본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%95%99%EA%B2%8C%EB%B0%98%ED%85%8C+%EC%BC%80%EB%AF%B8
최신순
조회순
자연계 효소 원리를 이용한 신개념 산업용 촉매 개발
우리 대학 생명화학공학과 최민기 교수 연구팀이 자연계 효소와 같이 원하는 반응물만 선택적으로 전환할 수 있는 신개념의 고성능 산업 촉매를 개발했다고 9일 밝혔다. 촉매는 기초 유분 생산에서부터 다양한 화학 제품 제조까지 대부분의 석유화학 공정에서 사용되는 물질로 공정의 경제성과 친환경성을 높이기 위해서 원하는 생성물만 만들어지는 높은 선택성을 갖는 촉매 개발이 필수적이다. 지구상에 존재하는 촉매 중 가장 높은 선택성을 보이는 촉매는 효소다. 효소는 천연 고분자인 단백질이 반응이 일어나는 활성점을 3차원적으로 둘러싸고 있는 구조를 갖는데, 단백질의 구조 및 활성점과의 상호작용에 따라 특정 반응물만 선택적으로 접근할 수 있도록 조절해 높은 선택성을 갖는다. 연구팀은 이번 연구에서 효소의 단백질과 유사한 고분자를 이용해 금속 활성점과의 상호작용을 조절한 새로운 개념의 촉매 설계 방법을 제시했다. 고분자는 일정 단위체의 반복적인 화학 결합을 통해 만들어지는 높은 분자량의 거대분자이며 합성에 사용한 단위체에 따라 고분자의 작용기를 쉽게 조절할 수 있다. 연구팀은 금속과 상호작용을 할 수 있는 작용기를 포함한 고분자를 합성하고 팔라듐 금속 입자를 포함한 촉매를 만들었다. 금속과 강하게 상호작용을 하는 고분자는 효소와 같이 금속 주위를 고분자가 3차원적으로 둘러싸는 형태를 보이는 한편 약하게 상호작용하는 고분자는 금속을 둘러싸지 못하고 금속 표면이 노출된 형태가 됐다. 연구팀은 이렇게 합성된 촉매를 이용해 석유화학의 에틸렌 생산 공정에서 매우 중요한 아세틸렌 부분 수소화 반응에 적용했다. 에틸렌은 플라스틱, 비닐, 접착제 등 다양한 제품을 만드는 데 이용하는 기본 핵심 원료이며 현재 우리나라에서는 주로 나프타를 분해하여 생산한다. 나프타분해시설에서 생산되는 에틸렌에는 불순물인 미량의 아세틸렌이 함께 포함돼 있는데, 이 아세틸렌이 화학 제품을 만드는 데 사용되는 촉매에 치명적으로 작용하기 때문에 수소화 반응을 통해 제거해 주는 공정이 필수적이다. 이 공정에서 핵심은 99% 이상의 에틸렌은 소모하지 않으면서 1% 미만의 아세틸렌만 선택적으로 제거하는 것이다. 연구진이 개발한 신규 촉매를 이 공정에 적용한 결과, 강하게 상호작용해 3차원 구조를 형성한 촉매는 고분자가 아세틸렌에만 접근해 높은 선택도를 보였다. 하지만 약한 상호작용으로 인해 고분자가 금속 표면을 덮지 못한 촉매에서는 아세틸렌과 에틸렌에 모두 접근해 낮은 선택도를 보였다. 또한 강하게 상호작용을 하는 고분자일수록 비활성화를 일으키는 탄소 침적물인 코크의 생성을 차단하고 금속 입자의 뭉침 현상을 억제해 장기간 반응에서도 높은 활성과 선택도를 유지했다. 연구를 주도한 최민기 교수는 "자연계 효소의 원리를 모방해 고분자와 금속 사이의 상호작용을 조절하고 원하는 반응물만 선택적으로 전환할 수 있으면서도 매우 우수한 안정성을 가지는 촉매 설계 방법은 세계적으로 보고된 바가 없던 새로운 개념이다ˮ라며, "향후 높은 선택도가 필요한 다양한 화학반응에 폭넓게 응용 및 적용될 수 있을 것이다ˮ라고 말했다. 우리 대학 생명화학공학과 현경림 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `앙게반테 케미(Angewandte chemi)'에 지난 5월 17일 字 온라인판에 게재됐다. (논문명: Tailoring a Dynamic Metal-Polymer Interaction to Improve Catalyst Selectivity and Longevity in Hydrogenation), 한편 이번 연구는 한국연구재단 중견연구자 지원사업과 LG화학의 지원을 받아 수행됐다.
