본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%8B%A0%EA%B2%BD%EC%A0%84%EB%8B%AC
최신순
조회순
뉴로모픽 반도체로 통증도 느낀다
최근 인간의 뇌를 모방한 뉴로모픽 반도체 소자 연구가 주목받고 있다. 이에서 더 나아가 최근에는 뇌를 넘어 첨단 센서와 휴머노이드 분야에 적용가능한 감각신경계 모사에 관한 연구가 활발하게 진행되고 있다. 우리 대학 신소재공학과 김경민 교수 연구팀이 새로운 메모리 소자인 멤리스터를 사용하여 통증자극 민감도 조절 기능을 갖는 뉴로모픽 통각수용체 소자를 최초로 구현했다고 15일 밝혔다. ※ 멤리스터(memristor): 메모리(memory)와 저항(resistor)의 합성어로, 전류의 흐름에 따라 저항이 변화하는 전자소자 감각신경계의 핵심적인 역할 중 하나는 유해한 자극을 감지해 위험한 상황을 회피하는 것이다. 특히 통각수용체는 자극이 민감도의 임계치를 넘으면 통증 신호를 발생하여 인체가 자극에서 회피할 수 있도록 한다. 이를 위해 통각수용체의 신호 전달에는 통증 신호를 전달하는 흥분성 신경전달물질(Excitatory Neurotransmitter)과 외부 자극에 대한 임계치를 조절하는 억제성 신경전달물질(Inhibitory Neurotransmitter)이 관여하는 것으로 알려져 있다. 특히 억제성 신경전달물질은 흥분 작용과 역균형을 이뤄 신경의 과도한 활성화를 방지하고, 다양한 외부 자극에 적절하게 반응하기 위한 핵심적인 역할을 가지게 된다. <그림 1> 그동안 이러한 복잡한 감각신경계의 동작을 모사하는 전자 소자를 개발하는 연구가 활발히 진행되었는데, 기존의 연구에서는 흥분성 신경전달물질의 특성은 쉽게 구현할 수 있었으나, 억제성 신경전달물질에 의한 임계치 조절 특성까지 동시에 구현하는데 한계가 있었다. 김경민 교수 연구팀은 이중 전하 저장층 구조를 통해 외부에서의 자극에 대한 임계치를 조절할 수 있는 뉴로모픽 통각수용체 소자를 최초로 개발했다. <그림 2> 두 종류의 서로 다른 전하 저장층은 각각 전도성을 조절하는 흥분성 신경전달물질의 역할과 임계치를 조절하는 억제성 신경전달물질의 역할을 맡아 통각수용체의 필수적인 기능들인 통증 전달 특성(threshold triggering), 통증 완화(Relaxation), 통증 민감화(Sensitization) 등의 특성을 조절할 수 있음을 확인했다. <그림 3> 이는 신경계의 복잡한 기능을 신경계의 동작 원리를 모방하여 단순한 구조의 전자 소자로 구현하는 새로운 방법을 제시한 의의가 있다. 또한, 이 소자는 온도 자극에도 반응하는 온도수용체 특성을 보였으며, 특히 억제성 상태를 제어하여 단일 소자가 고온 범위와 저온 범위를 모두 감지할 수 있는 가변적인 온도수용체 특성을 구현할 수 있었다. <그림 4> 이러한 통각수용체, 온도수용체 소자는 인간을 모방하는 휴머노이드 피부에 적용하여 인간과 같은 방식으로 자극을 감지하는 센서로 활용될 수 있다. 김경민 교수는 "이번 연구는 흥분성 및 억제성 신호 작용의 특성을 단일 소자에 구현해, 간단한 반도체 기술로 복잡한 생물학적 감각신경계의 특성을 모사하는 새로운 방법론을 제시한 것에 큰 의의가 있다ˮ며 "이처럼 임계치를 조절할 수 있는 특성은 감각신경계 모사뿐 아니라 임계 스위칭 특성을 활용하는 보안 소자나 차세대 컴퓨팅 소자에도 활용될 수 있을 것으로 기대된다ˮ고 밝혔다. 