본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%95%A1%EC%B2%B4%EA%B8%88%EC%86%8D
최신순
조회순
체온으로 부드러워지는 전자잉크 최초 개발
차세대 웨어러블 및 임플란터블 기기, 의료기기, 로보틱스 등 다양한 분야에 활용될 체온에 따라 부드럽게 변할 수 있는 전자잉크를 최초로 개발하였다. 우리 대학은 전기및전자공학부 정재웅 교수 연구팀이 신소재공학과 스티브박 교수 연구팀과 공동연구를 통해 작은 노즐을 통한 직접 잉크 쓰기 방식으로 고해상도 프린팅이 가능하고 체온에 의해 부드러워져 인체 친화적 바이오 전자소자 구현을 가능하게 하는 액체금속 기반 전자잉크를 최초로 개발했다고 6일 밝혔다. 최근 웨어러블 및 임플란터블 생체 소자와 소프트 로보틱스 분야에서는 부드러운 사람 피부나 조직에 적용돼 건강 상태를 모니터링하고 질환을 치료하는 기술이 활발히 연구되고 있다. 기존 의료기기 예를 들어보면, 딱딱한 형태의 의료기기인 경우 부드러운 피부와의 강성도 차이로 인해 피부 부착 시 불편함을 야기하거나 조직 삽입 시 염증 반응을 유발할 수 있다. 반면, 피부처럼 부드러운 유연한 의료기기는 피부나 조직에 적용 시 우리 몸의 일부처럼 이질감 없이 사용될 수 있지만, 부드러운 특성으로 인해 정교한 핸들링을 어렵게 한다. 연구팀은 이러한 고정된 강성을 갖는 기존 바이오 전자기기의 한계를 극복하기 위해, 상온에서는 단단하여 손쉬운 핸들링으로 인체 적용을 용이하게 하고, 피부 부착 또는 조직 내 이식 후에는 체온에 의해 부드럽게 변하여 조직의 일부처럼 함께 움직일 수 있는 전자 회로 제작을 가능하게 하는, 고해상도 패터닝이 가능한 액체금속 갈륨 기반 전자잉크를 개발했다. 이 전자 잉크의 핵심 소재인 갈륨은 금속임에도 불구하고 미온(29.76 ℃)에서 녹는 점을 가져 쉽게 고체와 액체 간의 상태 변화가 가능하고 뛰어난 전기전도성과 무독성을 가진다. 연구팀은 또한 기존 갈륨의 높은 표면장력과 낮은 점도 문제를 해결함으로써, 고해상도 프린팅이 가능한 전자잉크를 구현했다. 개발된 잉크는 상용회로도선 정도의 딱딱한 상태와 피부조직처럼 부드러운 상태 간의 뛰어난 가변 강성률, 빠른 강성 변화, 높은 열전도율, 그리고 우수한 전기전도성을 가진다. 이 전자잉크는 3D 프린팅을 활용해 사용자 맞춤형 전자소자 제작도 가능하게 한다. 연구팀은 이 기술을 통해 초박막 광 혈류측정 전자 피부센서와 무선 광전자 임플란트 장치를 제작했다. 이 기기들은 상온(25℃)에서는 딱딱하여 다루기 쉬운 반면, 체온(~36.7℃)에 노출되면 부드럽게 변환돼 피부나 조직에 적용 시 기계적 스트레스를 주지 않고 조직 변형에 순응하며 안정적으로 동작하는 게 가능하다. 사용 후 인체에서 제거 시 다시 딱딱한 형태로 변형될 수 있어 재사용을 용이하게 한다. 위와 같은 특성은 다양한 웨어러블 및 임플란터블 장치에 폭넓게 활용될 수 있을 것으로 기대된다. 정재웅 교수는 "체온에 반응해 강성을 변환할 수 있고 고해상도 프린팅이 가능한 전자잉크는 기계적 특성 변환을 필요로 하는 다목적 전자기기, 센서, 로봇 기술뿐만 아니라 의료 기기 분야에서 고정된 형태를 갖는 기존 전자기기의 한계를 극복해 다양한 새로운 가능성을 열 수 있을 것ˮ이라고 말했다. 우리 대학 신소재공학부 권도아 학사과정과 전기및전자공학부 이시목 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 2월 28일 字에 게재됐다. (논문명 : Body-temperature Softening Electronic Ink for Additive Manufacturing of Transformative Bioelectronics via Direct Writing) 한편 이번 연구는 과학기술정보통신부에서 추진하는 한국연구재단 전자약 기술개발사업, 기초연구실 지원사업, 중견연구자 지원사업, 한국전자통신연구원 개방형융합선행연구의 지원을 받아 수행됐다.