2021.06.09
조회수 71409
이진우 교수, 백금 활용도 16배 높인 단일 원자 촉매 개발
〈 박진규 박사과정, 이진우 교수 〉 우리 대학 생명화학공학과 이진우 교수 연구팀이 전기화학적 물 분해(이하 수전해) 방식을 통해, 수소를 생산하는 과정에서 쓰이는 백금의 사용을 최소화하면서 뛰어난 성능을 보여 활용도를 16배 높일 수 있는 백금 기반 촉매를 개발했다. 연구팀은 백금의 활용도를 높이기 위해 백금을 단일원자 형태로 텅스텐 산화물 표면에 고분산 시켜 백금이 받는 지지체 효과를 극대화했고, 수소 생산 수전해 촉매에서 높은 성능을 구현했다. 박진규 박사과정과 이성규 박사가 공동 1 저자로 참여한 이번 연구는 세계적 화학지인‘앙게반테 케미(Angewandte Chemie)’ 8월 22일 자에 게재됐다. (논문명 : Investigation of Support Effect in Atomically Dispersed Pt on WO3-x for High Utilization of Pt in Hydrogen Evolution Reaction, 수소 생산 반응에서 백금 활용도를 높이기 위해 백금 유사-단일 원자 촉매를 담지한 텅스텐 산화물 지지체 효과 조사) 백금 기반 촉매들은 성능과 안정성이 높아 다양한 전기화학 촉매 분야에서 활용됐지만, 가격이 높아 상용화에 어려움이 있었다. 단일 원자 촉매는 금속의 원자 하나가 지지체에 고분산된 형태의 촉매로, 모든 금속 단일 원자가 반응에 참여하기 때문에 백금의 사용량을 현저히 낮출 수 있다. 하지만 대부분의 연구가 탄소 기반 지지체에 담지된 단일 원자 촉매를 적용하고 있어 백금 활용성에 한계가 있다. 연구팀은 이번에 백금과 강한 시너지 효과를 낼 수 있는 메조 다공성 텅스텐 산화물을 단일 원자 촉매의 지지체로 사용했다. 이를 통해 백금 단일 원자를 텅스텐 산화물에 담지했을 때, 텅스텐 산화물에서 백금 단일 원자로 전하 이동이 일어나 백금의 전자구조가 변하는 것을 확인했다. 또한, 단일 원자 촉매가 갖는 ‘금속과 지지체간의 경계면 극대화’라는 독특한 특징을 활용해 백금 나노입자를 텅스텐 산화물에 담지한 촉매와 비교 실험을 진행했다. 연구팀은 실험을 통해 백금 표면에서 다른 지지체 표면으로 수소가 넘어가는 현상인 수소 스필오버 (Hydrogen spillover)가 크게 발현됨을 확인했다. 이를 통해 기존 상용 백금 촉매의 사용량을 16분의 1로 현저히 줄일 수 있었다. 해당 연구는 수전해 뿐만 아니라 연료전지 기술과 같은 다양한 전기화학 촉매 분야에 응용될 수 있을 것으로 기대된다고 연구팀은 밝혔다. 이 교수는 “이번에 개발한 촉매는 기존 단일 원자 촉매 연구와 다른 관점에서 접근한 연구로 학술적으로 이바지하는 바가 크다”라며 “이번 연구를 통해 단일 원자 촉매 개발의 독보적인 기술을 확보했다”라고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업, 수소에너지혁신기술개발사업, 기후변화대응기술개발사업, 미래소재디스커버리사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 유사 단일원자 촉매의 수소생산반응 모식도
2019.10.04
조회수 13635
박정영 교수, 촉매 비밀의 핵심인 '핫 전자' 검출 및 전류 측정 성공
〈 박 정 영 교수 〉 우리 대학 EEWS 대학원 박정영 교수 연구팀이 과산화수소 수용액에 금속 나노 촉매를 넣어 액상 환경 속 촉매반응에서 핫전자를 검출하고 전류를 측정하는 데 성공했다. 대다수 상용 화학공정과 동일한 액체 환경에서 핫전자를 검출해낸 것은 이번이 처음이다. 이번 연구 성과는 국제 학술지 앙게반테 케미(Angenwandte Chemi International Edition)에 7월 4일자 온라인 판에 게재됐다. 촉매는 원유 정제, 플라스틱 합성 등 다양한 화학공정에서 반응 효율을 높여 작업시간을 줄이고 비용을 낮춰주는 핵심요소다. 청정 동력원으로 떠오른 수소연료전지, 이산화탄소 제거를 위한 인공광합성 장치 등 새로운 환경기술영역에서도 큰 역할이 기대되고 있다. 학계에서는 고효율 촉매 개발을 위해 촉매의 작동원리를 규명하기 위한 연구가 활발히 진행되고 있다. 특히 반응 시 촉매에서 발생하는 ‘핫전자’가 촉매의 원리를 규명할 수 있는 열쇠로 주목받고 있다. 연구팀은 나노 두께의 금속박막 촉매를 실리콘 기판 위에 붙여 둘 사이에 낮은 전위장벽을 생성했다. 이후 촉매반응으로 만들어진 핫전자가 전위장벽을 넘어 전류로 흐르는 것을 측정, 액체 내 촉매반응에서 생긴 핫전자를 검출했다. 연구팀은 반응에서 생긴 산소 기체를 기체크로마토그래피로 분석, 핫전자 측정값으로 계산해 낸 이론값이 실제 실험값과 일치함을 확인했다. 특히 금속박막 나노촉매의 소재를 백금, 금, 은으로 다양화하고 박막 두께와 과산화수소 수용액의 농도를 조절, 다양한 조건에서 핫전자 전류를 측정함으로써 액상 환경의 고체 촉매 반응 원리 규명에 한 발짝 더 다가섰다. 연구팀은 앞서 그래핀을 이용한 핫전자 촉매센서를 개발, 수소산화반응시 백금 나노촉매 표면에서 발생하는 핫전자를 처음으로 검출하는 데 성공한 바 있다. 