한편 이번 연구는 신소재공학과 김근영 석박사통합과정 학생이 제1 저자로 참여했으며, 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials, Impact Factor: 29.4)'에 10월 21일 字 온라인 게재됐다. 이번 연구는 한국연구재단, 나노종합기술원, KAIST, 그리고 SK 하이닉스의 지원을 받아 수행됐다. (논문명: Threshold Modulative Artificial GABAergic Nociceptor, 논문링크: https://doi.org/10.1002/adma.202304148)
2023.11.15
조회수 4704
초고감도 생체 분자 검출용 디지털 라만 분광 기술 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 생체 분자의 광학 검출의 기술적 장벽인 신호대잡음비를 1,000배 이상, 검출한계를 기존 대비 10억 배인 아토몰(10-18 mole) 단위까지 향상시키는 디지털 코드 *라만 분광 기술을 세계 최초로 개발했다고 15일 밝혔다. ☞ 라만 분광법(Raman spectroscopy): 특정 분자에 레이저를 쏘았을 때, 그 분자 전자의 에너지준위 차이만큼 에너지를 흡수하는 현상을 통해 분자의 종류를 알아내는 방법이다. 연구진은 통신 분야에서 잘 알려진 대역 확산기술(CDMA)을 생분자화합물의 라만 분광 검출법에 세계 최초로 적용했다. 디지털 코드화된 레이저광원을 이용해 모든 잡음신호를 제거하고, 생화합물의 고순도 라만 분광 신호를 복원함으로써, 극저농도의 생분자화합물을 형광 표지 없이 정확하게 분석했다. 이러한 디지털 코드 라만 분광 기술은 다양한 분자진단, 약물 및 암 치료 모니터링뿐 아니라 현장 진단용 광학 진단기기나 모바일 헬스케어 기기에도 활용이 가능할 것으로 크게 기대된다. 우리 대학 바이오및뇌공학과 이원경 박사과정이 제 1저자로 참여한 이번 연구는 세계적 권위의 과학전문지 `네이처(nature)'의 자매지인 `네이처 커뮤니케이션스(Nature Communications)'에 1월 8일 字 온라인판에 발표됐다. (논문명: Spread Spectrum SERS allows label-free detection of attomolar neurotransmitters) 알츠하이머병, 파킨슨병, 우울증 등의 뇌세포와 관련된 신경 질환은 뇌세포에서 만들어지는 신경전달물질이 적절히 분비되지 않거나 불균형으로 분비돼 발생하는 질병으로, 최근에는 발병과 직간접적인 사망자가 급증하고 있으나 치료가 쉽지 않다. 신경전달물질은 뉴런의 축색 돌기 말단에서 분비돼 시냅스 갭을 통과한 후 다른 뉴런에 신호를 전달하는 물질로, 결합하는 수용체의 화학적 성질에 따라 기능이 다르고, 발생하는 질병도 다양하다. 알츠하이머병 환자들은 신경전달물질 가운데 아세틸콜린이 부족하거나 글루탐산염이 높은 특징이 있고, 도파민이 부족하면 몸이 굳어지며 떨리는 파킨슨병에 걸리기 쉽고 조현병이나 주의력 결핍 과잉 행동장애와 같은 정신질환의 원인이 된다. 신경전달물질과 관련된 신경 질환은 특정 수용체 작용제나 수용체 길항체로 치료를 하는데, 효과는 그다지 성공적이지 않다. 