2024.03.06
조회수 4766
150% 쭉쭉 늘어나는 전자 섬유 개발
전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다. 우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다. 전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로미터이기 때문에, 기존에 이용된 딥-코팅(dip-coating)과 같은 단순한 방법으로 실에 코팅하는 것이 불가능하다. 연구진은 액체금속 입자가 높은 밀도로 실 위에 전달될 수 있고, 블레이드와 기판 사이에서 현탁액의 조성을 실시간으로 바꾸면서 화학적 변성을 통해 액체금속 입자를 실과 접착시킬 수 있는 새로운 방법인 현탁액 전단(suspension shearing) 방법을 통해 이를 해결했다. 추가로 기계적 안정성이 우수한 탄소나노튜브(CNT)가 포함된 액체금속 입자를 한층 더 코팅하는 방식으로, 액체금속 복합체의 기계적 안정성도 확보할 수 있었다. 제작된 신축성 전자 섬유는 추가적인 공정이 필요 없이 우수한 초기전도성을 보였고(2.2x10^6 S/m), 기존의 고체 금속 전도체 기반 섬유들과는 다르게 150% 늘려도 전기저항 변화가 거의 없다. 기계적 안정성도 우수해 반복되는 변형 실험에도 전기적 성질을 유지할 수 있었고, 다양한 전자 부품들과 쉽게 통합될 수 있다. 연구팀은 이를 이용해 실제 상용화된 옷에 다양한 전자회로를 구현했다. 나아가서 연구팀은 액체금속 복합체를 코팅하는 방법이 다양한 실에 호환 가능하고, 재료의 생친화성이 우수하기 때문에, 이를 이용해 신경과학 연구에 사용할 수 있는 섬유형 바이오 전자 섬유를 구현했다. 연구팀은 제안된 코팅 방법을 이용해 기계적 변형에 영향을 받지 않는 뇌 활동 전극, 신경 자극 전극, 다기능성 옵토지네틱 프로브를 제작해 넓은 범용성과 높은 공정 신뢰성을 갖는다는 것을 보였다. 우리 대학 이건희 박사, 이도훈 박사과정, 전우진 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)' 온라인 판에 7월 13일자 출판됐다. (논문명: Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics) 스티브박 교수는 "옷에 다양한 전자 공학적인 기능을 웨어러블 형태로 구현하는 가능성을 보여준 연구로 최근에 각광받고 있는 환자 편의성을 높인 웨어러블 헬스케어 소자나 최소침습형 임플란터블 전자소자 개발의 새로운 방향성을 제시한 의미있는 결과ˮ 라고 말했다. 한편 이번 연구는 한국연구재단, KAIST의 지원을 받아 수행됐다. 이건희 박사는 포스코청압재단의 지원을 받고 있다.