당시 기체-고체 계면에서 발생한 핫전자 검출 효율은 1% 미만에 그쳤으나, 이번 액상 환경에서의 검출 효율은 훨씬 높은 10%에 달했다. 이에 액상 환경의 핫전자 검출기술이 보완돼 고온·고압 환경에 적용된다면, 에너지 및 환경 분야를 포함한 화학산업 전반의 고효율 나노촉매 개발이 활기를 띌 전망이다. 박정영 교수는 “액체에서 작동하는 ‘촉매 핫전자 탐지기’를 이용해, 액상 촉매 반응 핫전자를 세계 최초로 검출했다”라며 “핫전자 검출 효율이 기상 화학반응보다 액상 화학반응 시 월등히 높아, 촉매 작동 원리 규명파악이 가능해졌다. 이로써 새로운 형태의 고효율 나노촉매 시스템 개발을 앞당길 것”이라고 전했다. □ 그림 설명 그림1. 은나노촉매 표면에서 과산화수소 분해 촉매 반응 중에 발생하는 핫전자의 측정 원리 및 모식도 그림 2. 다양한 나노 촉매 다이오드에서 측정된 화학 전류와 촉매 물질의 두께와의 상관관계
2016.08.02
조회수 12264
우성일, 김형준 교수, 귀금속 성능에 버금가는 육각형 아연촉매 개발
우리 대학 생명화학공학과 우성일 교수와 EEWS 대학원 김형준 교수 공동연구팀이 이산화탄소를 높은 효율로 환원시킬 수 있고 내구성이 강한 육각형 아연 촉매를 개발했다. 연구 결과는 화학분야 학술지 앙게반테 케미(Angewandte Chemie International Edition) 6월 28일자 온라인 판에 게재됐다. 이산화탄소는 온실가스로 지구 온난화의 주범으로 알려져 있다. 이산화탄소를 탄소의 자원으로 사용해 연료를 만든다면 기후 문제는 물론 에너지 고갈 문제를 해결할 수 있는 혁신적 기술이 될 것이다. 하지만 이러한 시스템 개발을 위해서는 열역학적으로 안정적인 이산화탄소를 성공적으로 변환시킬 수 있는 촉매를 개발하는 것이 중요하다. 연구팀은 문제 해결을 위해 전기화학적 시스템과 아연을 이용했다. 전기화학적 시스템은 여러 이산화탄소 변환 시스템 중 태양에너지처럼 지속가능한 전기에너지와 결합이 가능하다는 점에서 각광받고 있다. 아연은 이산화탄소 변환 촉매 중 일산화탄소를 선택적으로 생성할 수 있다는 장점과, 같은 특성을 갖는 금, 은에 비해 2만분의 1에 불과한 저렴한 가격 경쟁력을 갖는다. 그러나 부족한 성능으로 인해 많은 주목을 받지 못했다. 연구팀은 아연 촉매의 성능 향상을 위해 화학 반응에 참여하는 부분의 표면적을 최대한 넓혔다. 그리고 흡착에너지를 수월하게 조절할 수 있도록 전기화학적 증착법을 통해 육각형 형태로 배열된 아연 촉매를 제작했다. 육각형이라는 구조적 특성은 효율적인 이산화탄소 변환을 가능하게 했고, 선택적으로 일산화탄소가 생성되고 부산물로 수소가 발생했다. 일산화탄소와 수소는 합성가스(syngas)로서 탄화수소 연료를 생산할 수 있는 유용한 원료이다. 연구팀은 이 육각형 아연 촉매에 가하는 전압에 따라 일산화탄소와 수소 생성 비율을 다양하게 조절할 수 있음을 확인했다. 또한 일산화탄소와 수소를 각각 잘 생성하는 아연의 결정면이 Zn(101)과 Zn(002)임을 밀도범함수이론(density functional theory) 계산을 통해 이론적으로 밝혔다. 향후 이 두 면의 비율을 조절함으로써 원하는 공정이나 생성물의 비율을 얻을 수 있음을 규명했다. 육각형 아연 촉매는 이산화탄소 변환의 반응 선택성을 의미하는 페러데이 효율(Faradaic efficiency)에서 95%를 기록했고, 이 성능이 30시간 이상 지속돼 기존 귀금속을 포함한 모든 일산화탄소 생성 촉매 중 가장 긴 시간 동안의 안정성을 보였다. 연구팀은 태양에너지와 같은 신재생에너지로부터 전기에너지를 얻고, 이산화탄소를 환원시켜 일산화탄소 및 수소를 생성하고 이 합성가스를 피셔-트롭쉬 반응에 직접 이용할 예정이다. 이를 통해 추가적인 이산화탄소 배출 없이도 높은 에너지 밀도를 가진 탄화수소 연료 생산이 가능해진다고 밝혔다. 우 교수는 “생산한 연료들을 연소하면 다시 이산화탄소와 물이 발생하므로 이것이야말로 지속가능한 에너지 생산 시스템이 될 것이다”고 말했다. 생명화학공학과 원다혜 박사가 제 1저자로 참여한 이번 연구는 EEWS대학원의 BK21PLUS 연구사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 육각형 아연 촉매 위에서의 반응 모식도 그림2. 육각형 아연 촉매의 FE-SEM 이미지 그림3. 장시간 진행된 전기화학적 이산화탄소 환원 반응 그림4. 밀도범함수계산 결과 (Free energy diagram)
2016.07.26
조회수 13571
빛을 이용한 약물효소반응 촉진 플랫폼 개발