따라서 알츠하이머병이나 파킨슨병과 같은 신경 질환의 조기 진단을 위해서 적절한 신경전달물질의 적절한 분비를 위한 지속적인 신경전달물질 농도 변화를 모니터링하는 것이 매우 중요하다. 극저농도의 신경전달물질을 간편하면서도 정확하게 측정할 수 있다면 신경계 질환의 조기 진단율을 크게 높일 수 있고 신경 질환 환자의 치료 추적 관리에 큰 도움을 줄 수 있다. 하지만 신경전달물질 기반의 기존 신경 질환 진단기술은 양전자 방출 단층촬영(PET), 표면증강라만분광(SERS), 고성능 액체 크로마토그래피(HPLC), 형광 표지 기반 센서로 측정해 분석하는 방식이다. 이러한 기존 신경 질환 진단기술은 검출한계가 나노몰(10-9 mole) 이상에 그치며, 시료 전처리 단계가 복잡하고 측정 시간이 오래 걸리는 한계가 있다. 연구팀은 문제 해결을 위해 대역확산 통신기술의 뛰어난 잡음 제거 기술을 생체 분자 검출에 적용해 레이저 출력 변동, 수신기 자체 잡음 등의 시스템 잡음과 표적 분자 이외의 분자 신호를 효율적으로 제거하고 표적 생체 분자 신호만 선택적으로 복원했다. 그 결과 생체 분자 신호의 신호대잡음비를 증가시켜 더욱 정밀한 검출한계를 달성했다. 대역확산 기반 디지털 코드 분광 기술은 직교성을 가지는 확산 코드로 암호화된 빛으로 생체 분자를 높은 에너지로 이동시켜 생체 분자에서 산란돼 나오는 빛을 다시 확산 코드로 복호화한다. 이러한 과정을 거쳐 표적 생체 분자의 산란 신호를 복원해 질병 및 건강 진단 지표, 유전 물질 검출 등에 응용할 수 있다. 또한 직교성을 가지는 확산 코드는 기존의 다른 신호처리 기술보다 잡음을 제거하는 성능이 우수해 신호대잡음비와 검출한계, 시간해상도를 최고 수준으로 끌어올릴 수 있다. 연구팀이 개발한 대역확산 라만 분광 기술은 물질의 고유진동 지문을 측정하는 성분 분석과 전처리가 필요하지 않다는 라만 분광 기술의 장점을 그대로 유지하면서 기존의 기술적 한계인 낮은 신호대잡음비와 검출한계를 극복하는 기술로, 바이오 이미징, 현미경, 바이오 마커 센서, 약물 모니터링, 암 조직 검사 등의 다양한 분야에 활용될 수 있다. 연구팀은 대역확산 분광 기술과 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목시켜 별도의 표지 없이도 5종의 신경전달물질을 아토 몰 농도에서 검출해 기존 검출한계를 10억(109)배 향상시켰으며, 신호대잡음비가 1,000배 이상 증가함을 확인했다. 제1 저자인 이원경 박사과정은 "고감도 분자 진단을 위해 통신 분야의 최첨단 기술인 대역확산 기술을 접목한 차세대 디지털 코드 라만 분광 기술을 최초로 제안했으며, 이 방법으로 기존 생체 분자 검출 기술의 장벽을 해결하고 기존 기술의 신경전달물질 검출한계를 획기적으로 향상시켰다ˮ며 "고감도 소형 분광기로 신속하고 간단하게 현장 진단이 가능하고 다양한 분야에 활용될 수 있어 파급효과가 크다ˮ고 말했다. 정기훈 교수는 "이번 결과를 바탕으로 향후 휴대용으로 소형화를 진행하면 낮은 비용으로 무표지 초고감도 생체 분자 분석 및 신속한 현장 진단이 가능해질 것이다ˮ며 "또한 신경전달물질뿐 아니라 다양한 생화합물 검출, 바이러스 검출, 신약평가분야에 크게 활용될수 있을 것이다ˮ고 말했다. 한편, 이번 연구는 한국연구재단 바이오기술개발사업, KAIST 코로나대응 과학기술뉴딜사업단과 범부처 전주기 의료기기 사업, 과학기술정보통신부 ETRI 연구개발지원사업의 지원을 받아 수행됐다.