2023.07.25
조회수 5997
기존 반도체 전자소자 공정과 호환되는 신축성 전도체 포토패터닝 방법 개발
우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 기존의 반도체공정을 이용하여 고해상도로 패터닝할 수 있는 초기전도성이 확보된 액체금속 기반의 신축성 전도체 필름 제작 방법을 개발했다고 밝혔다. 신축성 전도체는 최근 각광받고 있는 사용자 친화형 웨어러블 소자, 신축성 디스플레이, 소프트 로봇의 전자 피부 개발에 핵심 요소로 여겨져 활발하게 연구가 진행되어왔다. 최근 신축성 전도체 중 하나로 높은 전기전도성과 신축성, 낮은 기계적 강성을 동시에 만족하고 안정성도 어느정도 확보가 된 갈륨기반의 액체금속 입자가 전도성 필러로 각광받고 있다. 하지만 액체금속 입자의 경우에는 기계적 불안정성으로 인하여 제한된 형태의 용액공정으로만 사용이 가능했기 때문에, 기존의 금속을 전자소자에 통합하는 방법인 반도체 공정을 이용하는 것이 어려웠다. 이런 이유로, 액체금속 입자 기반의 전자소자는 지금까지 연구실 수준에서 노즐 프린팅, 스크린 프린팅과 같은 제한된 방법으로 제작되는 것에 그쳤다. 나아가서 액체금속 입자는 초기에는 산화막의 존재로 인하여 전기전도성이 없기 때문에, 추가적인 후처리를 통해 전기전도성을 확보해야했다. 이런 추가적인 공정은 이 새로운 전자재료의 범용성 높은 사용을 막는 큰 장애물이었다. 이런 기존의 문제를 극복하여, 연구팀은 기존의 반도체 공정 (포토리소그래피 기반의 패터닝, 에칭을 이용한 다층구조 통합)과 호환이 가능한 안정적인 형태의 액체금속입자 필름을 코팅하는 방법을 제안하였다. 연구진은 먼저 안정적인 필름을 증착하기 위해 고분자로 쌓인 액체금속 마이크로입자 현탁액을 제작하였다. 용액전단 방법을 이용하여 이 현탁액을 미리 반도체공정을 이용하여 패터닝이 되어있는 기판 위에 대면적으로 균일하게 코팅을 할 수 있었다. 특히 현탁액을 물 기반으로 만들어 코팅 과정에서 포토레지스트 (Photoresist)에 손상을 가하지 않게 하여, 정밀한 패터닝이 가능하게 했다. 포토레지스트 위에 코팅된 액체금속 입자필름은 유기용매를 이용한 lift-off를 통해 최소 10um의 높은 해상도로 패터닝이 가능했다. 특히, 연구진은 이 과정에서 극성유기용매인 DMSO (dimethyl sulfoxide)를 사용하여, 액체금속과 고분자간의 상분리를 유도하였다. 이 과정에서 액체금속 입자 표면의 고분자와 산화막이 제거되어 다른 추가적인 공정없이 초기 전도성을 갖는 도선을 기판 위에 패터닝할 수 있었다. (그림1) 이 공정을 이용해 제작된 신축성 전도체는 기존의 고체 금속 전도체기반 섬유들과는 다르게 50%의 인장이 가해져도 전기저항변화가 거의 없어 이상적인 신축성 도선의 성질을 보였다. 또, 기계적, 화학적으로 안정적이어서 다양한 기판에 전이 (transfer) 공정이 가능하였e다. 액체금속 입자가 패턴된 기판을 마스크 얼라이너 (Mask aligner) 장비 및 에셔 (Asher) 장비를 이용해 고해상도 멀티레이어 회로를 제작할 수 있었다. 연구진은 이 기술을 이용하여 (그림 2)와 같이 신축성 디스플레이, 유연 로봇에 사용할 수 있는 고해상도 전자 피부 등의 구현이 가능함을 보여주었다. 우리 대학 이건희 박사, 김현지 석사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `머터리얼즈 투데이 (Materials Today)' 온라인 버전에 7월 14일 출판됐다. (논문명: Large-area photo-patterning of initially conductive EGaIn particle-assembled film for soft electronics) 연구팀은 "새로운 전자재료를 기존의 표준공정이라할 수 있는 반도체공정에 적용하여 차세대 전자소자의 양산화 가능성을 보여준 의미있는 연구ˮ라고 말했다. 또, "최근에 각광받고 있는 신축성 전도체인 액체금속의 고해상도 패터닝 및 초기전도성을 얻을 수 있는 방법을 제시하여 유연 전자소자 연구의 새로운 방향성을 제시할 수 있을 것으로 기대된다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다. 이건희 박사는 포스코청암재단의 지원을 받고 있다.