우리 대학 신소재공학과 박찬범 교수와 생명화학공학과 정기준 교수 연구팀은 빛으로 약물효소반응을 유도할 수 있는 새로운 반응 플랫폼을 개발했다. 연구결과는 지난 12일, 화학분야의 세계적 학술지인 ‘앙게반테 케미’에 후면 표지논문으로 게재됐다. 이 기술을 활용하면 저가의 염료로 고지혈증 등의 심혈관질환 치료제 및 오메프라졸과 같은 위궤양 치료제 등 고부가가치 의약품 생산이 가능할 것으로 보인다. 시토크롬 P450(cytochrome P450)은 생물체 안에서 약물 및 호르몬 등의 대사 과정에서 중요한 산화반응을 수행하는 효소이다. 사람에게 투여되는 약물의 75% 이상의 대사를 담당하고 있기 때문에 신약개발 과정에서 핵심적인 요소로 알려져 있다. 시토크롬 P450의 활성화를 위해선 환원효소로부터 전자를 받아야 하며 전달물질인 NADPH(생물 세포 내의 조효소)가 필요하다. 하지만 NADPH의 높은 가격 때문에 시토크롬 P450의 활용은 실험실 수준에 머무르고 있었으며, 산업적 활용에도 제 역할을 다하지 못했다. 연구팀은 NADPH 대신 빛에 반응하는 감광제인 에오신 Y를 활용해 대장균 기반의 ‘전세포 광-생촉매’ 방법을 개발했다. 저가의 에오신 Y를 빛에 노출시켜 시토크롬 P450의 효소반응을 촉진하여 고가의 대사물질을 생산한다는 원리다. 박 교수는 “이번 연구를 통해 산업적 활용에 제한이 컸던 시토크롬 P450 효소의 활용이 수월해졌다” 며 “우리의 기술은 시토크롬 P450 효소가 고부가가치 의약 물질을 생산하는데 큰 도움을 줄 것이다”라고 말했다. 박찬범, 정기준 교수(교신저자)의 지도아래 박종현 박사과정 학생, 이상하 박사가 주저자로 참여한 이번 연구는 한국연구재단이 추진하는 중견연구자사업과 글로벌프론티어사업, KAIST HRHRP (High Risk High Return Project)의 지원으로 수행됐다. □ 그림설명 그림1. 빛으로부터 에오신 와이 (eosin Y, EY)를 통해 시토크롬 P450 효소로 전자를 전달하는 모식도 그림2. 연구결과를 설명하는 1월 12일자 ‘앙게반테 케미’ 후면 논문 표지
2015.01.21
조회수 16161
DNA 결합 단백질을 이용한 나노입자 클러스터 제작 기술 개발
우리 학교 생명과학과 김학성 교수와 류이슬 박사는 DNA 주형에 서열 특이적으로 결합하는 징크 핑거 (Zinc Finger) 단백질을 이용하여 크기 조절이 가능한 자성 나노 입자 클러스터 (Nanoparticle Clusters; NPCs)의 제작 방법을 새롭게 개발하여 국제적 권위의 학술지인 ‘앙게반테 케미 (Angewandte Chemie International Edition)’ 온라인 판에 발표하였다(2014년 11월 25일). 나노 입자 클러스터 구조체는 자성 나노 입자, 금 나노 입자, 양자 점과 같은 직경이 1~100 나노미터 (10-9 미터) 단위인 나노 입자들이 모여서 이루는 구조체를 말한다. 이 구조체는 단일 나노 입자와는 다른 독특한 집단적 특성을 가진다는 점에서 주목을 받고 있다. 구체적으로, 결합 플라즈몬 흡광도, 입자 간 에너지 전달, 전자 전달 및 전도성과 같은 광학적이거나 물리적인 성질이 다르다. 이러한 특성으로 인해 나노 입자 클러스터는 바이오 및 의료 분야 뿐 만 아니라 나노 전자 (nanoelectronic) 또는 나노플라즈몬 (nanoplasmon) 기기에 적용가능성이 매우 높다. 나노 입자 클러스터가 새로운 특성을 잘 나타내기 위해서는 클러스터의 크기와 조성이 정교하게 조절되어야 한다. 그러나, 기존의 방법은 주로 화학적인 결합에 의존하였기 때문에 복잡한 단계가 필요하고 크기와 조성을 조절하기 어렵다. 김 교수팀은 DNA 결합 단백질인 징크 핑거(Zinc Finger)를 이용하여 간단하고 용이하게 원하는 크기의 자성 나노 입자 클러스터를 제조하는 방법을 개발하였다. 징크 핑거 단백질은 DNA에 결합하는 단백질의 일종으로 구조상에 징크 이온 (Zinc ion)을 가지고 있으며 DNA 서열을 특이적으로 인식하여 결합하는 특성을 갖고 있다. 이러한 징크 핑거의 특성을 이용한 나노 입자 클러스터의 제작은 기존의 방법보다 생체 친화적이며 나노입자 클러스터의 크기와 조성이 잘 조절된다. 연구 결과 김 교수팀은 세 가지 길이가 다른 DNA를 주형으로 하여 징크 핑거 단백질을 이용하여 크기가 다른 자성 나노 입자 클러스터의 선형 구조체를 제작하였고, 만들어진 나노 입자 클러스터는 DNA 주형의 길이에 따라 크기와 형태가 잘 조절됨을 확인하였다. 제작된 자성 나노 입자 클러스터는 기존 MRI 조영제인 페리덱스 (Feridex)에 비해 3배 정도 향상된 T2 이완률 (T2 relaxation rate)을 보여주었고 특정 세포 내로 잘 전달되었다. 이러한 연구 결과는, 자성 나노 입자가 MRI 조영제, 형광 이미징, 약물전달 등 바이오 및 의료 분야에 활용 가능함을 보여준다. 김 교수팀의 연구는 단백질과 DNA의 특이적 결합 특성을 이용하여 무기물 나노 입자 (inorganic nanoparticle)의 초분자 집합체 (supramolecular assembly)를 간편하게 제작하는 새로운 방법으로 다른 나노 입자에 광범위하게 응용가능하며 향후 질병 진단과 이미징, 또는 약물 및 유전자 전달등 의 분야에 크게 활용될 것으로 기대된다. 그림 1. DNA 결합 단백질인 Zinc Finger를 이용한 나노입자 클러스터의 제작 모식도 그림 2. DNA 길이에 따른 자성 나노 입자 클러스터의 크기를 보여주는 전자투과현미경 사진
2014.11.26
조회수 14012
달걀 모방한 세포보호 및 분해기술 개발