2021.01.18
조회수 75368
산소 이용해 알츠하이머 유발 단백질 독성 개선
화학과 임미희 교수 연구팀이 공기 중의 산소를 이용해 알츠하이머 유발에 관여하는 단백질의 독성을 개선할 수 있는 화학적 도구를 설계하는 데 성공했다. 연구팀은 알츠하이머 발병에 관여한다고 알려진 구리-아밀로이드 베타 복합체의 응집과 이에 의한 발생한 세포 독성을 개선할 수 있는 화학적 도구를 설계하고, 구리 배위권 이중 변형을 통한 작용 원리를 분자적 수준에서 밝혀냈다. 한지연 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지인 미국 국립과학원회보(PNAS)에 2월 27일 자로 게재됐다.(논문명 : Mechanistic approaches for chemically modifying the coordination sphere of copper-amyloid-β complexes) 전이 금속 중 구리 이온은 항산화 작용과 신경전달물질 생성 등 신체에 필수적인 생리적 기능에 관여한다. 건강한 사람의 뇌와 달리 알츠하이머병 같은 퇴행성 뇌 질환 환자의 뇌에서는 이러한 구리 이온의 항상성이 완전히 무너져있다고 알려져 있다. 알츠하이머 발병에 밀접하게 관계가 있다고 알려진 아밀로이드 베타 펩타이드는 구리 이온과 강하게 결합할 수 있다. 구리 이온은 아밀로이드 베타의 응집을 촉진할 뿐만 아니라, 활성산소를 과다하게 생성해 신경독성을 일으킨다. 따라서 구리-아밀로이드 베타 복합체를 표적하고 그 배위 결합을 효과적으로 막을 수 있는 화학적 접근 기법이 최근 주목받고 있다. 연구팀은 알츠하이머 발병 원리에 직간접적으로 관여하는 구리 이온이 공기 중 산소와 반응할 수 있다는 점을 이용했다. 이에 구리-아밀로이드 베타 복합체와 상호작용할 수 있도록 화합물을 합리적으로 설계하고, 해당분자가 산소가 존재하는 환경에서 구리 배위권에 위치한 특정 아미노산에 결합 및 산화에 의한 이중 변형을 일으킨 것을 확인했다. 연구팀은 연구팀이 개발한 배위권 이중 변형 기법에 따라 구리-아밀로이드 베타의 응집 과정 및 섬유 형성 정도가 확연히 달라짐을 확인했다. 이 기법을 통해 구리 이온의 병리학적 특성 중 하나인 활성산소 생성 정도 또한 두드러지게 개선된 것을 관찰했다. 나아가 기존의 기법과 비교했을 때 구리-아밀로이드 베타 복합체에 의한 세포 독성을 더욱 효과적으로 회복시키는 것으로 나타났다. 이번 연구는 산소의 유무, 전이 금속의 종류, 산화 활성 금속의 산화수, 아밀로이드성 단백질의 종류 등 다양한 변수의 통제를 통해 해당 화합물이 아밀로이드 베타의 구리 배위권을 어떻게 변형시켰는지에 대한 작용 원리를 분자적 수준에서 제안했다는 의의가 있다. 임미희 교수는 “알츠하이머 발병에 관여한다고 알려진 구리 이온이 산소와 반응할 수 있다는 점을 역으로 이용했다”라며 “이번 연구에서 최초로 발표한 단백질 내 구리 배위권 이중 변형 기법을 바탕으로, 다른 퇴행성 뇌질환의 치료제 개발에도 더욱 박차를 가할 수 있을 것이다”라고 말했다. 이번 연구는 한국연구재단과 KAIST의 지원으로 수행됐다.
2020.03.03
조회수 14611
전상용, 임성갑 교수, 신경세포의 안정적 배양 가능한 플랫폼 개발
우리 대학 생명과학과 전상용 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 신경세포를 장기적, 안정적으로 배양할 수 있는 아세틸콜린 유사 고분자 박막 소재를 개발했다. 특히 이 연구는 KAIST의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 유승윤 학부생이 참여해 더욱 큰 의미를 갖는다. 유승윤 학부생을 포함해 백지응 박사과정, 최민석 박사가 공동 1저자로 참여한 이번 연구 성과는 나노분야 학술지 ‘에이시에스 나노(ACS Nano)’ 10월 28일자 온라인 판에 게재됐다. 신경세포는 알츠하이머, 파킨슨병, 헌팅턴병 등의 신경퇴행성 질환 및 신경 기반 바이오센서 등 전반적인 신경관련 응용연구에 꼭 필요한 요소이다. 대부분의 신경 질환이 노인성, 퇴행성이기 때문에 신경세포가 오래됐을 때 어떤 현상이 발생하는지 관찰할 수 있어야 한다. 하지만 신경세포는 장기 배양이 어려워 퇴행 상태가 되기 전에 세포가 죽게 돼 관찰이 어려웠다. 기존에는 특정 수용성 고분자(PLL)를 배양접시 위에 코팅하는 방법을 통해 신경세포를 배양했다. 