2023.07.17
조회수 4247
형태 변형 및 유지가 가능한 3차원 디스플레이 기술 개발
우리 대학 전기및전자공학부 정재웅 교수와 신소재공학과 강지형 교수 공동 연구팀이 단단한 평판 디스플레이를 비롯하여 유연/신축성 디스플레이를 모두 아우를 수 있는 새로운 유형의 3차원 디스플레이 폼팩터를 개발했다고 밝혔다. 디스플레이 폼팩터 혁신은 사용자들의 이동성 증대 및 기기 간의 기술 융합에 따라 다양한 웨어러블 모바일 기기, 차량 분야에 접목되며 중요하게 대두되고 있다. 현재 디스플레이 산업 분야에서는 단단한 평판 디스플레이를 넘어서 차세대 유연/신축성 디스플레이로 나아가고 있다. 하지만 기존 디스플레이 폼팩터는 기판 소재의 고정된 기계적 물성으로 인해 특정 사용 목적으로만 활용 가능한 문제점을 보인다. 단단한 평판 디스플레이의 경우, 딱딱한 특성으로 인해 거치용이나 손에 쥐고 사용하기에 적합하지만 기계적 유동성이 떨어져 웨어러블 기기로 사용하기 어렵다. 이와 반대로 유연/신축성 디스플레이의 경우, 우수한 유연성으로 웨어러블 용도로 주로 사용되지만 기기 조작 측면에서 화면을 터치하면 쉽게 형태가 변형되어 사용자에게 불편함을 줄 수 있다. 이에 연구팀은 이러한 문제를 극복하고자 자유롭게 형태 변형 및 유지가 가능한 형상기억 플랫폼을 통해 다양한 사용 목적과 환경에 적합한 차세대 디스플레이를 개발했다. 개발된 디스플레이는 기계적 물성변환이 가능한 가변성 플랫폼에 신축성 발광기판을 집적한 것이다. 연구팀이 개발한 가변성 플랫폼은 온도 변화에 의해 물성변환이 가능한 액체금속(특정 지어, 필즈 메탈(Field’s metal)) 미세방울과 그래핀 나노 입자를 포함한 고분자 복합소재로 전기적/열적 자극에 의해 다양한 3차원 구조를 구현할 수 있는 핵심적인 요소이다. 제작된 가변성 플랫폼은 약 23.9배의 큰 폭의 강성도 변화를 보인다. 이에 따라 가변성 플랫폼은 전기적/열적 자극을 통해 우수한 형상기억 특성을 보이며 3차원 변형에 대하여 약 94% 이상의 형태 유지 능력과 93% 이상의 형태 회복 능력을 가진다. 또한 그래핀 나노 입자를 통해 전기전도성을 향상 시켜 전기적 자극에 의해 균일한 발열과 30초 이내의 빠른 상변화를 통해 효율적인 형태 변형 및 유지가 가능하다. 연구팀은 개발된 가변성 플랫폼을 신축성 전기발광 디스플레이와 결합해 다양한 입체 구조 구현이 가능한 3차원 디스플레이를 개발하였다. 더불어 해당 디스플레이 기술이 형태 변형이 가능한 스마트 아트 디스플레이, 다목적 가변형 웨어러블 디스플레이, 시각-촉각형(Visio-tactile) 차량용 디스플레이로 활용 가능함을 입증하였다. 이는 기존 디스플레이 폼팩터가 구현할 수 없는 3차원 형태 실현을 통해 혁신적 폼팩터를 제시하였다는 점에서 의미가 크다. 정재웅 교수는 “개발된 디스플레이 기술은 새로운 폼팩터 유형을 제시하여 디스플레이의 활용성을 높일 것이며, 다양한 전자소자에도 응용 가능하여 차세대 다목적 전자기기 개발의 발판이 될 것이다.”라고 밝혔다. 본 연구 결과는 전기및전자공학부 오수빈 박사과정 학생이 제1 저자로 참여한 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈 (Advanced Functional Materials)' 6월 12일 字 내부 뒤 표지 논문(Inside back cover paper)으로 게재됐다. (논문명 : 3D Shape-Morphing Display Enabled by Electrothermally Responsive, Stiffness-Tunable Liquid Metal Platform with Stretchable Electroluminescent Device). 이번 연구는 LG 디스플레이(주) 및 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2023.06.27
조회수 5058
세계 최고 수준 신축성과 전도성 가진 액체금속 입자로 신축성 인쇄 전자회로 기판 구현