특정 미생물은 영양분이 부족한 환경에서 생존이 불리해지면 DNA 보존을 위해 세포외벽에 단단한 보호막인 내생포자를 형성한다. 이렇게 만들어진 내생포자가 생존에 적합한 환경을 만나면 다시 세포증식이 가능한 원래 상태로 돌아간다. 이 현상을 인공적으로 조절하는 기술이 국제 공동연구진에 의해 개발됐다. 달걀껍질처럼 하나의 세포를 감싸서 보존했다가 원하는 시기에 분해할 수 있어 세포기반 바이오센서·세포 치료제·바이오촉매 등에 활용될 것으로 기대된다. 우리 학교 화학과 최인성·이영훈 교수는 호주 멜버른대학교 화학공학과 프랭크 카루소(Frank Caruso) 교수와 공동으로 나노미터 스케일의 필름으로 단일 세포를 코팅해 세포의 생존을 유지하다가 원하는 시간에 분해할 수 있는 기술을 개발했다. 연구결과는 화학분야 세계적 학술지 ‘앙게반테 케미(Angewandte Chemie International Edition) 11월 10일자 속표지(frontispiece) 논문으로 소개됐다. 세포피포화(細胞被包化)는 세포의 생존을 최대한 유지하면서 각각의 세포를 단단한 캡슐로 포획하는 기술이다. 세포를 기반으로 한 응용 분야에서 당면한 문제인 세포 안정도 유지와 세포분열제어를 위해 중요성이 높아지고 있다. 기존 세포피포화 방법은 유기박막 혹은 유기박막을 주형으로 만들어진 무기물 캡슐을 이용했다. 이들은 세포표면에 단단하게 형성됐으나 잘 분해되지 않아 활용하기가 어려웠다. 연구팀은 효모세포를 가지고 탄닌산 수용액과 철이온 수용액을 섞어 세포를 하나씩 금속-폴리페놀박막으로 감싸는 데 세계 최초로 성공했다. 탄닌산은 참나무껍질이나 포도껍질에서 추출한 천연물질로 세포친화도가 높아 철이온과 만나면 10초 이내로 금속-폴리페놀박막이 만들어진다. 이 박막으로 피포화된 세포들은 높은 생존율을 보였으며 박막 형성시간이 짧고 간단해 효율적으로 많은 양의 피포화 세포를 얻을 수 있었다. 이와 함께 연구팀은 금속-폴리페놀박막이 중성 pH(수소이온지수)에서는 안정하지만 약한 산성조건에서 빠르게 분해되는 특성을 이용해 원하는 시간에 세포를 피포화 전 상태로 복구해 세포분열을 조절할 수 있음을 밝혔다. 달걀껍질처럼 외부환경으로부터 내부 세포를 보호해주는 금속-폴리페놀박막은 △세포에 손상을 줄 수 있는 분해효소 △장시간의 자외선 처리 △은나노입자에 대한 방어기작을 가져 세포가 극한의 외부환경에 노출되더라도 높은 세포 생존도를 유지하는 결과를 나타냈다. 이영훈 교수는 이번 연구에 대해 “이 기술을 통해 피포화과정에서의 세포생존도를 유지함은 물론 극한의 외부환경에 대항하여 세포를 보호할 수 있다”며 “나아가 응답형 분해기작으로 원하는 때에 피포화된 세포의 분열시기를 조절할 수 있는 차세대 세포피포화기술”이라고 말했다. 최인성 교수는 “세포피포화기술은 아직 걸음마 단계지만 기술이 성숙함에 따라 세포조작기술의 응용가능성이 현실화될 것”이라며 “세포기반 응용분야에서 현실적으로 당면한 문제들을 해결할 맞춤형 대안이 될 것”이라고 덧붙였다. 미래창조과학부와 한국연구재단이 추진하는 리더연구자지원사업과 글로벌연구실지원사업의 지원으로 수행된 이번 연구는 KAIST와 호주 멜버른대학교 국제 공동 교수진의 지도아래 KAIST 화학과 박지훈·김경환 석사과정 학생이 주도했다. 그림 1. 앙게반테 케미 속표지 배경 : 금속-폴리페놀박막(붉은색으로 염색)이 형성된 효모세포가 생존을 유지하고 있음(초록색으로 염색-생존도를 가지고 효소활성을 나타냄)을 보여줌. 앞쪽그림 : 각 피포화 단계의 효모세포 왼쪽아래 : 세포는 피포화하기전 상태, 붉은색 화살표를 따라가면 보라색 금속-폴리페놀박막이 형성되어 보라색으로 나타나는 효모세포, 초록색 화살표를 따라가면 약 산성 pH에서 금속-폴리페놀박막이 표면에서 분해되는 것을 형상화했다. 그림 2. 금속-폴리페놀박막을 이용한 세포피포화(細胞被包化) 모식도 (위)피포화하기전 효모세포 (중간) 금속-폴리페놀 나노캡슐(Tannic Acid-Fe(III) Nanoshell)으로 피포화된 효모세포-피포화된 효모세포는 세포분열이 pH에 따라 조절(Cell-Division Control)되고, UV-C, 분해효소와 은나노입자에 대한 저항성을 가진다. (아래) 원하는 시간에 pH 조절로 금속-폴리페놀박막이 분해되는 것을 형상화
2014.11.18
조회수 15034
금 알갱이로 항암백신을 만들다
- 앙게반테 케미지 발표,“백신 위치를 추적할 수 있으면서 효능도 탁월한 나노항암백신 개발” 매우 작은 금 알갱이(금 나노입자, 지름이 10억분의 1미터)를 이용해 위치를 추적할 수 있으면서 암을 예방‧치료할 수 있는 효능도 탁월한 항암백신기술이 국내 연구진에 의해 개발되었다. 우리 학교 전상용 교수(42세)가 주도하고 이인현 박사(제1저자) 등이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 △선도연구센터 △신기술융합형성장동력 △바이오의료기술개발 사업의 지원으로 수행되었고, 연구결과는 독일화학회가 발간하는 화학분야의 권위 있는 학술지인 ‘앙게반테 케미(Angewandte Chemie)’지 7월호(7월 29일)에 게재되었다. 