본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%96%B4%EB%93%9C%EB%B0%B4%EC%8A%A4%EB%93%9C
최신순
조회순
뉴로모픽 반도체로 통증도 느낀다
최근 인간의 뇌를 모방한 뉴로모픽 반도체 소자 연구가 주목받고 있다. 이에서 더 나아가 최근에는 뇌를 넘어 첨단 센서와 휴머노이드 분야에 적용가능한 감각신경계 모사에 관한 연구가 활발하게 진행되고 있다. 우리 대학 신소재공학과 김경민 교수 연구팀이 새로운 메모리 소자인 멤리스터를 사용하여 통증자극 민감도 조절 기능을 갖는 뉴로모픽 통각수용체 소자를 최초로 구현했다고 15일 밝혔다. ※ 멤리스터(memristor): 메모리(memory)와 저항(resistor)의 합성어로, 전류의 흐름에 따라 저항이 변화하는 전자소자 감각신경계의 핵심적인 역할 중 하나는 유해한 자극을 감지해 위험한 상황을 회피하는 것이다. 특히 통각수용체는 자극이 민감도의 임계치를 넘으면 통증 신호를 발생하여 인체가 자극에서 회피할 수 있도록 한다. 이를 위해 통각수용체의 신호 전달에는 통증 신호를 전달하는 흥분성 신경전달물질(Excitatory Neurotransmitter)과 외부 자극에 대한 임계치를 조절하는 억제성 신경전달물질(Inhibitory Neurotransmitter)이 관여하는 것으로 알려져 있다. 특히 억제성 신경전달물질은 흥분 작용과 역균형을 이뤄 신경의 과도한 활성화를 방지하고, 다양한 외부 자극에 적절하게 반응하기 위한 핵심적인 역할을 가지게 된다. <그림 1> 그동안 이러한 복잡한 감각신경계의 동작을 모사하는 전자 소자를 개발하는 연구가 활발히 진행되었는데, 기존의 연구에서는 흥분성 신경전달물질의 특성은 쉽게 구현할 수 있었으나, 억제성 신경전달물질에 의한 임계치 조절 특성까지 동시에 구현하는데 한계가 있었다. 김경민 교수 연구팀은 이중 전하 저장층 구조를 통해 외부에서의 자극에 대한 임계치를 조절할 수 있는 뉴로모픽 통각수용체 소자를 최초로 개발했다. <그림 2> 두 종류의 서로 다른 전하 저장층은 각각 전도성을 조절하는 흥분성 신경전달물질의 역할과 임계치를 조절하는 억제성 신경전달물질의 역할을 맡아 통각수용체의 필수적인 기능들인 통증 전달 특성(threshold triggering), 통증 완화(Relaxation), 통증 민감화(Sensitization) 등의 특성을 조절할 수 있음을 확인했다. <그림 3> 이는 신경계의 복잡한 기능을 신경계의 동작 원리를 모방하여 단순한 구조의 전자 소자로 구현하는 새로운 방법을 제시한 의의가 있다. 또한, 이 소자는 온도 자극에도 반응하는 온도수용체 특성을 보였으며, 특히 억제성 상태를 제어하여 단일 소자가 고온 범위와 저온 범위를 모두 감지할 수 있는 가변적인 온도수용체 특성을 구현할 수 있었다. <그림 4> 이러한 통각수용체, 온도수용체 소자는 인간을 모방하는 휴머노이드 피부에 적용하여 인간과 같은 방식으로 자극을 감지하는 센서로 활용될 수 있다. 김경민 교수는 "이번 연구는 흥분성 및 억제성 신호 작용의 특성을 단일 소자에 구현해, 간단한 반도체 기술로 복잡한 생물학적 감각신경계의 특성을 모사하는 새로운 방법론을 제시한 것에 큰 의의가 있다ˮ며 "이처럼 임계치를 조절할 수 있는 특성은 감각신경계 모사뿐 아니라 임계 스위칭 특성을 활용하는 보안 소자나 차세대 컴퓨팅 소자에도 활용될 수 있을 것으로 기대된다ˮ고 밝혔다. 한편 이번 연구는 신소재공학과 김근영 석박사통합과정 학생이 제1 저자로 참여했으며, 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials, Impact Factor: 29.4)'에 10월 21일 字 온라인 게재됐다. 이번 연구는 한국연구재단, 나노종합기술원, KAIST, 그리고 SK 하이닉스의 지원을 받아 수행됐다. (논문명: Threshold Modulative Artificial GABAergic Nociceptor, 논문링크: https://doi.org/10.1002/adma.202304148)
2023.11.15
조회수 4732
웨어러블 압전 센서로 정확한 혈압 모니터링 가능
혈압은 전반적 건강과 뇌졸중, 심장마비의 잠재적 위험을 평가하는 주요 지표다. 혈압을 간편하고, 연속적으로 모니터링할 수 있는 웨어러블 의료제품들이 큰 주목을 받고 있으며, 최근 LED을 활용한 웨어러블 혈압 측정 제품들이 출시되고 있지만, 광센서 정확도의 한계로 인해 의료기기 인증 기준을 만족하는 데 어려움이 있다. 우리 대학 신소재공학과 이건재 교수 연구팀과 한국표준과학연구원, 가톨릭의대 협력 연구팀이 혈압 측정을 위한 고민감 웨어러블 유연 압전 센서를 개발했다고 17일 밝혔다. 이 교수팀은 수 마이크로미터 두께(머리카락 굵기의 백 분의 일)의 초고감도 무기물 압전 박막을 딱딱한 기판에서 고온 열처리 후 유연 기판에 전사하여 혈압 센서를 제작했으며, 피부에 밀착해 혈관의 미세한 맥박 파형에서 정확한 혈압을 측정하는 데 성공했다. 이번 연구에서 개발한 혈압 센서는 가톨릭 병원에서 진행한 임상시험에서 수축기 혈압, 이완기 혈압에서 모두 자동전자혈압계 국제 인증 기준인 오차 ±5 mmHg 이하, 표준편차 8mmHg 이하의 높은 기준을 만족했다. 또한, 웨어러블 워치에 혈압 센서를 탑재해 연속적인 혈압 모니터링이 가능하게 됐다. 이건재 교수는 “이번에 개발된 웨어러블 워치 형태의 혈압 센서는 신뢰성과 내구성이 우수할 뿐만 아니라, 정확하고 연속적인 혈압을 측정할 수 있어 고혈압 환자들을 위한 헬스케어 시장에서 핵심적인 역할을 할 것으로 기대된다”며, “현재 패치 형태의 수면용 혈압 센서를 추가 개발한 후 창업을 통한 기술 사업화에 박차를 가하고자 한다”라고 말했다. 이번 연구는 웨어러블플랫폼 소재기술센터, 휴먼플러스 융합연구개발사업 및 바이오/의료 융합 측정 표준기술 개발 재원으로 지원을 받아 수행됐으며, 국제 학술지 `어드밴스드 머터리얼즈(Advanced Materials)' 온라인 호에 3월 24일자 출판됐으며, 표지논문으로도 선정됐다.
