드의대 교수, MRI를 통한 관련 실험결과 논문이 네이처 뉴로사이언스 온라인판에 게재
- 성장기 아동의 무리한 과외 스케줄에 의한 수면 부족은 생물학적인 학습능력 저하 낳을 수 있어 사람이 잠을 잘 못 자고 나거나, 밤을 샌 다음날에 일어난 일은 왜 잘 기억이 나지 않을까? MRI를 통한 실험결과, 수면부족이 뇌의 기억능력을 심각하게 떨어뜨린다는 내용의 논문이 美 유명잡지에 게재됐다.
KAIST(총장 서남표)는 KAIST 바이오시스템학과 겸직교수이자 美 하바드 의대 교수인 유승식(兪勝植, 37) 교수의 관련 논문이 네이처(Nature) 자매지인 네이처 뉴로사이언스(Neuroscience)의 2월12일자 온라인판에 게재되었다고 밝혔다.
兪 교수는 “수면부족 상태에서의 인간 기억능력 저하(A deficit in the ability to form new human memories without sleep)“라는 제목의 발표논문에서 기능 MRI(fMRI, Functional MRI)를 통한 연구결과,"잠을 잘 못 자고 나거나, 밤을 샌 다음날에 일어난 일은 왜 잘 기억이 나지 않을까?"라는 단순하면서도, 충분히 이해가 갈 만한 현상에 대하여, 부족한 수면은 새로운 기억의 생성/유지에 필요한 뇌의 마(Hippocampus)의 기능을 일시적으로 저하시킨다는 현상을 발견했다. 수면이 기억과 학습에 있어 필요한 기억강화(Consolidation)에 중요한 역할을 한다는 사실은 알려져 있었지만, 지금까지 새로운 정보(일화적 기억: Episodic Memory)를 습득함에 있어서의 수면의 역할에 대한 연구는 없었다.
兪 교수팀은 18세에서 30세사이의 건강한 피험자 28명을 14명씩 2개의 집단으로 나눈 후, 한 집단은 35시간 이상 수면을 취하지 못하게 하고 여러 개의 영상(사진)을 보여주며, 뇌기능을 fMRI를 통하여 관찰했다.
또 다른 대조 집단은 평상시대로 7시간에서 9시간의 충분한 수면을 취하게 한 후, fMRI실험에 참가시켰다. 이틀 후 이들은 다른 사진이 섞인 영상에서 자신이 보았던 사진을 구별할 수 있는 지를 검사했는데, 수면이 부족한 피험자들은 수면부족 상태에서 본 사진을 잘 기억하지 못했다. 정상 수면자에 비해 기억능력이 19%나 떨어지는 것으로 나타났다. 기억 습득 당시에 실시된 fMRI 결과는 수면부족이 해마의 기능을 일시적
으로 저하시킴을 보여줬다. 아울러 뇌의 시상(Thalamus)과 뇌줄기(brain stem, 뇌간)가 저하된 해마의 기능을 보조하는 현상도 목격됐다.
연구결과는 35시간 동안이라는 일시적 수면부족과 기억의 상관관계를 도출했지만, 장기간에 축적된 수면부족도, 인간의 기억(memory),그리고 전반적인 학습 (Learning)에 영향을 줄 수 있다는 가능성을 보여 주고 있다. 인간은 사회적 환경에 의해 수면을 줄일 수 밖에 없는 형편에 처해 있으므로, 연구결과가 내포하고 있는 잠재적 의미는 되새겨 볼만하다. 예로써, 성장기에 있는 아동들의 무리한 과외 스케줄에 의한 수면 부족은 바로 생물학적인 학습능력 저하를 낳을 수 있다는 것이다. 또한, 고령화 사회에서 수면장애에 기인하는 기억능력 감퇴 문제의 해결을 위해서도 수면에 관한 과학적이고 체계적인 연구와 능동적 대책을 필요하게 한다.
兪 교수는 “지난 2003년, KAIST 바이오시스템학과와 KAIST 뇌과학연구 센터의 협력하에 공동실험에 참가한 바 있다“며, ”KAIST가 보유하고 있는 MRI 환경하의 뇌파실험(EEG)가동 기술은 진보된 수면연구에 절대적으로 필요한 기술이다. 국제적 공동연구 환경 조성과 연구기금의 확보가 KAIST의 관련 연구역량을 널리 알릴 수 있는 초석이 될 것이다“라고 밝혔다.
뇌과학분야 연구는 그 중요성에도 불구하고 지금껏 한국에서는 관련 논문을 접하기가 쉽지 않았다. KAIST 겸직교수로 있는 兪 교수의 이번 네이처 자매지 논문발표는 KAIST가 국내 뇌과학 연구분야에서 중요한 역할을 하게 되는 계기가 될 것으로 보인다. 兪 교수는 매년 여름학기에는 KAIST에 머물면서 강의를 하고 있으며, 학생들과 같이 연구업무를 수행하고 있다. 현재 KAIST 바이오시스템학과 박사과정 학생의 지도교수도 맡고 있다.
용어설명
1) 해마 : 뇌의 밑부분에 위치하며, 인간의 기억과 학습에 있어 외부자극을 기억과 관련된 정보로 바꿔주고, 다른 중요한 뇌부분(뇌전엽)에 연결해 주는 중요한 역할을 한다.
2) 일화적 기억(Episodic Memory) : 개인의 경험과 밀착된 기억, 누구를 보았다든지, 무슨 소리를 들었다는 등의 기억. 의미기억(Semantic memory, 대상의 관계나 단어의 의미기억)과는 구별되지만, 해마는 일반적으로 모든 장기적 기억에 관련된다.
3) 시상(THAlamus) : 뇌 회로연결에서의 스위치보드로서, 뇌의 전반적 회로 연결체계를 통제한다.
4) 뇌 줄기(Brain stem): 말그대로 척추와 뇌를 연결하여주며, 소뇌(cerebellum)와 연결되어 인간의 기본적이고 원초적인 기능을 수행하게 도와준다.
2007.03.01
조회수 22886