우리 대학 신소재공학과 강지형 교수 연구팀이 고분자 속 전도성 액체금속 입자 네트워크 제조법을 개발하고, 이를 이용해 고무 특성을 갖는 신축성 인쇄 전자회로 기판을 구현했다고 14일 밝혔다. 최근 체내 삽입형 전자소자, 웨어러블 전자소자, 소프트 로보틱스 등에 관한 관심이 증가하면서 우수한 신축성 및 전기적 성질을 갖는 신축성 전자기기에 관한 다양한 연구가 진행됐다. 이러한 신축성 전자기기의 실현을 위해서는 고집적 전자기기 제작의 바탕이 되는 신축성 인쇄 회로 기판이 요구된다. 신축성 인쇄 회로 기판의 실현을 위해 기존에 형태가 변하지 않는 인쇄 회로 기판에 사용되는 구리와 같은 금속을 신축성 고분자 기판 위에 구불구불한 형태로 패터닝을 해 신축성 인쇄 회로 기판을 구현한 연구가 제시됐으나, 이렇게 구조 공학을 통해 만들어진 신축성 인쇄 회로 기판은 신축성이 제한적이고 전자 부품의 밀도가 줄어든다는 한계가 있다. 이러한 한계를 뛰어넘기 위해 자체적으로 늘어날 수 있고 전기전도성을 갖는 전도성 고분자, 금속 나노 물질–고분자 복합체 등이 제시됐으나 이들은 신축 과정에서 급격한 저항 변화를 보여 신축성 인쇄 회로 기판으로 사용되기 어렵다는 한계를 갖고 있다. 이러한 한계를 뛰어넘을 재료로 액체금속이 큰 관심을 받게 됐다. 액체금속은 상온에서 액체의 형태를 띠는 금속으로, 높은 전기전도성과 액체와 같은 자유로운 변형성으로 인해 신축성 전자소자에 사용하기에 적합한 재료로 평가를 받는다. 하지만 액체 상태가 갖는 외부 충격에 대한 불안정성으로 인해 실제 인쇄 회로 기판의 배선으로 사용하는 것에 한계가 있었다. 이를 극복하기 위해 많은 연구진이 액체금속을 마이크로 크기의 입자로 분쇄한 후 고분자와 섞어 우수한 기계적 성질을 부여하고자 했다. 하지만 이렇게 만들어진 액체금속 입자–고분자 복합체는 액체금속 입자 간의 반발력으로 인해 입자 간의 연결이 형성되지 않아 전기가 통하지 않는다는 문제점이 있다. 이러한 문제를 해결하기 위해 강지형 교수 연구팀은 초음파를 이용해 고분자 지지체 내에서 액체금속 입자들을 조립시켜 전도성 네트워크를 형성했고 신축과정에서 저항이 변하지 않는 전극을 개발했다. 이를 이용해 세계 최초로 구조 공학 없이 고무처럼 자유자재로 변형이 가능한(5배 이상 늘어나는) 신축성 인쇄 회로 기판에 응용될 수 있음을 보였다. 연구팀은 절연성 복합체에 초음파를 가하면 액체금속 입자/고분자/액체금속 입자 계면에 나노 크기의 액체금속 입자가 집중적으로 형성되고 전도성 입자 조립 네트워크가 만들어지는 것을 확인했다. 만들어진 네트워크는 기존 인쇄 회로 기판의 배선에 사용되는 구리와 비슷한 수준의 낮은 전기 저항을 갖고, 10배까지 늘렸을 때도 저항이 거의 변하지 않는다. 이와 더불어 복합체의 우수한 기계적 성질로 인해 외부의 물리적 충격에 대한 높은 저항성을 가진다. 특히, 이번 연구는 이전의 기계적 손상을 가해 전도성을 부여하는 방식과 달리 초음파에 기반한 비 파괴적 방식을 이용해 액체금속이 새어 나오는 문제를 해결했고, 이를 통해 다양한 전자 부품과의 높은 접합력을 얻을 수 있었다. 이러한 액체금속 입자 네트워크의 우수한 전기적/기계적 성질, 그리고 높은 접합력에 기반해 연구팀은 신축성 고분자 기판 위에 액체금속 입자 네트워크를 패터닝한 후, 전자 부품과 연결해 신축성 디스플레이 및 광 혈류 측정 센서를 제작함으로써 다양한 신축성 웨어러블 전자소자로의 응용 가능성을 제시했다. 연구팀은 나아가 포토레지스트, 하이드로겔, 자가 치유 고분자 등 다양한 고분자 속에서 동일한 방식으로 액체금속 입자 네트워크를 만듦으로써, 기존의 신축성 전극 연구들이 보여주지 못한 고해상도 광 패터닝, 체내 삽입형 전자소자에 활용되기 위한 낮은 임피던스를 갖는 전극, 자가 치유가 가능한 액체금속 기반 전극 등으로의 다양한 응용 가능성을 확인했다. 신소재공학과 이원범, 김현준 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 (Science)' 11월 11일 字 표지 논문으로 게재됐다. (논문명 : Universal Assembly of Liquid Metal Particles in Polymers Enables Elastic Printed Circuit Board). 강지형 교수는 "이번 연구를 통해 개발된 액체금속 입자 조립 네트워크 기반의 복합 전극은 웨어러블 및 생체 삽입형 전자장치 발전과 상용화에 크게 기여할 것ˮ이라고 말했다. 한편 이번 연구는 한국연구재단의 나노소재기술개발사업 미래기술연구실, 우수신진연구사업, ERC 웨어러블 플랫폼 소재기술 센터의 지원을 받아 수행됐다.
