본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%8B%9C%EC%8A%A4%ED%85%9C%EB%8C%80%EC%82%AC%EA%B3%B5%ED%95%99+%EC%9B%90%EC%B2%9C%EA%B8%B0%EC%88%A0%EA%B0%9C%EB%B0%9C
최신순
조회순
생명화학공학과 대학원생들, 시스템 대사공학 전략 발표
〈 양동수 박사과정, 박다현 석사과정, 최경록 박사과정, 조재성 박사과정, 장우대 박사과정 〉 우리 대학 생명화학공학과 대학원생 다섯 명이 대사공학과 시스템 생물학, 합성 생물학의 결합 시스템 등 대사공학 전반의 전략에 대한 논문을 발표했다. 생명화학공학과는 최근 박사학위를 마친 최경록 연구원과 장우대, 양동수, 조재성 박사과정, 박다현 석사과정이 친환경 화학물질 생산을 위해 필수적인 미생물 공장을 개발하는 전략을 총정리했다. 이 연구의 결과는 셀(Cell)지가 발행하는 생명공학 분야 권위 리뷰 저널인 ‘생명공학의 동향(Trends in Biotechnology)’ 8월호 표지논문 및 주 논문 (Feature review)에 게재됐다. (논문명 : Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering) 시스템 대사공학은 기존의 석유화학산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 KAIST 생명화학공학과의 이상엽 특훈교수가 창시한 연구 분야다. 전통적 대사공학에 시스템 생물학, 합성 생물학 및 진화 공학 기법을 접목한 시스템 대사공학은 직관적 전략이나 무작위 돌연변이 유발에 의존하는 기존의 대사공학과 비교해 적은 비용과 인력, 짧은 시간 내에 산업에서 이용 가능한 고성능 균주 개발을 가능하게 만든다. 연구 기획 단계에서부터 실제 공장에서 균주의 발효 공정 및 발효를 통해 생산된 물질의 분리/정제 공정까지 고려함으로써 산업 균주 개발 도중 불필요한 시행착오를 최소화할 수 있다. 본 논문에서는 시스템 대사공학 전략을 연구의 흐름에 따라 ▲프로젝트 디자인 ▲균주 선정 ▲대사회로 재구성 ▲표적 화합물에 대한 내성 향상 ▲대사 흐름 최적화 ▲산업 수준으로의 생산 규모 확대 등 일곱 단계로 나누고, 각 단계에서 활용할 수 있는 최신 도구 및 전략들을 총망라했다. 더불어 바이오 기반 화합물 생산의 최신 동향과 함께 고성능 생산 균주를 보다 효과적으로 개발하기 위해 시스템 대사공학이 나아가야 할 방향도 함께 제시했다. 주저자인 최경록 연구원은 “기후 변화가 커지며 기존의 석유화학 산업을 친환경 바이오산업으로 대체하는 것이 불가피하다”라며 “시스템 대사공학은 산업에서 활용 가능한 고성능 생산 균주의 개발을 촉진해 바이오산업 시대의 도래를 앞당길 것이다”라고 말했다. 지도교수인 이상엽 특훈교수는 “그간 우리 연구실과 전 세계에서 수행한 수많은 대사공학연구를 우리가 제시한 시스템 대사공학 전략으로 통합해 체계적으로 분석 및 정리하고 앞으로의 전략을 제시했다는 점에서 큰 의미가 있다”라며 “권위 있는 학술지에 주 논문이자 표지논문으로 게재된 훌륭한 연구를 수행한 학생들이 자랑스럽다”라고 말했다. 이상엽 특훈교수 연구팀은 실제로 시스템 대사공학 전략을 이용해 천연물, 아미노산, 생분해성 플라스틱, 환경친화적 플라스틱 원료, 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 바 있다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 및 한화케미칼이 지원하는 KAIST-한화 미래 기술 연구소의 지원을 받아 수행됐다.