2023.04.17
조회수 5405
유해가스 및 와인을 구별하는 전자 코 뉴로모픽 반도체 모듈 개발
우리 대학 전기및전자공학부 최양규 교수와 기계공학과 박인규 교수 공동연구팀이 `인간의 후각 뉴런을 모방한 뉴로모픽 반도체 모듈'을 개발했다고 4일 밝혔다. 인간의 뇌, 시각 뉴런, 그리고 촉각 뉴런을 모방한 뉴로모픽 반도체 모듈을 각각 개발하는 데 성공했던 연구팀은, 인간의 후각 뉴런과 같이 가스 성분을 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 반도체 모듈을 통해 뉴로모픽 기반의 전자코(eletronic nose)를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 한준규 박사과정과 강민구 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 2022년 4월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : Artificial olfactory neuron for an in-sensor neuromorphic nose) 인공지능을 이용한 후각 인식 시스템은 높은 정확도로 가스를 인식할 수 있어 환경 모니터링, 음식 모니터링, 헬스케어 등 다양한 분야에 걸쳐 유용하게 사용되고 있다. 하지만 이러한 시스템 대부분은 CPU와 메모리가 분리된 구조인 폰노이만 컴퓨터가 필요한 소프트웨어를 기반으로 하므로, 데이터가 CPU와 메모리 사이를 이동할 때 높은 전력이 소모된다. 또한 센서에서 CPU로 데이터가 전송될 때 필요한 변환 회로에서도 추가 전력 소비가 발생한다. 따라서 모바일 또는 사물인터넷(IoT) 장치에 적용되기는 어렵다. 한편, 생물학적 후각 시스템은 감각 세포 자체에서 스파이크 형태로 감각 정보를 전달하고, 이를 뇌에서 병렬적으로 처리함으로써 낮은 전력 소비만으로 가스를 판별할 수 있다. 따라서 저전력 후각 시스템을 구축하기 위해, 생물학적 후각 시스템을 모방해 센서 단에서 스파이크 형태로 정보를 전달하는 `인 센서 컴퓨팅(In-Sensor Computing)' 기반 뉴로모픽 후각 시스템이 주목을 받고 있다. 이러한 뉴로모픽 후각 시스템을 구현하기 위해서는 인간의 후각 뉴런처럼 화학 신호를 스파이크 형태의 전기 신호로 변환해주는 구성 요소가 필요하다. 하지만, 일반적인 가스 센서는 이러한 기능을 수행할 수 없다. 연구팀은 반도체식 금속산화물 기반 가스 센서와 단일 트랜지스터 기반 뉴런 소자를 이용해, 가스를 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 반도체 모듈을 개발했다. 연구팀은 제작된 뉴로모픽 반도체 모듈을 바탕으로 유해가스를 구분할 수 있는 가스 인식 시스템과 와인을 구분할 수 있는 전자 소믈리에 시스템을 구축했다. 특히, 여러 가지 가스 분자가 섞여 있어 구분이 힘든 와인을 뉴로모픽 시스템을 이용해서 구분할 수 있음을 보인 것에서 그 의미가 크다. 연구를 주도한 한준규 박사과정은 "개발된 뉴로모픽 반도체 모듈은 전자코에 적용되어 사물인터넷(IoT) 분야, 환경 모니터링, 음식 모니터링, 헬스케어 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ며, "이는 `인-센서 컴퓨팅(In-Sensor Computing)' 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 국민위해인자대응기술개발사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2022.07.04
조회수 9311
헬스케어용 액체금속 전자문신 기술 개발
우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 건강 모니터링 및 치료를 위한 개인 맞춤형 전자문신을 즉석으로 구현할 수 있는 기술을 개발했다고 4일 밝혔다. 기존의 전자문신 (e-tattoo)은 주로 얇은 박막 위에 전도성 물질을 패터닝 하는 방식으로 만들어졌다. 하지만 소자를 일률적인 공정을 통해 제작해야 하기 때문에, 시술자의 요구를 즉석에서 반영할 수 없었다. 또 기판의 존재로 인한 제한된 신축성과 통기성은 사용을 제한하는 단점이 있었다. 나아가서 기존의 비싸거나 상대적으로 전도성이 낮은 신축성 재료들과 달리 금속처럼 전도성이 높으면서도 상대적으로 저렴한 재료를 이용해야 전자문신의 적용성을 높일 수 있었다. 이 문제를 해결하기 위해 연구팀은 액체금속 복합체 기반의 현탁액(suspension)을 이용해 전자문신을 구현할 수 있는 기술을 개발했다. 연구팀은 전도성이 우수하고 상대적으로 저렴하면서 생친화성도 우수한 갈륨기반의 액체금속을 백금으로 기능화된 탄소나노튜브와 함께 팁소니케이션을 통해 현탁액을 만들어 전자문신에 사용될 수 있는 잉크를 제작하였다. 추가로 연구팀은 잉크의 용매로 에탄올을 이용하여 높은 습윤성과 입자간의 낮은 전기적 반발력, 그리고 빠른 증발을 가능하게 하여 10초 이내에 피부 위에 발릴 수 있는 전자문신을 개발하였다. 