특히 이번 성과는 상위 5%이내 논문에만 수여하는 VIP(Very Important Paper)로 선정되는 영예를 얻었다. (논문명 : Imageable Antigen-Presenting Gold Nanoparticle Vaccines for Effective Cancer Immunotherapy In Vivo) 암은 현대의학이 정복하지 못한 대표적인 난치성 질환 중 하나이다. 전 세계적으로 연간 3천만 명의 암 환자가 발생하고 있고, 특히 우리나라에서는 매년 사망원인 1위를 차지하고 있다. 암을 효과적으로 치료하기 위해서 부작용(정상세포까지 죽이는 세포독성)을 최소화하면서도 효과를 극대화할 수 있는 면역치료법(백신)이 전 세계적으로 각광받고 있다. 지금까지 백신은 독감에서부터 난치성 질환인 백혈병에 이르기까지 인류의 다양한 질병을 예방‧치료하는데 활용되어왔다. 그러나 기존 대부분의 항암백신은 몸 밖에서 환자의 암 조직 파편 등으로 사람의 면역세포를 활성화한 후, 다시 그 면역세포를 몸속에 넣어 항암 면역반응을 유도함으로써 암을 치료하는 기술이다. 이렇게 하면 여러 단계의 백신 제조과정을 거치게 되고, 치료비도 비싼 것이 단점이다. 또한 몸속에 주입한 백신이 원하는 곳에 얼마나 도달했는지 추적할 수 없어, 치료효과를 예측하고 가늠할 수 없었다. 전상용 교수 연구팀은 기존 항암백신과는 달리 일반적인 근육주사로 면역세포들이 많이 모여 있는 국소 림프절을 통해 금 나노입자 백신을 효과적으로 전달하여, 항체를 생산하고 항암 면역반응을 유도함으로써 암을 예방‧치료하는데 이용할 수 있는 핵심원천기술을 개발하였다. 또한 병원에서 진단용으로 많이 사용하는 엑스레이 등의 영상기기를 이용해 주입한 금 나노입자 백신을 추적하여, 백신이 목표하는 곳에 제대로 도달하였는지를 직접 확인할 수 있어 향후 개발될 새로운 백신의 효과를 예측할 수 있다는 점이 큰 특징이다. 전 교수팀은 우선 금 나노입자 표면에 모델 암 항원(RFP 단백질)을 화학적으로 결합한 후, 추가적으로 면역보조제(DNA 단편)도 결합하여 금 나노백신 원천기술을 개발하였다. 이 금 나노백신을 몸에 넣으면 국소 림프절로 선택적으로 이동하여 해당 암에 특이적인 항체 생산을 촉진하고, 암세포를 제거할 수 있는 항암 면역세포도 활성화시켜 우수한 항암 효능을 나타낸다. 또한 연구팀은 동물실험을 통해 금 나노백신이 암을 예방할 뿐만 아니라, 이미 존재하는 암의 성장과 전이도 효과적으로 막을 수 있음을 증명하였다. 전상용 교수는 “이번 연구는 금 나노입자를 이용하면 몸속에 투여한 백신을 쉽게 추적할 수 있고, 기존의 백신에 비해 복잡한 과정 없이도 쉽게 면역세포를 활성화할 수 있어 효과적으로 암을 치료할 수 있는 가능성을 보였다. 특히 이 원천 기반기술은 각종 암뿐만 아니라 현재 임상적으로 치료가 어려운 다양한 바이러스성 질환에도 폭넓게 이용될 수 있을 것으로 기대된다”고 연구의의를 밝혔다.
2012.08.16
조회수 15119
DNA를 이용한 2나노급 반도체 원천기술 개발
- 그래핀 위에 수나노급 극미세 패턴용 DNA를 정렬해 조립성공 -- “플렉서블한 2나노미터 급의 초미세 나노패턴 길 열어”- 반도체 회로의 초미세 제품개발 경쟁이 치열하다. 최첨단 반도체 기술로도 10나노미터 이하의 반도체 제작은 불가능하다고 알려져 있어 신물질을 이용한 차세대 반도체는 국가경쟁력 강화를 위해 반드시 풀어내야 할 숙제다. 우리 학교 신소재공학과 김상욱 교수 연구팀이 DNA를 그래핀 위에서 배열시키는 기술을 활용해 초미세 반도체 회로를 만들 수 있는 원천기술을 개발하는 데 성공했다고 6일 밝혔다. 김 교수팀의 신기술 개발로 기존에 사용되고 있는 물리적 방식의 최첨단기술로도 불가능하다고 여겨졌던 2나노미터급의 선폭을 갖는 반도체가 개발될 것으로 기대된다. 2나노 반도체가 개발되면 우표 크기의 메모리 반도체에 고화질 영화 10000편을 저장하는 등 현재 상용화중인 20나노급 반도체보다 약 100배의 용량을 담을 수 있게 된다. 최근 광식각 패턴기술을 적용해오던 반도체 회로의 크기가 물리적 한계에 도달해 생체소재를 이용해 초미세 회로을 제작하는 연구들이 전 세계적으로 관심을 모으고 있다. 이중 DNA의 경우 2나노미터까지 정교한 미세패턴을 구현가능다고 알려져 있어 차세대 신소재로 각광받고 있다. 연구팀은 ‘DNA 사슬접기‘라고 불리는 최첨단 나노 구조제작 기술을 이용하면 금속나노입자나 또는 탄소나노튜브를 2나노미터까지 정밀하게 조절할 수 있는 점에 착안했다. 그러나 이 기술은 실리카나 운모 등 일부 제한된 특정 기판위에서만 패턴이 형성돼 반도체칩에는 적용이 불가능했다. 김상욱 교수팀은 다른 물질과 잘 달라붙지 않는 그래핀을 화학적으로 개질해 표면에 다양한 물질을 선택적으로 흡착하도록 만들었다. 개질된 그래핀은 원자수준으로 매우 평탄하면서도 기계적으로 잘 휘거나 변형되는 그래핀의 장점을 갖기 때문에 이 위에 DNA 사슬접기를 패턴화하면 기존에는 불가능했던 잘 휘거나 접을 수 있는 형태의 DNA 회로구성이 가능할 것으로 기대된다. 김상욱 교수는 “반도체업계의 지각변동이 계속되는 가운데 실리콘기반 반도체 기술은 한계에 이르렀다”며 “앞으로 신물질 차세대 반도체 개발에 커다란 파급효과를 불러일으킬 것”이라고 말했다. 