본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%8B%AC%EC%B8%B5+%EC%8B%A0%EA%B2%BD%EB%A7%9D
최신순
조회순
스스로 그림 그리는 인공지능 반도체 칩 개발
전기및전자공학부 유회준 교수 연구팀이 생성적 적대 신경망(GAN: Generative Adversarial Network)을 저전력, 효율적으로 처리하는 인공지능(AI: Artificial Intelligent) 반도체를 개발했다. 연구팀이 개발한 인공지능 반도체는 다중-심층 신경망을 처리할 수 있고 이를 저전력의 모바일 기기에서도 학습할 수 있다. 연구팀은 이번 반도체 칩 개발을 통해 이미지 합성, 스타일 변환, 손상 이미지 복원 등의 생성형 인공지능 기술을 모바일 기기에서 구현하는 데 성공했다. 강상훈 박사과정이 1 저자로 참여한 이번 연구결과는 지난 2월 17일 3천여 명 반도체 연구자들이 미국 샌프란시스코에 모여 개최한 국제고체회로설계학회(ISSCC)에서 발표됐다. (논문명 : GANPU: A 135TFLOPS/W Multi-DNN Training Processor for GANs with Speculative Dual-Sparsity Exploitation) 기존에 많이 연구된 인공지능 기술인 분류형 모델(Discriminative Model)은 주어진 질문에 답을 하도록 학습된 인공지능 모델로 물체 인식 및 추적, 음성인식, 얼굴인식 등에 활용된다. 이와 달리 생성적 적대 신경망(GAN)은 새로운 이미지를 생성·재생성할 수 있어 이미지 스타일 변환, 영상 합성, 손상된 이미지 복원 등 광범위한 분야에 활용된다. 또한, 모바일 기기의 다양한 응용 프로그램(영상·이미지 내 사용자의 얼굴 합성)에도 사용돼 학계뿐만 아니라 산업계에서도 주목을 받고 있다. 그러나 생성적 적대 신경망은 기존의 딥러닝 네트워크와는 달리 여러 개의 심층 신경망으로 이루어진 구조로, 개별 심층 신경망마다 다른 요구 조건으로 최적화된 가속을 하는 것이 어렵다. 또한, 고해상도 이미지를 생성하기 위해 기존 심층 신경망 모델보다 수십 배 많은 연산량을 요구한다. 즉, 적대적 생성 신경망은 연산 능력이 제한적이고 사용되는 메모리가 작은 모바일 장치(스마트폰, 태블릿 등)에서는 소프트웨어만으로 구현할 수 없었다. 최근 모바일 기기에서 인공지능을 구현하기 위해 다양한 가속기 개발이 이뤄지고 있지만, 기존 연구들은 추론 단계만 지원하거나 단일-심층 신경망 학습에 한정돼 있다. 연구팀은 단일-심층 신경망뿐만 아니라 생성적 적대 신경망과 같은 다중-심층 신경망을 처리할 수 있으면서 모바일에서 학습도 가능한 인공지능 반도체 GANPU(Generative Adversarial Networks Processing Unit)를 개발해 모바일 장치의 인공지능 활용범위를 넓혔다. 연구팀이 개발한 인공지능 반도체는 서버로 데이터를 보내지 않고 모바일 장치 내에서 생성적 적대 신경망(GAN)을 스스로 학습할 수 있어 사생활을 보호를 가능케 하는 프로세서라는 점에서 그 활용도가 기대된다. 모바일 기기에서 저전력으로 다중-심층 신경망을 가속하기 위해서 다양한 핵심 기술이 필요하다. 연구팀이 개발한 GANPU에 사용된 핵심 기술 중 대표적인 기술 3가지는 ▲적응형 워크로드 할당(ASTM, 처리해야 할 워크로드*를 파악해 칩 상의 다중-심층 신경망의 연산 및 메모리 특성에 맞춰 시간·공간으로 나누어 할당함으로써 효율적으로 가속하는 방법) ▲입출력 희소성 활용 극대화(IOAS, 인공신경망 입력 데이터에서 나타나는 0뿐만 아니라 출력의 0도 예측해 연산에서 제외함으로써 추론 및 학습 과정에서의 속도와 에너지효율 극대화) ▲지수부만을 사용한 0 패턴 추측(EORS, 인공신경망 출력의 0을 예측하기 위한 알고리즘으로 인공신경망 입력과 연결 강도(weight)의 부동소수점 데이터 중 지수 부분만을 사용해 연산을 간단히 수행하는 방법)이다. 위의 기술을 사용함으로써 연구팀의 GANPU는 기존 최고 성능을 보이던 심층 신경망 학습 반도체 대비 4.8배 증가한 에너지효율을 달성했다. 연구팀은 GANPU의 활용 예시로 태블릿 카메라로 찍은 사진을 사용자가 직접 수정할 수 있는 응용 기술을 시연했다. 사진상의 얼굴에서 머리·안경·눈썹 등 17가지 특징에 대해 추가·삭제 및 수정사항을 입력하면 GANPU가 실시간으로 이를 자동으로 완성해 보여 주는 얼굴 수정 시스템을 개발했다.