2022.11.14
조회수 8777
인간 피부의 압력 감지 능력을 뛰어넘는 로봇용 전자 피부 개발
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 인간 피부의 압력 감지 능력을 뛰어넘는 고감도 및 광범위 압력 측정이 가능한 로봇용 전자 피부를 개발했다고 27일 밝혔다. 연구팀이 개발한 전자 피부는 인간 피부에 비해 더 높은 민감도와 더 넓은 압력 측정 범위를 보여 최근 각광받는 로봇 산업, 헬스케어 산업, 증강 현실 등 다양한 분야에 폭넓게 적용될 수 있을 것으로 기대된다. 전기및전자공학부 이시목 박사과정과 변상혁 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머터리얼즈(Advanced Materials)' 온라인 버전에 10월 3일 字 출판됐다. (논문명 : Beyond the Human Touch Perception: Adaptive Robotic Skin Based on Gallium Microgranules for Pressure Sensory Augmentation) 인간 피부의 촉각 인지 능력을 모방하는 전자 피부는 원격으로 감도 및 외압 측정이 가능해 메타버스, 로봇 공학, 의료 기기 등 다양한 산업에 활용할 수 있다. 이로 인해 전자 피부가 많은 주목을 받고 있으며, 특히 전자 피부의 핵심 기술인 압력 센서의 민감도를 높이기 위해 많은 연구가 진행됐다. 하지만 개발된 고감도 압력 센서는 압력 감지 범위가 좁다는 단점을 가진다. 이를 해결하기 위해 광범위 압력 감지 센서가 등장했으나 기존 고감도 센서들과 비교해 현저히 낮은 민감도를 보였다. 이에 따라 사용자들은 상황과 목적에 맞춰 별개의 센서를 사용해야 했으며 이 과정에서 측정의 정확도가 떨어지고 번거롭다는 문제가 발생했다. 연구팀은 갈륨(Gallium)과 중합체(Polymer)를 합성해 온도에 따라 민감도와 압력 감지 범위를 변화시킬 수 있는 가변 강성 압력 센서를 개발했다. 개발된 압력 센서는 사용자가 상황과 목적에 맞게 고감도 감지 모드와 광범위 압력 감지 모드를 손쉽게 전환할 수 있도록 설계됐다. 압력 센서의 핵심 소재는 액체금속 중 하나인 갈륨으로, 금속임에도 불구하고 미온(29.76 ℃)에서 녹는점을 가져 쉽게 고체와 액체 간의 상태 변화가 가능하다. 연구팀은 내장된 갈륨의 상태에 따라 센서의 강성률이 변화하는 점에 기반해 온도에 따라 민감도와 감지 범위 변화가 가능한 압력 센서를 제작했다. 연구팀은 미세 유체기반 제작 방식을 통해 균일한 갈륨 미립자를 형성/활용해 압력 센서를 제작했고 이를 통해 센서 간 균일성 및 재현성을 극대화해 신뢰성 높은 대면적 전자 피부 제작을 가능하게 했다. 제작된 전자 피부는 인간 피부와 비교 시 97% 높은 민감도와 262.5% 넓은 압력 측정 범위를 보였다. 연구팀은 전자 피부의 가변성을 활용해 맥박 측정과 같이 높은 압력 민감도가 필요한 상황과 몸무게 측정과 같이 넓은 감지 범위가 필요한 상황 모두에 개발된 로봇 피부가 활용될 수 있음을 입증했다. 정재웅 교수는 "액체금속의 상변화를 활용한 이번 기술은 전자 피부를 넘어 상황과 목적에 맞게 전기/기계적 특성을 변환시킬 수 있는 다양한 다목적 전자기기, 센서, 로봇 기술의 개발에도 활용될 수 있을 것이다 ˮ라고 말했다. 한편 이번 연구는 과학기술정보통신부에서 추진하는 나노 및 소재 기술개발사업, ICT 핵심기술개발사업, 한국전자통신연구원 내부연구개발사업 개방형융합선행연구의 지원을 받아 수행됐다.