피부에 증착된 전자문신은 높은 전도성, 내구성, 신축성 및 생친화성을 가져 사용자의 신체에 맞춰 최적화된 생체전극으로 사용될 수 있다. 연구팀은 전자문신을 피부에 증착하여 생체의 심전도신호 (ECG)를 측정하거나 근육에 전기자극을 전달할 수 있는 생체전극을 제작했다. 또한 액체금속 복합체가 빛에 반응하여 열을 발생시킬 수 있다는 점(photothermal effect)을 이용하여 물리치료에 적용될 수 있는 빛-열 전환 패치도 제작하는데 성공하였다. 나아가서 액체금속 복합체에 효소를 부착하여 땀에 많이 포함되어 있는 바이오마커인 포도당(glucose), 젖산(lactate), 알코올(ethanol)을 측정하는 웨어러블 바이오 센서로서의 가능성도 구현하였다. 우리 대학 신소재공학과 이건희(스티브 박, 정재웅 교수 공동 지도) 박사과정, 우희진 석사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머터리얼즈(Advanced Materials)' 온라인 버전에 6월 14일 字 출판됐다. (논문명: Personalized electronic tattoo for healthcare realized by on-the-spot assembly of intrinsically conductive and durable liquid-metal-composite) 스티브 박 교수는 "최근 주목받고 있는 액체금속 입자의 한계점을 극복하고, 액체금속-탄소 복합체 기반 현탁액의 다양한 적용 가능성을 보여주었다ˮ라고 말했다. 정재웅 교수는 "헬스케어에 대한 관심이 증가하면서 각광받고 있는 맞춤형 전자소자의 새로운 방향성을 제시한 의미있는 결과ˮ 라고 말했다. 한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2022.07.04
조회수 7418
전자기기 도움 없이 실시간 체온 모니터링 가능한 초고감도 센서 개발
우리 대학 신소재공학과 김일두 교수 연구팀이 온도에 감응하는 색 변화 염료를 전기방사 기술을 통해 나노섬유 멤브레인(얇은 막)에 적용해 인간의 체온(31.6~42.7℃)을 색 변화를 통해 육안으로 손쉽게 감지할 수 있는 초고감도 센서 플랫폼을 개발했다. 색 변화식 센서는 오직 육안으로 센서의 물리화학적 변화(온도, pH 등)를 감지할 수 있어 사용이 편리한 장점이 있다. 하지만, 기존의 상용화된 필름(film) 타입의 온도 감응 색 변화 센서는 염료의 색상이 필름 내부에 갇혀 외부로 효과적으로 전달되지 않아 색 변화 감도가 낮다는 단점이 있다. 이러한 한계를 극복하고자 본 연구팀은 넓은 비표면적과 높은 기공도를 나타내는 나노섬유 멤브레인에 온도 감응 색염료를 효과적으로 결착해 기존의 필름 타입의 색 변화 멤브레인 대비 인간의 체온 범위의 온도에서 색 변화 민감도를 최대 5배 이상 높일 수 있는 기술을 개발했다. 이 기술로 개발된 센서는 특히 휴대가 가능한 개인 헬스케어 진단기기로 별도의 전자기기의 도움 없이 실시간 체온 모니터링이 가능한 센서다. 전기방사 기술을 이용해 합성된 다공성 나노섬유 멤브레인은 필름 타입의 센서 대비 매우 높은 기공도(~95%)와 10배 이상 높은 빛 투과율을 나타내기 때문에 나노섬유 멤브레인에 결착된 염료의 색을 효과적으로 외부로 전달할 수 있어, 연구팀은 색 변화 센서 감도를 극대화할 수 있음을 확인했다. 연구팀은 이번 연구에서 기존에 주로 보고됐던 무정렬(random) 나노섬유 멤브레인 뿐만 아니라 전기장을 조절해 정렬(aligned)된 나노섬유 멤브레인 및 개별 섬유 가닥들이 초고밀도로 나선상으로 꿰어진 나노섬유 얀(yarn) 구조의 온도 감응형 색 센서를 제조하는 데 성공했다. 연구팀은 나노섬유의 밀도와 기공 구조를 더욱 세밀하게 조절해 색 변화 강도를 한층 더 높일 수 있다. 연구를 주도한 김일두 교수는 "기존에 활용되는 필름 타입의 멤브레인이 아닌 진보된 전기방사 기법을 도입함으로써, 나노섬유 멤브레인의 밀도와 정렬 방향을 조절해 온도 감응 색 변화 센서의 반응성을 극대화할 수 있었다ˮ며 "정렬된 나노섬유 및 얀 타입의 나노섬유 멤브레인을 활용해 마스크, 팔찌, 또는 몸에 붙이는 패치(patch) 타입의 웨어러블 온도 감응 색 변화 센서로 활용 가능성을 제시했다는 측면에서 매우 의미가 있는 연구 결과ˮ라고 말했다. 그리고 "저비용, 대량생산이 가능한 전기방사 기법을 활용했기 때문에 상용화 가능성이 큰 기술이며, 누구나 손쉽게 스스로 체온을 육안으로 진단할 수 있는 자가 진단 기기의 진보는 개인의 지속적인 건강관리에 큰 도움이 될 것이다ˮ고 밝혔다. 이번 연구는 공동 제1 저자인 우리 대학 신소재공학과 김동하 박사(現 MIT 박사후 연구원)와 배재형 박사(우리 대학 신소재, 現 하버드 대학 박사후 연구원)의 주도하에 진행됐으며, 우리 대학 신소재공학과 김일두 교수가 교신저자로 참여했다. 이번 연구 결과는 나노 분야의 권위적인 학술지 `어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)' 6월호에 앞 표지 논문으로 선정됐다.