2019.07.24
조회수 19643
이상엽 특훈교수, 김현욱 교수, 인공지능 이용한 효소기능 예측 기술 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수의 초세대 협업연구실 공동연구팀이 딥러닝(deep learning) 기술을 이용해 효소의 기능을 신속하고 정확하게 예측할 수 있는 컴퓨터 방법론 DeepEC를 개발했다. 공동연구팀의 류재용 박사가 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 6월 20일 자 온라인판에 게재됐다. (논문명 : Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers) 효소는 세포 내의 생화학반응들을 촉진하는 단백질 촉매로 이들의 기능을 정확히 이해하는 것은 세포의 대사(metabolism) 과정을 이해하는 데에 매우 중요하다. 특히 효소들은 다양한 질병 발생 원리 및 산업 생명공학과 밀접한 연관이 있어 방대한 게놈 정보에서 효소들의 기능을 빠르고 정확하게 예측하는 기술은 응용기술 측면에서도 중요하다. 효소의 기능을 표기하는 시스템 중 대표적인 것이 EC 번호(enzyme commission number)이다. EC 번호는 ‘EC 3.4.11.4’처럼 효소가 매개하는 생화학반응들의 종류에 따라 총 4개의 숫자로 구성돼 있다. 중요한 것은 특정 효소에 주어진 EC 번호를 통해서 해당 효소가 어떠한 종류의 생화학반응을 매개하는지 알 수 있다는 것이다. 따라서 게놈으로부터 얻을 수 있는 효소 단백질 서열의 EC 번호를 빠르고 정확하게 예측할 수 있는 기술은 효소 및 대사 관련 문제를 해결하는 데 중요한 역할을 한다. 작년까지 여러 해에 걸쳐 EC 번호를 예측해주는 컴퓨터 방법론들이 최소 10개 이상 개발됐다. 그러나 이들 모두 예측 속도, 예측 정확성 및 예측 가능 범위 측면에서 발전 필요성이 있었다. 특히 현대 생명과학 및 생명공학에서 이뤄지는 연구의 속도와 규모를 고려했을 때 이러한 방법론의 성능은 충분하지 않았다. 공동연구팀은 1,388,606개의 단백질 서열과 이들에게 신뢰성 있게 부여된 EC 번호를 담고 있는 바이오 빅데이터에 딥러닝 기술을 적용해 EC 번호를 빠르고 정확하게 예측할 수 있는 DeepEC를 개발했다. DeepEC는 주어진 단백질 서열의 EC 번호를 예측하기 위해서 3개의 합성곱 신경망(Convolutional neural network)을 주요 예측기술로 사용하며, 합성곱 신경망으로 EC 번호를 예측하지 못했을 경우 서열정렬(sequence alignment)을 통해서 EC 번호를 예측한다. 연구팀은 더 나아가 단백질 서열의 도메인(domain)과 기질 결합 부위 잔기(binding site residue)에 변이를 인위적으로 주었을 때, DeepEC가 가장 민감하게 해당 변이의 영향을 감지하는 것을 확인했다. 김현욱 교수는 “DeepEC의 성능을 평가하기 위해서 이전에 발표된 5개의 대표적인 EC 번호 예측 방법론과 비교해보니 DeepEC가 가장 빠르고 정확하게 주어진 단백질의 EC 번호를 예측하는 것으로 나타났다”라며 “효소 기능 연구에 크게 이바지할 것으로 기대한다”라고 말했다. 이상엽 특훈교수는 “이번에 개발한 DeepEC를 통해서 지속해서 재생되는 게놈 및 메타 게놈에 존재하는 방대한 효소 단백질 서열의 기능을 보다 효율적이고 정확하게 알아내는 것이 가능해졌다”라고 말했다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 및 바이오·의료기술 개발 Korea Bio Grand Challenge 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 인공지능 기반의 DeepEC를 이용한 효소 기능 EC 번호 예측
2019.07.03
조회수 19120
이상엽 교수, 지방산∙바이오디젤 생산 가능한 미생물 개발
〈 이상엽 특훈교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 비식용 바이오매스 기반의 최고성능을 갖는 지방산과 지방산 유도체로 전환하는 미생물 균주 및 발효 공정을 개발했다. 김혜미, 채동언 연구원 등이 참여한 이번 연구결과는 국제학술지 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)」 6월 17일 자 온라인판에 게재됐다. (논문명 : Engineering of an oleaginous bacterium for the production of fatty acids and fuels) 화석원료는 현대 산업의 기초 물질이자 우리 생활 전반에 광범위하게 이용되는 원료 및 에너지원으로 필수적인 물질이다. 