그러나 이 방법은 장기적, 안정적인 세포 배양이 불가능하기 때문에 신경세포를 안정적으로 장기 배양할 수 있는 새로운 플랫폼이 필요하다. 연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용했다. iCVD는 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법으로, 기존 세포 배양 기판 위에 손쉽게 얇고 안정적인 박막을 형성시킬 수 있다. 연구팀은 이러한 기체상 공정의 장점을 이용해 신경세포를 장기적으로 배양할 수 있는 기능을 가진 공중합체 고분자 박막을 합성하는 데 성공했다. 새로 합성된 이 고분자 박막은 신경전달물질로 알려진 아세틸콜린과 유사한 물질로 이뤄져 있다. 또한 신경세포가 고분자 박막에서 배양될 수 있는 최적화된 조건을 발견했고, 이 조건에서 생존에 관여하는 여러 신경관련 유전자를 확인했다. 연구팀은 생명과학과 손종우 교수 연구팀의 도움을 통해 새로 배양된 신경세포가 기존의 신경세포보다 전기생리학적 측면 및 신경전달 기능적 측면에서 안정화됨을 확인했다. 연구팀은 “신경세포를 장기적으로 배양할 수 있는 이 기술은 향후 신경세포를 이용한 바이오센서와 신경세포 칩 개발의 핵심 소재로 활용될 것이다”며 “다양한 신경 관련 질병의 원리를 이해할 수 있는 역할을 할 것으로 기대된다”고 말했다. 이번 연구는 한국보건산업진흥원과 한국연구재단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 본 연구에서 개발된 표면(pGD3) 및 폴리라이신 코팅 위에서 장시간 배양된 신경세포 그림2. 신경전달물질 유사 작용기를 도입한 표면 형성 과정
2016.11.17
조회수 19971
뇌신경전달 단백질의 구조와 작동원리 규명
- 생체막 융합 단백질의 구조변화 실시간 측정 -- 퇴행성 뇌질환 연구에 실마리 제공 - 우리 학교 물리학과 윤태영 교수 연구팀이 자기력 나노집게를 이용해 뇌신경세포사이의 신경물질전달에 가장 중추적인 역할을 하는 스네어(SNARE) 단백질의 숨겨진 구조와 작동원리를 단분자 수준에서 밝히는데 성공했다. 스네어 단백질의 세포막 융합기능은 알츠하이머병 같은 퇴행성 뇌질환이나 신경질환과 밀접하게 연관되어 있어 이 같은 질병의 예방과 치료법 개발에 새로운 실마리가 될 것으로 기대된다. 뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 가장 핵심적인 역할을 하는 세포막 융합 단백질이다. 지금까지 학계에서는 스네어 단백질이 신경물질을 주고받는 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능을 명확하게 밝혀내지 못했다. 연구팀은 자기력 나노집게를 이용해 피코 뉴턴(pN, 1조분의 1뉴턴) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하는 실험기법을 개발했다. 이를 통해 스네어 단백질에 숨겨진 중간구조가 존재하며, 이 구조에 대한 정밀한 측정결과 중간상태가 어떤 구조를 갖는지 정확하게 예측했다. 이와 함께 생체막 사이에 있는 스네어 단백질의 중간구조가 생체막이 서로 밀어내는 힘을 견디고 유지하면서 신경물질을 주고받는 과정을 조절하는 역할을 할 수 있음을 밝혔다. 윤태영 교수는 “생체단백질이 갖는 숨겨진 구조와 작동원리를 힘을 정교하게 조절하는 실험만으로 직접 관찰하는 것과 동일한 획기적 연구 결과를 일궈냈다”며 “이 기술은 생물학의 연구대상을 물리학적인 방법 연구하는데 매우 중요한 기술로 향후 학제적 융합연구에 매우 중요한 기반이 될 것”이라고 말했다. 한편, 이번 연구는 KAIST 물리학과 윤태영 교수와 김기범 연구교수의 주도 아래 KIST 의공학연구소 신연균 교수와 공동연구로 진행됐고, KAIST 물리학과 조용훈 교수, 민두영 박사과정, KIAS 계산과학부 현창봉 교수가 참여했으며, 이번 세계적 과학학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 4월 16일자에 게재됐다. (a) 뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 핵심적인 역할을 한다. (b) 자기력 나노집게를 이용하여 단분자 수준에서 단백질 구조 변화를 실시간으로 측정방법의 개략도. 피코 뉴톤(pN) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하여 생체막 융합 단백질의 숨겨진 중간구조와 작동원리를 단분자 수준에서 관찰한다.