2022.06.30
조회수 5439
물과 산소로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 물과 산소만으로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매를 개발했다고 31일 밝혔다. 과산화수소는 주로 소독, 염색, 산화제, 의약품, 반도체, 디스플레이, 로켓 추진연료 등 다양한 산업군에 쓰이는 유용한 자원이다. 연구팀이 개발한 나노구조체 촉매는 빛을 흡수해 산소 분자를 과산화수소 분자로 선택적으로 환원시키며, 지구에 풍부하고 친환경적인 물을 산화제로 이용하기 때문에 친환경적이고 경제적인 원천기술이다. 이 기술은 현재 공정에서 이용되는 고가의 팔라듐 촉매보다 각각 1,500배, 4,500배, 115,000배 저렴한 코발트, 티타늄, 철 산화물을 이용했기 때문에 경제성이 뛰어날 뿐만 아니라, 환경 문제를 유발하는 유기화합물 없이 물과 산소, 햇빛만으로 과산화수소를 생산하기 때문에 친환경적인 특성을 가진다. 김건한 박사(現 옥스포드 대학교 화학과, 우리 대학 신소재공학과 졸업)가 제1 저자로 참여하고, 우리 대학 화학과 김형준 교수 연구팀이 공동으로 참여한 강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced Energy Materials, IF 29.37)' 2월 25일 字 온라인 게재됐다. (논문명: Triphasic metal oxide photocatalyst for reaction site-specific production of hydrogen peroxide from oxygen reduction and water oxidation) 현재 과산화수소 생산은 대부분 `안트라퀴논 공정'을 통해 생산된다. 이 공정은 고압의 수소 기체와 값비싼 팔라듐 기반 수소화 촉매를 이용하기 때문에 경제성과 안전성에서 문제를 가지고 있을 뿐만 아니라 반응 중에 이용되는 유기 오염 물질이 방출되기 때문에 환경 문제를 유발한다. 반면, 햇빛을 에너지원으로 이용해 산소를 과산화수소로 환원시키는 광촉매는 물리적으로 반도체 특성을 갖는 전이 금속산화물을 이용할 수 있기 때문에 기존 팔라듐 촉매보다 수 천배 이상 저렴하다. 또한, 지구에 풍부한 산소로부터 태양에너지를 통해 과산화수소를 생산할 수 있어 안전하고 친환경적인 특성을 가진다. 하지만 기존 과산화수소 생산 광촉매는 산소로부터 과산화수소를 생산하기 위해 전자를 전달하는 산화 반응에 과산화수소보다 더 비싼 알코올류의 산화제를 첨가해야 했다. 또한, 생산된 과산화수소가 광촉매 표면에서 빠르게 분해돼 촉매 효율이 떨어지는 단점을 가지고 있었다. 이에 강정구 교수 연구팀은 고가의 팔라듐 촉매보다 훨씬 저렴한 코발트, 티타늄, 철 산화물을 요소-수열 합성법을 통해 나노 구조화했다. 두 가지 이상의 금속 조합을 갖는 금속산화물의 경우, 일반적으로 각기 다른 금속이 혼합되어 한 가지 구조의 상을 형성한다. 하지만 연구팀은 코발트 전구체의 비율을 높여 철과 코발트 산화물을 분리한 후, 2가 철 산화물의 화학적 비안정성을 이용해 티타늄 산화물과 다시 분리함으로써, 각기 다른 세 가지 금속 산화물이 각자의 산화물 상으로 분리되어 형성되는 삼상 산화물 (Triphasic metal oxide)을 합성했다. 삼상 산화물 광촉매는 2차원적으로 넓은 나노시트(nanosheet) 형태의 코발트 산화물이 있고, 그 위에 코어-쉘(core-shell) 구조를 가진 철 산화물-티타늄 산화물 나노입자가 배열된 독특한 구조를 하고 있다. 또한, 연구팀은 김형준 교수 연구팀과 공동 연구를 통해, 코어-쉘 구조의 나노입자는 효율적으로 가시광선과 자외선을 흡수해 전자를 전달함을 계산 과학을 통해 입증에 성공했다. 코발트 산화물은 기존 물 산화 반응 촉매로 가장 잘 알려진 물질이기 때문에, 물 분자를 흡착해 산소로 환원하고 전자를 제공할 수 있는 능력이 있다. 즉, 물을 산화제로 이용하기 때문에 기존 광촉매에서 이용하는 알코올류를 이용하지 않고도 환원 반응점(reduction reaction-site)으로 원활한 전자전달을 할 수 있다. 한 편, 철 산화물-티타늄 산화물 코어-쉘 나노입자는 각각 가시광선과 자외선을 흡수할 수 있어 효율적인 방법으로 태양광을 흡수할 수 있을 뿐 아니라 산소 흡착 능력이 우수해 반응물인 산소 분자를 선택적으로 흡착할 수 있다. 또한, 구조적으로 코발트 산화물 나노시트 위에 배열되어 있어, 물 산화 반응에서 생긴 전자를 철 산화물이 받아 효율적으로 티타늄 산화물에 전달해 산소 환원 반응을 통한 과산화수소를 생산할 수 있다. 이렇게 생성된 과산화수소는 환원점과 산화점이 분리돼있는 광촉매의 구조적인 특성으로 인해 분해되지 않고 안정적으로 농축되는 특성을 가진다. 강 교수는 "신재생에너지를 이용한 친환경적인 이 기술은 수소 분자와 유기물질을 이용하지 않아 안전성이 뛰어나고, 비교적 값이 저렴한 전이 금속산화물을 이용하기 때문에 경제성이 뛰어나다ˮ라고 소개하면서 "3가지 상의 각 구역에서 산소 환원 반응, 전자-홀 수송, 그리고 물 산화 반응이 일어나기 때문에 광촉매에서 문제가 되고 있던 과산화수소 분해 문제나 알코올 산화제 이용 문제에서 벗어나며 이를 통한 높은 촉매 효율은 기존에 가장 효율이 높다고 알려진 귀금속계 촉매보다 수 천배 저렴할 뿐만 아니라 약 30배 정도 높은 생산성능을 가져 광촉매를 통한 과산화수소 생산의 상용화에 이바지할 것이다ˮ고 말했다. 한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
2022.03.31
조회수 10628
페로브스카이트 퀀텀닷 발광 다이오드의 올인원 공정 개발