그러나 원유 매장량 고갈에 대한 우려와 원유 산업으로 인한 온난화 등의 환경문제가 세계적으로 매우 심각한 상황이다. 특히 우리나라의 경우 석유를 전량 수입에 의존하기 때문에 국제 유가 변동에 매우 취약해 환경문제를 해결과 원유를 대체할 수 있는 지속 가능한 바이오 기반 재생에너지의 생산이 필수다. 따라서 재생 가능한 자원 기반의 바이오 연료 개발이 활발히 이뤄지고 있는데, 그중 경유를 대체할 수 있는 환경친화적 연료인 바이오 디젤이 있다. 바이오 디젤은 주로 식물성 기름이나 동물성 지방의 에스터교환(transesterification) 반응을 통해 만들어지고 있다. 이 특훈교수 연구팀은 바이오 디젤 생산을 위해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스 주성분인 포도당으로부터 지방산 및 바이오 디젤로 이용할 수 있는 지방산 유도체를 생산하는 균주를 개발했다. 연구팀은 자연적으로 세포 내 기름을 축적하는 것으로 알려진 미생물인 로도코커스(Rhodococcus)를 시스템 대사공학을 통해 대사 회로를 체계적으로 조작해 최고성능으로 지방산 및 바이오 디젤을 생산하는 균주를 개발했다. 먼저 로도코커스의 배양 조건을 최적화한 뒤 포도당을 섭취해 세포 내 과량의 기름(트리아실글리세롤, triacylglycerol)을 축적하게 했다. 이후 선별한 외부 효소를 도입해 효과적으로 기름을 지방산으로 전환해 최고 농도의 지방산 생산 균주를 개발했다. 또한, 지방산을 두 가지 형태의 바이오 디젤 연료 물질로 효율적으로 전환하는 추가적인 유전자 조작을 통해 바이오 디젤을 최고성능으로 생산하는 데 성공했다. 연구팀은 이전에 대장균을 이용해 바이오 연료인 휘발유를 생산하는 미생물 세계 최초로 개발한 바 있다. (Nature 표지논문 게재) 그러나 해당 기술은 생산성이 리터당 약 0.58g 정도로 매우 낮다는 한계가 있었다. 이를 극복하기 위해 로도코커스 균주를 이용해 포도당으로부터 리터당 50.2 g의 지방산 및 리터당 21.3 g의 바이오 디젤 생산에 성공했다. 이러한 성과를 통해 향후 식물성이나 동물성 기름에 의존하지 않고 비식용 바이오매스로부터 미생물 기반 바이오 연료의 대량 생산까지 가능하게 할 것으로 기대된다. 이상엽 특훈교수는 “이번에 개발한 고효율 미생물 기반 지방산과 바이오 디젤 생산 연구는 앞으로 환경문제 해결과 더불어 원유, 가스 등 화석연료에 의존해온 기존 석유 화학 산업에서 지속할 수 있고 환경친화적인 바이오 기반산업으로의 재편에 큰 역할을 할 것이다”라고 말했다. 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1. 미생물 내에 축적된 오일과 이를 기반으로 생산되는 지방산 및 바이오 디젤
2019.06.20
조회수 16397
이상엽 교수, 포도향 생산하는 미생물 개발
〈 이상엽 특훈교수 〉 〈 1저자 루오 쯔 웨(Zi Wei Luo) 박사후 연구원, 조재성 박사과정 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대사공학 기법을 이용해 재조합 미생물 기반의 포도향을 생산하는 공정을 개발했다. 연구팀의 기술은 재생 가능한 탄소 순환형 바이오매스를 통해 화학적 촉매 반응 없이 순수한 생물학적 공정만으로 메틸안트라닐산을 제조하는 기술이다. 생산 공정이 단순하고 친환경적이기 때문에 경제적인 방식으로 고부가가치 물질인 메틸안트라닐산을 생산할 수 있다는 의의가 있다. 루오 쯔 웨(Zi Wei Luo) 박사후연구원, 조재성 박사과정이 공동 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원회보(PNAS)’ 5월 13일 자 온라인판에 게재됐고 하이라이트 논문으로 소개됐다. (논문명 : Microbial production of methyl anthranilate, a grape flavor compound) 석유 자원의 고갈과 기후 변화 및 환경 문제 우려가 커지면서 여러 유용한 화학물질 생산을 위한 친환경적이고 지속 가능 공정의 중요성과 관심이 날로 커지고 있다. 특히 대사공학은 재생 가능한 비식용 바이오매스로부터 다양한 천연 및 비천연 화합물 생산을 가능하게 해 지속 가능한 발전을 위한 해결책을 제공해 왔다. 그러나 식물 유래의 천연화합물 생산을 위한 미생물 개발은 여전히 부족해 계속 도전해야 할 분야로 남아있다. 메틸안트라닐산은 콩코드 포도 특유의 향과 맛을 내는 주요 천연화합물로 여러 과일 및 식물에 함유돼 있다. 