2020.04.06
조회수 16686
예종철 교수, 인공지능 블랙박스의 원리 밝혀
〈 예종철 교수, 한요섭 연구원, 차은주 연구원 〉 우리 대학 바이오및뇌공학과 예종철 석좌교수 연구팀이 인공지능의 기하학적인 구조를 규명하고 이를 통해 의료영상 및 정밀분야에 활용 가능한 고성능 인공신경망 제작의 수학적인 원리를 밝혔다. 연구팀의 ‘심층 합성곱 프레임렛(Deep Convolutional Framelets)’이라는 새로운 조화분석학적 기술은 인공지능의 블랙박스로 알려진 심층 신경망의 수학적 원리를 밝혀 기존 심층 신경망 구조의 단점을 보완하고 이를 다양하게 응용 가능할 것으로 기대된다. 예종철 석좌교수가 주도하고 한요섭, 차은주 박사과정이 참여한 이번 연구는 응용수학 분야 국제 학술지 ‘사이암 저널 온 이매징 사이언스(SIAM Journal on Imaging Sciences)’ 4월 26일자 온라인 판에 게재됐다. 심층신경망은 최근 폭발적으로 성장하는 인공지능의 핵심을 이루는 딥 러닝의 대표적인 구현 방법이다. 이를 이용한 영상, 음성 인식 및 영상처리 기법, 바둑, 체스 등은 이미 사람의 능력을 뛰어넘고 있으며 현재 4차 산업혁명의 핵심기술로 알려져 있다. 그러나 이러한 심층신경망은 그 뛰어난 성능에도 불구하고 정확한 동작원리가 밝혀지지 않아 예상하지 못한 결과가 나오거나 오류가 발생하는 문제가 있다. 이로 인해 ‘설명 가능한 인공지능(explainable AI: XAI)’에 대한 사회적, 기술적 요구가 커지고 있다. 연구팀은 심층신경망의 구조가 얻어지는 고차원 공간에서의 기하학적 구조를 찾기 위해 노력했다. 그 결과 기존의 신호처리 분야에서 집중 연구된 고차원 구조인 행켈구조 행렬(Hankel matrix)을 기저함수로 분해하는 과정에서 심층신경망 구조가 나오는 것을 발견했다. 행켈 행렬이 분해되는 과정에서 기저함수는 국지기저함수(local basis)와 광역기저함수(non-local basis)로 나눠진다. 연구팀은 광역기저함수와 국지기저함수가 각각 인공지능의 풀링(pooling)과 필터링(filtering) 역할을 한다는 것을 밝혔다. 기존에는 인공지능을 구현하기 위한 심층신경망을 구성할 때 구체적인 작동 원리를 모른 채 실험적으로 구현했다면, 연구팀은 신호를 효과적으로 나타내는 고차원 공간인 행켈 행렬를 찾고 이를 분리하는 방식을 통해 필터링, 풀링 구조를 얻는 이론적인 구조를 제시한 것이다. 이러한 성질을 이용하면 입력신호의 복잡성에 따라 기저함수의 개수와 심층신경망의 깊이를 정해 원하는 심층신경망의 구조를 제시할 수 있다. 연구팀은 수학적 원리를 통해 제안된 인공신경망 구조를 영상잡음제거, 영상 화소복원 및 의료영상 복원 문제에 적용했고 매우 우수한 성능을 보임을 확인했다. 예종철 교수는 “시행착오를 반복해 설계하는 기존의 심층신경망과는 달리 원하는 응용에 따라 최적화된 심층신경망구조를 수학적 원리로 디자인하고 그 영향을 예측할 수 있다”며 “이 결과를 통해 의료 영상 등 설명 가능한 인공지능이 필요한 다양한 분야에 응용될 수 있다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구) 및 뇌과학원천기술사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 수학적인 원리를 이용한 심층신경망의 설계 예시 그림2. 영상잡음제거 결과 그림3. 영상에서 80% 화소가 사라진 경우 인공신경망을 통해 복원한 결과
2018.05.10
조회수 17414
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1