우리 대학 전기및전자공학부 이정용 교수 연구팀이 페로브스카이트 퀀텀닷(양자점) 층에 직접적인 자외선, 전자빔 처리나 용액 가둠막 없이 고효율 RGB 패턴 발광 다이오드 제작 기술을 개발했다고 16일 밝혔다. 전기및전자공학부 김준호 박사과정과 서기원 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 2022년 3월 2일 자 온라인판에 게재됐다. (논문명: All-in-one Process for Color Tuning and Patterning of Perovskite Quantum dot Light-Emitting Diodes). 페로브스카이트 퀀텀닷은 높은 외부 양자 효율과 색 순도를 가지고, 퀀텀닷 내부의 할라이드 음이온의 종류와 그 비율에 따라 밴드갭을 조절할 수 있다는 장점을 가져 차세대 디스플레이 발광 물질로 주목받고 있는 물질이다. 하지만, 페로브스카이트 퀀텀닷은 용매 분산을 위하여 긴 탄소 사슬을 갖는 절연 유기 분자가 퀀텀닷 주변을 둘러싸고 있어 전자 소자로 적용 시 낮은 성능을 갖게 하고, 패터닝 공정에 사용되는 자외선 및 전자빔 처리에 취약해 디스플레이를 만들기 위한 픽셀 패터닝 공정이 매우 어렵다는 문제점을 가지고 있다. 연구팀이 개발한 공정은 페로브스카이트 퀀텀닷 주변의 절연성 유기 리간드(결합 분자)를 전하 수송이 유리한 유기 리간드(결합 분자)로 교환해 발광 다이오드 성능을 향상할 뿐만 아니라 동시에 퀀텀닷 내부 할라이드 조성 비율을 조절하는 할라이드 음이온 교환을 통해 퀀텀닷 박막의 발광 색상을 자유롭게 바꿀 수 있다. 연구팀은 더 나아가 페로브스카이트 퀀텀닷 박막의 국부적 부분만 색을 변환시키는 패터닝 공정을 제안해, 페로브스카이트 퀀텀닷 박막에 직접적인 자외선 및 전자빔 처리 없이 RGB 색상이 패터닝된 발광 다이오드를 고속으로 제작하는 데 성공했다. 이정용 교수는 "이번에 개발한 페로브스카이트 퀀텀닷 박막 패터닝 공정은 용액공정 기반 페로브스카이트 퀀텀닷 패터닝 공정이 당면하고 있는 여러 문제점을 해소했고, 차세대 페로브스카이트 퀀텀닷 디스플레이 구현에 적용 가능할 것ˮ이라고 말했다. 또한, 이번 박막 패터닝 공정을 이용해 서로 다른 밴드갭을 가지는 페로브스카이트 퀀텀닷이 가림막(뱅크 구조물) 없이 평행하게 패터닝된 단일 박막 제작이 가능하다는 점에서 "발광 다이오드뿐만 아니라 광검출기, 태양전지, 광 컴퓨팅 소자 등 다양한 광전소자에도 널리 활용될 수 있을 것으로 기대된다ˮ며 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단의 중견연구사업, 나노 및 소재 기술개발사업의 지원을 받아 수행됐다.
2022.03.16
조회수 7582
디스플레이용 퀀텀닷 패턴 형태에 상관없이 커피링을 완벽 제어하는 기술 개발
우리 대학 기계공학과 김형수 교수팀이 디스플레이 소자의 핵심 물질인 퀀텀닷의 마름 자국을 패턴의 형태에 상관없이 원형부터 다각형까지 완벽하게 균일 패터닝 할 수 있는 기술을 구현했다고 2일 밝혔다. 기계공학과 편정수 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 지난 2월 7일 字 온라인 출판됐다. (논문명: Self-Induced Solutal Marangoni Flows Realize Coffee-Ring-Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability, https://doi.org/10.1002/advs.202104519) 최근 퀀텀닷은 차세대 핵심 디스플레이용 소재로 각광받고 있다. 이를 잉크젯 프린팅 기술을 이용해 패터닝(형태화)하려는 노력을 크게 하고 있지만, 양산성이나 해상도의 제한적 문제 그리고 공정 과정 중에 발생하는 커피링 현상으로 효율이 크게 떨어지는 이슈가 큰 문제로 지적되고 있다. 커피링 자국은 용매 방울이 고체 표면 위에서 마르면서 물방울 표면의 상대적 불균일 증발률 때문에 발생하게 된다. 김 교수는 커피링을 제어하는 연구를 수년간 해오면서 얻은 노하우를 바탕으로 최근 획기적으로 커피링을 소멸시키는 기술을 발표한 바 있다. (DOI: https://doi.org/10.1039/D0SM01872D) 커피링 자국 이외에도 디스플레이의 해상도를 높이기 위해 다양한 모양의 패턴들이 제안되고 있으나, 일반적으로 다각형의 경우 커피링의 정도가 원형의 경우보다 더욱 심해지는 경향을 띤다. 이번 연구에서는 퀀텀닷 패턴의 기하학적 형태에 무관하게 커피링을 완전히 소멸시킬 수 있는 기술을 소개하고 있다. 연구팀은 퀀텀닷이 녹아 있는 용매의 성분을 적절히 조율하고 이 액적을 복잡한 물리-화학적 공정 없이 단순 증발 과정을 거쳐 100 마이크로미터(㎛) (1만 분의 1m) 수준의 커피링이 전혀 없는 균일 패턴을 구현하는 데 성공했다. 연구팀 관계자는 "QLED용 퀀텀닷 패턴은 주변의 공정 요인에 민감하게 변화할 수 있는데, 잉크젯 기반의 토출식 프린팅 기술에 집단 액적의 증발을 통한 자발적으로 발생하는 상호 마랑고니 작용 효과들을 이용해 소재의 손상을 방지하고 패턴의 균일도를 확보했다ˮ고 밝혔다. 실험적 기술 개발뿐 아니라 이론 모델을 바탕으로 마랑고니 발생 원리와 마랑고니 혼합 유동의 세기 조절에 대한 근본적 설명과 제어 변수들을 제공하고 있다. 김형수 교수는 "이번 연구 결과를 실제 디스플레이 양산을 위한 잉크젯 프린팅 공정에 활용하면 적녹청 퀀텀닷 패턴을 물리-화학적 복잡한 공정 없이 높은 효율의 차세대 QLED 디스플레이 구현에 적용 가능할 것ˮ이라고 말했다. 한편 이번 커피링을 없애는 기술을 이용해 "인쇄전자에 사용되는 값비싼 소재들로 확대하면 효과적으로 대면적 프린팅할 수 있고 패터닝 공정도 간소화돼 경제성을 높이는 데 기여할 것이다ˮ고 말했다. 한편 이번 연구는 한국연구재단의 지원을 받아 개인 기초 중견연구(NRF-2021R1A2C2007835)의 지원을 받아 수행됐고, 우리 대학 신소재공학과 정연식 교수 연구팀과의 협업을 통해 수행됐다.