이어 김 교수는 “다양한 기능을 발휘하는 그래핀 소재 위에 2나노급의 초미세 패턴을 구현할 수 있는 DNA 사슬접기를 배치시키는 기술은 기계적으로 유연한 나노반도체나 바이오센서 등 다양한 분야에 원천기술로 활용될 것”이라고 덧붙였다. 한편, 이번 연구결과는 화학분야의 세계 최고 권위의 학술지인 "앙게반테 케미(Angewandte Chemie International Edition)" 1월호에 표지논문으로 발표됐으며 관련 기술은 국내외 특허출원을 마쳤다. <용어설명> ○ 그래핀: 육각의 벌집구조로 결합한 탄소가 연속적으로 연결되어 탄소 원자 한 층의 두께를 가진 2차원의 평판 모양을 이룬 탄소소재 ○ 광식각 기술 : 빛에 민감한 고분자를 이용하여 미세한 패턴을 형성하는 반도체용 미세형상 제작 기술 ○ DNA 사슬접기 : 긴 단일 DNA 사슬 하나와 정교하게 설계된 짧은 단일 DNA 사슬들이 염기 서열 규칙에 따라 이중나선 DNA 구조로 접히면서 다양한 모양의 나노구조물을 형성하는 생체소재 ☞ 잘 알려진 바와 같이 DNA는 염기서열에 따라 규칙적으로 결합되어 유전정보를 저장하는 생체소재이며, 2006년도에 최초로 개발된 DNA Origami (DNA 사슬접기)는 긴 DNA 사슬을 마치 뜨개질하듯 정밀하게 설계된 짧은 DNA 사슬들과 결합시켜 다양한 형태의 나노 구조물을 만드는 최첨단 나노기술이다. ○ 탄소나노튜브: 육각의 벌집구조로 결합한 탄소가 수 nm(나노미터) 크기의 직경을 갖는 튜브를 형성한 탄소소재 ○ 나노 기술 : 1나노미터는 10억분의 1m다. 즉 사람 머리카락의 1만분의 1 굵기로 반도체 회로를 그려넣는 초미세 가공기술이다. 반도체는 회로선 폭이 가늘어질수록 원가가 절감되고 에너지 효율도 높아진다 [그림] DNA들이 결합하면서 DNA 오리가미를 형성과 함께 그래핀 산화물 표면과 질소도핑/환원 그래핀 산화물 표면에 흡착되는 모습.
2012.02.06
조회수 14636
스마트폰 질병진단 원천기술 개발
- 신개념의 생체분자 검출기술로 휴대용 체외진단 분야에 획기적 원천기술- 화학분야 세계적 학술지 ‘앙게반테 케미’ 1월호(16일자) 표지논문 선정 스마트폰으로도 질병을 진단하는 원천기술이 국내 연구진에 의해 개발됐다. 우리 학교 생명화학공학과 박현규 교수 연구팀이 스마트폰을 비롯한 휴대용 개인기기에 널리 이용되고 있는 정전기방식의 터치스크린을 이용해 생체분자를 검출하는 원천기술을 세계 최초로 개발하는 데 성공했다. 앞으로 병원에 가지 않고도 스마트폰을 가지고 간단한 질병을 진단하는 시대가 열릴 것으로 기대된다. 최근 스마트폰과 같은 휴대용 전자기기에 적용되는 정전기방식의 터치스크린은 일반적으로 손가락의 접촉을 통해 발생하는 터치스크린 표면의 정전용량 변화를 감지해 작업을 수행하도록 설계돼 있다. 연구팀은 DNA가 자체의 정전용량을 가지고 있으며, 농도에 따라 정전용량이 변화한다는 사실에 착안해 정전기방식의 터치스크린을 생체분자 검출에 활용할 수 있을 것이라고 예상했다. 이를 규명하기 위해 연구팀은 대표적인 생체분자인 DNA를 터치스크린 위에 가하고 정전용량 변화량을 감지했다. 실험결과 터치스크린을 이용해 DNA의 유무와 농도를 정확하게 검출할 수 있었다.이 결과에 따라 DNA뿐만 아니라 세포, 단백질, 핵산, 등 대부분의 생체분자가 정전용량을 갖고 있기 때문에 다양한 생체물질의 검출에도 활용될 수 있다는 가능성을 제시했다는 게 이 기술의 큰 특징이다. 박현규 교수는 “모바일 기기 등에 입력장치로만 이용해 왔던 터치스크린으로 생체 분자 등의 분석에 이용할 수 있음을 세계 최초로 입증한 결과”라며 “이 원천기술을 이용해 앞으로 터치스크린 기반의 스마트폰 또는 태블릿 PC 등을 이용해 개인이 질병을 진단하는 시대가 올 것”이라고 말했다. 이와 함께 논문의 제1저자인 원병연 연구조교수는 “현재는 생체분자의 유무 또는 농도만 측정 가능한 단계이며, 앞으로 특정 생체분자를 선택적으로 검출할 수 있는 기술을 개발해 가까운 시일 내에 상용화에 주력할 것”이라고 덧붙였다. 한편, 이번 연구는 지식경제부가 시행하는 ‘산업원천기술개발사업’으로 수행됐으며, 연구의 중요성을 인정받아 화학 분야의 세계적 학술지 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 1월호(16일자) 표지논문으로 선정됐다. 그림1. 터치스크린을 이용한 생체 분자 검출 시스템 모식도 (앙게반테 케미 논문 표지). 휴대용 모바일 기기의 입력장치인 터치스크린 위에서 세포, 단백실, 핵산, 소분자 등의 생체 분자를 검출할 수 있다. 그림2. 정전용량 터치스크린 방식의 한가지인 surface capacitive touchscreen을 이용한 시스템 모식도. 여러 지점을 동시에 접촉했을 때 접촉점의 시료 농도에 따라 터치 신호의 위치가 변하는 원리를 이용한 방법. 동시에 두 개의 미지 시료의 농도를 측정할 수 있다. 그림3. 정전용량 터치스크린 방식의 한가지인 projected capacitive touchscreen을 이용한 시스템 모식도. 현재 스마트폰 등에 쓰이는 터치스크린 방식으로서, 터치스크린 표면 내부에 여러 라인의 전극이 패턴되어 있어, 각 전극의 정전용량 변화를 각각 측정함으로써 여러 접촉 시료의 농도를 동시에 검출할 수 있다.