화장품이나 의약품 등에 향미 증진제로 광범위하게 사용되는 물질로 다방면으로 활용할 수 있다. 그러나 식물에서 메틸안트라닐산을 추출하는 방식은 경제성이 낮아 지난 100여 년간 유기용매를 사용하는 석유 화학적 방법으로 제조돼 인공착향료로 분류됐다. 이 특훈교수 연구팀은 대사공학 기법으로 미생물의 대사 회로를 설계해 포도당과 같이 재생 가능한 바이오매스로부터 100% 천연 메틸안트라닐산을 화학 촉매 없이 효율적으로 생산하는 공정을 최초로 개발했다. 연구팀은 이상(二相) 추출 발효 과정을 이용해 생산되는 메틸안트라닐산 메틸을 정제하는 방법도 개발했다. 이 특훈교수는 “지난 100년 동안 석유화학 기반으로만 생산된 메틸안트라닐산을 100% 바이오 기반의 친환경 방식으로 생산할 수 있게 된 기술이다”라며 “천연 메틸안트라닐산은 향후 식품, 의약품 및 화장품 산업에 다방면으로 이용할 수 있을 것이다”라고 밝혔다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’의 지원을 받아 수행됐다. □ 그림 설명 그림1. 메틸안트라닐산 생산 과정
2019.05.20
조회수 15994
이상엽 교수, 미생물 발효한 친환경 기술로 햄(haem) 생산 기술 개발
〈 이 상 엽 특훈교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대장균을 발효시켜 바이오매스로부터 헴(haem)을 생산하고 세포 밖으로 분비할 수 있는 기술을 개발했다. 이는 대사공학 전략을 통해 헴의 생산량을 대폭 높이고 생산된 헴을 효과적으로 세포 바깥에 분비하는 데 성공한 친환경적, 효율적 원천기술로 생산한 헴을 이용해 각종 산업의 확장에 기여할 수 있을 것으로 기대된다. 자오신루이, 최경록 연구원이 참여한 이번 연구는 국제 학술지 ‘네이처 카탈리시스(Nature Catalysis)’ 8월 28일자 온라인 판에 게재됐다. 헴은 생명 유지에 필수적인 철분으로 혈액에서 산소를 운반하는 헤모글로빈이나 세포 호흡에 필수적인 사이토크롬을 비롯한 여러 중요한 단백질 기능에 핵심적 역할을 한다. 특히 인체 흡수율이 높기 때문에 고급 철분제나 약물로 이용된다. 무분별한 가축의 사육이 여러 사회 이슈를 불러일으키는 상황에서 최근 헴이 고기 맛을 내는 핵심 요소로 밝혀지며 콩고기에 미생물이나 식물에서 추출한 헴을 넣어 맛과 영양, 환경 등을 고려한 콩고기 조리법이 주목받기도 했다. 그러나 기존의 헴 생산 방식은 유기 용매를 이용한 동물의 혈액과 일부 식물 조직으로부터의 추출에 의존하고 있기 때문에 비효율적일 뿐 아니라 친환경적이지 않다는 한계가 있다. 대장균을 이용한 헴 생산 기술이 개발된 바 있지만 생산량이 수 밀리그램(mg)에 그치고 생산된 헴이 세포 내에 축적되기 때문에 헴 추출 등의 문제를 해결하지 못했다. 따라서 고농도로 헴을 생산하면서도 세포 바깥으로 헴을 분비해 정제를 용이하게 하는 친환경 생산 시스템 개발이 필요했다. 연구팀은 바이오매스를 이용한 고효율 헴 생산 미생물을 제작하기 위해 대장균 고유의 헴 생합성 회로를 구성했다. 또한 기존에 사용되지 않았던 C5 대사회로를 사용해 헴 생산의 전구체인 5-아미노레불린산을 생합성했다. 이를 통해 원가가 비싸고 세포 독성을 일으키는 물질인 글리신을 사용하지 않고도 헴 생산량을 대폭 높였다. 이 과정에서 연구팀은 헴 생산량이 향상됨에 따라 생산된 헴이 상당 비율로 세포 바깥으로 분비되는 것을 발견했다. 연구팀은 구성한 대장균의 헴 분비량을 더욱 높이기 위해 사이토크롬 생합성에 관여한다고 알려진 단백질인 헴 엑스포터를 과발현함으로써 헴 생산량과 세포외 분비량 모두가 향상된 헴 분비생산 균주를 개발했다. 이를 통해 헴 엑스포터와 헴의 세포외 분비 사이의 연관성을 밝혔다. 이번 연구를 통해 개발된 기술을 활용하면 환경, 위생, 윤리적 문제없이 재생 가능한 자원을 통해 헴 생산을 할 수 있다. 향후 의료 및 식품 산업 등 헴을 이용하는 다양한 분야에 중요한 역할을 할 것으로 예상된다. 이 특훈교수는 “건강 보조제, 의약품, 식품 첨가물 등 다양한 활용이 가능한 헴을 미생물발효를 통해 고효율로 생산했다”며 “생산된 헴의 3분의 2 가량을 세포 바깥으로 분비하는 시스템을 개발함으로써 산업적 활용을 위한 헴의 생산 및 정제를 용이하게 했다는 의의를 갖는다”고 말했다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 지원을 받아 수행됐다. □ 그림 설명 그림1. 대장균을 이용한 헴 생산 및 세포외 분비 전체 개념도
2018.09.06
조회수 14775
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1