2013.05.09
조회수 15870
윤태영 교수팀, 생체막 단백질 기능 첫 규명
우리대학 윤태영 물리학과 교수 주도하에 생체막 단백질인 시냅토태그민1(Synaptotagmin1)이 신경세포 통신을 능동적으로 제어한다는 사실을 세계 최초로 규명하였다. 시냅토태그민1은 신경전달물질 분출을 조절하는 양대 핵심 단백질로서, 지금까지 학계는 단순히 칼슘 이온이 유입되면 시냅토태크민1이 신경전달물질을 분출하는 것으로 추정해 왔지만, 명확히 그 기능을 밝혀내지 못했다. △카이스트 윤태영 물리학과 교수, △이한기 박사 △신연균 교수(포항공대, 아이오와주립대) △권대혁 교수(성균관대) △현창봉 교수 (고등과학원) 등이 참여한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘기초연구실육성사업(BRL)"과 ‘세계 수준의 연구중심대학(WCU)육성사업’의 지원을 받아 수행되었고, 연구결과는 세계 최고 권위의 과학저널인 ‘사이언스(Science)’誌 5월 7일자에 게재된다. 이번 연구결과는 젊은 국내 토종박사들이 주축이 되어 불굴의 도전정신으로 일궈낸 값진 연구성과이다. 총 9명으로 구성된 연구팀에서 8명이 국내 연구자들로, 이중 7명이 만 40세를 넘지 않은 신진 연구자이다. 특히 연구를 주도한 윤태영 교수는 만 34세로 2004년 서울대에서, 이한기 박사는 만 33세로 명지대에서, 권대혁 교수는 만 38세로 서울대에서 박사학위를 받은 토종박사들이다. 또한 이번 연구성과는 정부의 대표적인 연구지원사업(BRL)과 인력 양성사업(WCU)의 지원을 받아 시너지 효과를 발휘하여, 세계 최고의 과학저널에 발표했다는 점에서 의의가 있다. [그림1. 신경전달물질 분출에 있어서 시냅토태그민1의 동적제어 스위치 모델] 윤태영 교수 연구팀은 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어하는 스위치 역할을 한다는 새로운 사실을 밝혀냈다. 연구팀은 신경세포 내에 적정농도(10μmol/L, 1리터당 10마이크로 몰)의 칼슘 이온이 유입되면 시냅토태그민1은 신경전달물질을 빠르게 분출하지만, 적정농도 이상의 칼슘이 유입되면 오히려 그 기능이 감소된다는 사실을 최초로 확인하였다. 이것은 시냅토태그민1이 신경세포에서 나오는 칼슘 농도에 따라 다양하게 반응한다는 사실을 의미하는 것으로, 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어할 수 있다는 사실을 새롭게 규명한 것이다. 윤태영 교수팀의 이번 연구는 지난 10년간 학계의 풀리지 않은 수수께끼인 시냅토태그민1의 기능에 대한 명쾌한 해답을 제시하였다. 이번 연구는 낮은 농도의 칼슘에서 시냅토태그민1이 가장 활발히 활동한다는 사실을 최초로 발견하여, 기존 연구가 밝히지 못한 시냅토태그민1의 기능을 정확히 설명하였다. 특히 연구팀은 시냅토태그민1을 생체막으로부터 분리하면, 제어 스위치 기능이 상실된다는 사실도 확인하여, 시냅토태그민1의 생체막 부착 여부가 그 기능에 핵심인 것을 밝혀냈다. 또한 윤 교수팀은 차세대 신약개발의 주요 타깃인 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발하는데 성공하였다. 생체막 단백질은 물질 수송 등 세포내 필수적인 역할을 하는데, 암, 당뇨, 비만 등 각종 질병과 밀접하게 관련되어 있어, 차세대 신약개발 표적 단백질의 최대 70%를 차지하는 것으로 알려져 있다. 연구팀은 ‘단소포체 형광 기법(single-vesicle fluorescence detection)’을 개발하는데 성공하여, 생체막 단백질의 기능을 단분자 혹은 수개 분자 수준에서 관찰할 수 있는 세계 최고 수준의 기술을 보유하게 되었다. [그림2. 단소포체 형광기법] 윤 교수는 “이번 연구결과는 지난 10년간 학계가 밝혀내지 못한 시냅토태그민1의 기능을 명쾌히 밝혀내고, 복잡한 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발한 것이다. 이번 연구로 생체막 단백질을 활용하여, 암, 당뇨, 비만 등 현대인의 질병에 대한 신약을 개발할 수 있는 가능성을 열었다“라고 연구 의의를 밝혔다.
2010.05.07
조회수 24992
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1