2012.01.16
조회수 18354
스마트 나노센서를 이용한 신약 효능 분석기술 개발
- 사람 몸속에서의 효능을 실시간 모니터링 할 수 있어 - - 나노-바이오-영상-분자화학 등이 융합 - KAIST가 신약 효능을 분석하는 새로운 기법의 기술을 개발했다. 우리 학교 생명과학과 이상규 박사가 생체나노입자를 사람세포에 적용해 살아있는 세포에서 신약의 효능을 실시간으로 모니터링 하는 기술을 개발했다. 이 기술을 이용하면 사람 몸속에서도 신약의 효능을 보다 정확하게 파악할 수 있을 것으로 기대된다. 지금까지는 신약 후보물질을 몸속으로 투여하고 세포를 추출한 후 효과를 분석했다. 그러나 세포를 용해한 후 세포의 기능이 정지된 상태에서 분석함으로써 예상치 못했던 부작용으로 대부분의 후보물질이 탈락하게 된다. 이 때문에 엄청난 비용과 노력을 들이더라도 신약개발을 성공하기가 매우 어려웠다. 연구팀은 수많은 나노입자가 서로 연결되면 커다란 복합체를 형성할 수 있다는 아이디어에 착안했다. 나노입자를 세포 내부에 적용해 본 결과 실제로 살아있는 세포 안에서 나노입자 간의 결합을 통해 복합체가 빠르게 형성되는 것을 확인했다. 형성된 복합체는 나노센서 역할을 하게 돼 약물이 세포 내에 투여되는 과정에서 약물 타겟과의 결합을 실시간으로 관찰할 수 있었다. 연구팀은 이 나노센서 기술을 ‘스마트한 눈(InCell SMART-i)’이라고 명명했다. 살아있는 세포 안에서 일어나는 신약의 효능작용을 한 눈에 볼 수 있기 때문이다. 이상규 박사는 “이 기술은 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술로 신약개발에 효과적으로 적용 가능한 매우 중요한 기술”이라며 “신약물질의 직접 개발을 원하는 기업으로 기술이 이전돼 상용화가 멀지 않았다”고 말했다. 한편, KAIST 생명과학과 이상규 박사와 리온즈신약연구소(주) 김태국 박사가 개발한 이 기술은 최근 세계적인 화학지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 지 9월호에 주목받는 논문(Hot Paper)으로 선정됐다. 그림1. 사람 세포 내에 도입된 스마트 나노 센서가 약물과 약물 타겟 간의 결합에 따라 세포 내에 스팟(같은 나노클러스터)을 형성하고 이를 실시간으로 탐지해 낼 수 있는 원천기술의 모식도 그림2. 약물타겟 A 또는 B가 발현되어 있는 사람세포에 약물을 처리하면 세포 내에서 약물과 약물타겟이 서서히 결합되면서 스마트 나노센서에 의해 이러한 스팟 (같은 나노클러스터) 형태로 실시간으로 센싱-감지된다. 따라서 살아 있는 사람세포 안에서 신약의 효능작용을 실시간으로 마치 비디오를 보는 것처럼 라이브로 모니터링 할 수 있는 나노-바이오-영상-분자화학 등이 융합된 차세대 원천기술이다.
2011.09.05
조회수 16863
‘인공포자’ 형성 기술 개발
- “세포 안정도 증가해 세포기반 바이오센서 개발의 핵심 기술이 될 것”- 화학분야 저명 학술지인 ‘미국 화학회지’ 3월호 표지논문 선정 질병이나 병원균 등 위험물질을 진단하는 데 획기적인 ‘바이오센서’ 개발을 위한 핵심기술이 국내 연구진에 의해 개발됐다. 우리학교 화학과 최인성 교수 연구팀이 살아있는 세포를 선택적으로 코팅해 ‘인공포자’를 형성할 수 있는 원천기술을 개발했다. 생물학 및 공학계에서는 차세대 바이오센서인 세포기반센서 개발을 위해 센서 기판상에서 세포를 오랫동안 분열 없이 살아있도록 하는 것이 오랜 난제였다. 세포를 몸 밖으로 빼내면 번식하거나 쉽게 죽기 때문이다. 최 교수 연구팀은 혹독한 환경에서 생명체가 번식 없이 버텨나가는 형태인 포자를 모방해, 껍데기가 없는 세포에 화학적으로 껍데기를 만들어 자연포자와 같은 기능을 하는 인공포자를 형성할 수 있는 원천기술을 개발했다. 이번 연구결과에 의하면, 홍합의 접착력에 기여하는 단백질을 모방한 화학 물질을 이용해 세포인 효모에 인공껍데기를 형성하면 물리적・생물학적 안정도가 증가했다. 아울러 껍데기의 두께를 조절함으로써 효모의 번식 속도도 조절할 수 있었다. 최인성 교수는 “연구팀에 의해 ‘인공포자’로 이름 붙여진 이 구조를 통해 세포의 안정도를 획기적으로 증가시킬 수 있으며, 원하는 기능을 손쉽게 세포에 도입할 수 있다”며 “이 기술은 단일세포기반 바이오센서 개발의 핵심 기술이 될 것이다”라고 말했다. 연구팀은 규조류의 구조를 이용해 효모에 유리껍데기를 입혔을 때 자연계에 존재하는 효모 대비 생존율이 세배 이상 증가한다는 연구 결과를 독일에서 발간되는 저명학술지인 ‘앙게반테 케미(Angewante Chemie)’지에 지난해 10월 발표하기도 했다. 양성호 박사를 주저자로 하고 KAIST 화학과 이해신 교수와 서울대학교 화학과 정택동 교수 연구팀과 공동으로 수행한 이번 연구는 화학분야 저명학술지인 ‘미국화학회지(Journal of the American Chemical Society)’ 3월 9일자 표지논문으로 선정됐다.
2011.03.17
조회수 14131
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2