2022.03.02
조회수 8248
인간의 촉각 뉴런을 모방한 뉴로모픽 모듈 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 지난 2021년 8월에 뉴런과 시냅스를 동일 평면 위에서 동시 집적으로 ‘인간의 뇌를 모방한 뉴로모픽 반도체 모듈’을 개발하고, 연이어서 이번에는 ‘인간의 촉각 뉴런을 모방한 뉴로모픽 모듈’을 개발하는 데에 성공했다고 24일 밝혔다. 개발된 모듈은 인간의 촉각 뉴런과 같이 압력을 인식해 스파이크 신호를 출력할 수 있어, 뉴로모픽 촉각 인식 시스템을 구현할 수 있다. 우리 대학 전기및전자공학부 한준규 박사과정과 초일웅 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2022년 1월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : Self-powered Artificial Mechanoreceptor based on Triboelectrification for a Neuromorphic Tactile System). 인공지능을 이용한 촉각 인식 시스템은 센서 어레이에서 수신된 신호를 인공 신경망을 이용해 높은 정확도로 물체, 패턴, 또는 질감을 인식할 수 있어, 다양한 분야에 걸쳐 유용하게 사용되고 있다. 하지만 이러한 시스템의 대부분은 폰 노이만 컴퓨터가 필요한 소프트웨어를 기반으로 하므로, 높은 전력을 소모할 수밖에 없어 모바일 또는 사물인터넷(IoT) 장치에 적용되기는 어렵다. 한편, 생물학적 촉각 인식 시스템은, 스파이크 형태로 감각 정보를 전달함으로써 낮은 전력 소비만으로 물체, 패턴, 또는 질감을 판별할 수 있다. 따라서 저전력 촉각 인식 시스템을 구축하기 위해, 생물학적 촉각 인식 시스템을 모방한 뉴로모픽 촉각 인식 시스템이 주목을 받고 있다. 뉴로모픽 촉각 인식 시스템을 구현하기 위해서는 인간의 촉각 뉴런처럼 외부 압력 신호를 스파이크 형태의 전기 신호로 변환해주는 구성 요소가 필요하다. 하지만, 일반적인 압력 센서는 이러한 기능을 수행할 수 없다. 연구팀은 마찰대전 발전기(triboelectric nanogenrator, TENG)와 바이리스터(biristor) 소자를 이용해, 압력을 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 모듈을 개발했다. 제작된 뉴로모픽 모듈은 마찰대전을 이용하기 때문에, 자가 발전이 가능하고 3 킬로파스칼(kPa) 수준의 낮은 압력을 감지할 수 있다. 이는 손가락으로 사물을 만질 때, 피부가 느끼는 압력 정도의 크기다. 연구팀은 제작된 뉴로모픽 모듈을 바탕으로 저전력 호흡 모니터링 시스템을 구축했다. 호흡 모니터링 센서가 코 주위에 설치되면 들숨 및 날숨을 감지하고 복부 주변에 설치되면 복식호흡을 별도로 감지할 수 있다. 따라서 수면 중 무호흡이 일어날 경우, 이를 감지해 경보를 보냄으로써 심각한 상황으로의 진행을 미연에 방지할 수 있다. 연구를 주도한 한준규 박사과정은 "이번에 개발한 뉴로모픽 센서 모듈은 센서 구동에 필요한 에너지를 스스로 생산하는 반영구적 자가 발전형으로 사물인터넷(IoT) 분야, 로봇, 보철, 인공촉수, 의료기기 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ며, "이는 `인-센서 컴퓨팅(In-Sensor Computing)' 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 미래반도체사업, BK21 사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2022.02.25
조회수 10428
3차원 표정인식용 인공지능 라이트필드 카메라 개발
우리 대학 바이오및뇌공학과 정기훈, 이도헌 교수 공동연구팀이 근적외선 기반 라이트필드 카메라와 인공지능기술을 융합하여 얼굴의 감정표현을 구분하는 기술을 개발했다고 7일 밝혔다. 라이트필드 카메라는 일반적인 카메라와 다르게 미세렌즈 배열(Microlens arrays)을 이미지센서 앞에 삽입해 손에 들 수 있을 정도로 작은 크기이지만 한 번의 촬영으로 빛의 공간 및 방향 정보를 획득한다. 이를 통해 다시점 영상, 디지털 재초점, 3차원 영상 획득 등 다양한 영상 재구성이 가능하고 많은 활용 가능성으로 주목받고 있는 촬영 기술이다. 그러나 기존의 라이트필드 카메라는 실내조명에 의한 그림자와 미세렌즈 사이의 광학 크로스토크(Optical crosstalk)에 의해 이미지의 대비도 및 3차원 재구성의 정확도가 낮아지는 한계점이 있다. 연구팀은 라이트필드 카메라에 근적외선 영역의 수직 공진형 표면 발광 레이저(VCSEL) 광원과 근적외선 대역필터를 적용해 기존 라이트필드 카메라가 갖는 조명 환경에 따라 3차원 재구성의 정확도가 낮아지는 문제를 해결했다. 이를 통해 얼굴 정면 기준 0도, 30도, 60도 각도의 외부 조명에 대해, 근적외선 대역필터를 사용한 경우 최대 54%까지 영상 재구성 오류를 줄일 수 있었다. 또한, 가시광선 및 근적외선 영역을 흡수하는 광 흡수층을 미세렌즈 사이에 제작하면서 광학 크로스토크를 최소화해 원시 영상의 대비도를 기존 대비 약 2.1배 정도로 획기적으로 향상하는 데 성공했다. 