2022.10.27
조회수 6583
안정적인 형태의 액체금속 프린팅 기술 개발
우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 안정적인 형태의 액체금속을 고해상도로 프린팅할 수 있는 기술을 개발했다고 25일 밝혔다. 액체금속은 높은 전기전도성과 액체와 같은 변형성으로 인해 유연 및 신축성 전자소자에 다양하게 적용돼왔다. 하지만 액체 상태가 갖는 불안정성과 높은 표면장력으로 인해 직접적인 접촉을 요구하는 전극이나 고해상도를 요구하는 전자소자의 배선으로 사용하는 것에는 한계가 있었다. 이를 극복하기 위해 액체금속을 6~10㎛ (마이크로미터) 크기의 입자 형태로 분쇄해 안정적인 형태로 만들어 전자소자에 적용하는 연구가 진행돼왔지만, 이 경우에는 표면에 일어난 산화로 인해 기존의 높은 전기전도성을 상실한다는 단점이 존재했다. 이러한 액체금속 입자를 전기소자에 사용되기 위해서는 기계적, 화학적 변성을 통해 표면에 존재하는 산화막을 제거해 전기전도성을 다시 확보하는 과정이 필요했다. 이 문제를 해결하기 위해 연구팀은 프린팅 과정에서 노즐과 기판 사이에서 유도된 반월판(meniscus)에서 촉진된 증발로 현탁액(suspension)의 조성을 바꾸면서 화학적 변성을 유도할 수 있는 시스템을 개발했다. 먼저 프린팅에 사용되는 현탁액을 물과 물보다 끓는점이 높은 약산(아세트산)을 이용해 증발함에 따라 점점 강한 산성을 보이게 만들었다. 추가로 연구팀은 기판에 약 60℃의 열을 가해, 잉크의 증발과 산의 활성 및 화학적 변성을 촉진했다. 이를 통해 프린팅된 액체금속 입자 배선의 경우에는 별도의 전기적 활성 과정 없이 금속과 비슷한 수준의 높은 전기전도도(1.5x10^6 S/m)를 보이는 것을 확인했다. 연구팀은 액체금속 입자의 표면에 전해질을 붙여 기계적, 화학적 안정성을 향상해 프린팅 과정에서 발생할 수 있는 막힘(clogging) 현상을 방지하고, 액체금속 입자 간에 연결(bridging)을 통한 신축성을 부여했다. 프린팅된 액체금속 입자 기반 배선은 약 500%까지 늘려도 저항이 크게 변하지 않아 다양한 신축성 소자에 사용될 수 있는 것으로 기대된다. 프린팅을 통해 다양한 기판에 여러 형태로 빠르게 증착할 수 있어 여러 맞춤형 소자에 적용될 수 있다. 특히 프린팅된 액체금속 입자의 기계적, 화학적 안정성으로 인해 기존 액체금속으로는 불가능했던 전극으로서의 사용이 가능함을 보였다. 또 전해질이 부착된 액체금속은 생체 친화성이 우수해, 피부와 직접 닿을 수 있는 생체전극으로도 사용될 수 있다. 연구팀은 액체금속을 상용화된 의료용 테이프 위에 증착해, 사용자의 신체에 맞춰 최적화된 EMG 센서(근육 움직임으로 인한 미세한 전기신호를 감지하는 센서)를 제작했다. 나아가서 생분해성 기판 위에 액체금속 전극을 증착해 사용 이후에 의료용 폐기물이 나오지 않는 ECG 센서(심전도 센서)로의 응용 가능성도 제시했다. 신소재공학과 이건희(스티브 박, 정재웅 교수 공동 지도), 이예림 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 온라인 버전에 5월 12일 字 출판됐다. (논문명 : Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics) 스티브 박 교수는 "최근 주목받고 있는 액체금속 입자 기반 현탁액의 새로운 적용 가능성을 보여준 의미 있는 결과ˮ라고 말했다. 정재웅 교수는 "헬스케어를 위한 웨어러블, 임플란터블 모니터링 전자소자를 포함한 다양한 유연 및 신축성 전자소자에 핵심 기술로 활용될 수 있을 것으로 기대된다ˮ 라고 말했다.
2022.05.26
조회수 6796
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1