이를 통해 기존 라이트필드 카메라의 한계를 극복하고 3차원 표정 영상 재구성에 최적화된 근적외선 기반 라이트필드 카메라(NIR-LFC, NIR-based light-field camera) 개발에 성공했다. 연구팀은 개발한 카메라를 통해 피험자의 다양한 감정표정을 가진 얼굴의 3차원 재구성 이미지를 조명 환경과 관계없이 고품질로 획득할 수 있었다. 획득한 3차원 얼굴 이미지로부터 기계 학습을 통해 성공적으로 표정을 구분할 수 있었고, 분류 결과의 정확도는 평균 85% 정도로 2차원 이미지를 이용했을 때보다 통계적으로 유의미하게 높은 정확도를 보였다. 이뿐만 아니라, 연구팀은 표정에 따른 얼굴의 3차원 거리 정보의 상호의존성을 계산한 결과를 통해, 라이트필드 카메라가 인간이나 기계가 표정을 판독할 때 어떤 정보를 활용하는지에 대한 단서를 제공할 수 있음을 확인했다. 정기훈 교수는 "연구팀이 개발한 초소형 라이트필드 카메라는 정량적으로 인간의 표정과 감정을 분석하기 위한 새로운 플랫폼으로 활용될 수 있을 것으로 기대된다ˮ며 "모바일 헬스케어, 현장 진단, 사회 인지, 인간-기계 상호작용 등의 분야에서 활용될 것ˮ이라고 연구의 의미를 설명했다. 우리 대학 바이오및뇌공학과 배상인 박사과정 졸업생이 주도한 이번 연구 결과는 국제저명학술지 `어드밴스드 인텔리전트 시스템즈(Advanced Intelligent Systems)'에 2021년 12월 16일 온라인 게재됐다. (논문명: Machine-Learned Light-Field Camera that Reads Facial Expression from High-Contrast and Illumination Invariant 3D Facial Images). 한편 이번 연구는 과학기술정보통신부 및 산업통상자원부의 지원을 받아 수행됐다.
2022.01.07
조회수 8202
거대 단백질 구조체를 레고 블록 쌓듯 조립하는 기술 개발
우리 대학 생명과학과 김학성 교수와 배진호 박사팀이 거대 (초분자) 단백질을 레고 블록 쌓듯 조립할 수 있는 새로운 기술을 개발했다고 19일 밝혔다. 이 방법으로 단백질 구조체의 크기 및 작용기 수를 원하는 대로 조절할 수 있고 메가 달톤(dalton) 크기의 대칭형 거대 단백질 구조체를 조립할 수 있다. 거대 단백질 구조체는 효율적인 약물 전달, 다양한 백신 개발, 그리고 질병 진단에 활용될 것으로 기대된다. 이번 연구 성과는 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)' (IF: 16.806)에 2021년 11월 1일 字 온라인 발표됐다. (논문명: Dendrimer-like supramolecular assembly of proteins with a tunable size and valency through stepwise iterative growth) 자연계에는 매우 다양한 특성과 기능을 갖는 단백질이 존재하며 생명현상을 유지하는데 핵심 역할을 한다. 이러한 단백질 중에는 단량체가 큰 구조체 형태로 조립됐을 때만 정상적 기능을 수행하거나, 어떤 경우에는 조립된 경우가 단량체와 완전히 다른 특성을 나타내며, 심지어는 심각한 질병을 유발하는 경우도 많다. 예를 들어 바이러스의 껍질인 켑시드는 단백질 단량체가 조립(assembly)된 것이고, 치매는 아밀로이드 펩타이드나 타우(tau) 단백질이 파이브릴(fibril) 형태로 조립되면서 발생한다. 따라서, 거대(초분자) 단백질 구조체들의 조립 기작 이해는 단백질의 기능과 질병의 원인 규명 및 치료제 개발에 중요하다. 또한, 단백질 구조체는 뛰어난 생체 적합도 때문에 생명공학 및 의학 분야에서도 응용 가능성이 크다. 현재 많은 연구 그룹에서 자연계에 존재하는 단백질 구조체들의 조립 과정을 모방해 새로운 기능의 단백질 구조체 개발에 많은 연구를 진행하고 있다. 그러나 단백질의 구조적 다양성, 상이한 특성 및 큰 분자량 때문에 원하는 구조체를 자유자재로 조립하는 것은 아직도 어려운 과제로 남아 있다. 김학성 교수 연구팀은 두 종류의 빌딩(building) 블록 단백질을 코어(core) 단백질에 순차적으로 교대로 결합시킴으로써 간편하게 3차원 구조의 대칭형 거대 단백질 구조체를 조립하는 방법을 개발했다(그림 1). 즉, 서로 특이적으로 반응하는 두 쌍의 단백질과 리건드(P1/L1 과 P2/L2)를 이용해 코어(core) 단백질에 두 종류의 빌딩(building) 블록을 순차적, 반복적으로 결합함으로써 크기와 작용 기작 수를 조절하면서 메가 달톤 (Mega Dalton) 크기를 갖는 단백질 구조체를 쉽게 조립하였다. 개발된 구조체는 다양한 분야에 응용 가능하며 하나의 예로서, 이번 연구에서는 단백질 구조체에 박테리아 독소를 결합해 암세포 내로 고효율로 전달할 수 있었고, 결과적으로 암세포를 효과적으로 사멸했다(그림 2). 구조체 단백질의 특징인 다가 효과(avidity effect)로 인해 암 표적에 대한 결합력이 약 1,000배 이상 증가돼 암세포 사멸 효과가 획기적으로 증대됐고 이러한 특성은 백신 개발 및 질병 진단에도 응용될 수 있다. 제1 저자인 배진호 박사는 "이번 연구에서 개발된 거대(초분자) 단백질 구조체 조립 기술은 향후, 약물 전달, 백신 개발, 질병 진단 및 바이오센서 등을 포함한 광범위한 분야에서 새로운 플랫폼 기술로 활용될 수 있을 것ˮ이라고 말했다. 이번 연구는 한국 연구 재단의 중견 연구과제 (NRF-2021R1A2C201421811) 지원을 받아 수행됐다.
2021.11.19
조회수 7597
에너지 비용 낮춘 상온 액상 분리막 개발
우리 대학 생명화학공학과 고동연 교수 연구팀이 상온에서 크기 차이 0.1 나노미터(nm) 이하의 액상 유기물질을 직접 분리할 수 있는 유기용매 정삼투 시스템을 개발했다고 12일 밝혔다. 액체 혼합물의 대규모 분리 공정은 주로 물질의 끓는점 차이를 이용하는 증류법을 이용하는데, 이때 전 세계적으로 막대한 양의 에너지가 소비된다. 특히, 석유화학 산업의 기초가 되는 액상 탄화수소들은 섬유, 플라스틱 등 일상생활과 밀접한 소재 개발에 필수적이기 때문에 이들을 저에너지, 저탄소 공정을 통해 분리하는 새로운 미래지향적인 패러다임이 필요하다. 연구진이 개발한 초미세 다공성 탄소 분리막은 위와 같은 에너지 문제를 해결할 수 있는 기술로, 액상 탄화수소를 크기와 모양에 따라 상온에서 연속적으로 분리할 수 있는 기술이다. 생명화학공학과 서혁준 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 에 온라인 게재됐으며, 연구의 파급력을 인정받아 뒷표지 논문으로 선정됐다. (논문명 : Shape-Selective Ultramicroporous Carbon Membranes for Sub-0.1nm Organic Liquid Separation) 연구팀이 이번에 개발한 유기용매 정삼투법은 정밀하게 디자인된 기공 크기 및 구조를 갖는 탄소 분리막을 이용한다. 이는 외부 동력원 없이 자연스러운 농도 기울기 및 화학적 포텐셜을 기반으로 크기 및 모양 차이에 따라 탄화수소 화학종들의 분리가 진행되는 에너지 효율적 기법으로, 기존의 증류법보다 약 10배 정도 낮은 에너지 소모량을 요구한다. 이와 같은 유기용매 정삼투법은 분리막 재료의 기공 크기 디자인에 따라 석유화학, 정유, 제약 및 반도체 공정 등 다양한 분야에 활용 가능하기 때문에 산업 전반의 에너지 효율성을 극대화하며 동시에 탄소 배출량을 줄일 수 있는 획기적인 기술이다. 특히 연구팀은 상온에서 서로 다른 크기와 모양을 갖는 헥산 이성질체의 혼합물들을 모양 차이에 따라 손쉽게 분리할 수 있음을 증명했다. 탄소 분리막은 0.7 나노미터(nm) 이하의 단단한 슬릿 형태(slit-like structure)를 갖는 초미세 기공을 가지며, 이처럼 작은 나노 공간에서 분자들의 확산을 조절하여 크기 차이가 0.1 나노미터(nm) 이하인 분자들까지 정밀하게 걸러낼 수 있다. 특히, 이번 연구에 이용된 탄소 분리막은 속이 비어있는 실과 같은 기다란 형태(할로우 파이버, Hollow Fiber)를 가지고 있어, 이의 산업적 적용성과 파급 효과는 상당할 것으로 기대된다. 할로우 파이버 분리막은 적은 비용으로 대량생산이 매우 쉬우며, 기존의 평면적인 분리막 대비 수십 배 높은 표면적을 가지고 있어 차세대 분리막 형태로 주목받는 소재다. 연구팀은 그동안 불가능했던 분리막을 이용한 0.1 나노미터(nm) 이하 크기의 액체 분자들의 크기 및 모양에 따른 분리에 성공해 저에너지, 저탄소 분리 공정의 새로운 막을 열게 됐다. 수많은 소재의 원재료가 되는 탄화수소 분자들을 적은 비용 및 저탄소 배출공정으로 분리 정제할 수 있는 새로운 방식은 화학산업의 초미의 관심사다. 고동연 교수는 "우리나라는 원유를 수입하고, 이를 분리 및 정제해 다양한 고부가가치 제품을 창출하는데 여러 집약된 기술에 의존하고 있어 이에 대한 파격적 비용 절감은 석유화학 산업계의 글로벌 경쟁력 강화와 직결된다ˮ며, "특히 용매 사용량이 많은 제약 분야 및 반도체 화학 공정에도 널리 사용될 수 있을 것으로 기대된다ˮ고 연구의 의의를 설명했다. 한편, 이번 연구는 한국연구재단 우수신진연구사업의 지원을 받아 수행됐다.
2021.08.13
조회수 10884
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
>
다음 페이지
>>
마지막 페이지 8