본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%97%91%EC%8A%A4%EC%84%A0%EC%82%B0%EB%9E%80
최신순
조회순
단백질 접힘 과정에서의 구조 변화 관측에 성공
우리 대학 화학과 이효철 교수(기초과학연구원 나노물질 및 화학반응 연구단 부연구단장 겸임) 연구팀이 풀려있는 단백질이 접히는 과정을 분자 수준에서 규명하는 데 성공, 단백질 구조기반의 신약 개발을 위한 토대를 마련했다. 획기적인 연구성과를 냈다고 평가받고 있는 이 교수 연구팀은 단백질 접힘 경로에서의 단백질 구조 변화를 실시간으로 관측하는 데 최초로 성공했다고 9일 밝혔다. 이 교수 연구팀에 따르면 풀린 단백질이 접히는 과정을 엑스선 펄스를 이용한 고속 연사 촬영기법을 통해 단백질의 구조 변화를 연속 스냅숏으로 추출했고 이를 통해 일련의 단백질 접힘 과정을 분자 수준에서 밝혀내는 쾌거를 달성했다. KAIST 화학과 박사과정 졸업생 김태우 연구원이 제1 저자로, KAIST 화학과 이효철, 이영민 교수가 교신저자로 참여한 이번 연구결과는 국제 학술지 `미국 국립과학원회보(PNAS, Proceedings of the National Academy of Sciences of the United States of America)' 7월 1일 字에 게재됐다. (논문명 : Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering). 잘 접혀있는 단백질이 풀리는 과정은 비교적 쉽게 연구할 수 있어 많은 연구가 이뤄져 왔지만 풀려있는 단백질이 접히는 과정은 연구가 힘들었는데 이효철 교수팀의 이번 연구는 그 과정을 밝혀냈다는데 큰 의미가 있다. 단백질이 접히는 과정을 연구하기 힘든 이유는 풀려있는 단백질이 특정 구조를 가지지 않고 매우 다양한 구조를 갖기 때문이다. 하지만 이 교수 연구팀은 이번 연구에서 엑스선 산란 신호 분석법을 개발, 적용해서 이런 난제를 해결하는 데 성공했다. 단백질의 3차원 구조를 결정하는 고유의 접힘 과정은 가장 중요한 생체 반응이다. 때에 따라 발생하는 잘못 접히는 과정은 단백질의 정상적인 기능을 방해하며, 알츠하이머, 광우병, 파킨슨병 등이 바로 단백질 접힘이 올바르지 않아 발병되는 질병이다. 연구팀은 생체 내 전자전달에 관여하는 사이토크롬 단백질을 풀림 상태에서 접힘 상태로의 전이 과정을 발생시켜, 해당 접힘 과정을 시간 분해 엑스선 산란법을 이용해 연속적으로 움직이는 단백질의 구조 변화를 관측했다. 여기서 주목할만한 점은 이 교수 연구팀은 그간 단백질 접힘에 대한 이론적 모델로만 제시됐던 깔때기꼴 접힘 가설을 사이토크롬 단백질의 접힘 과정을 통해 실험적으로 입증했다는 사실이다. 이와 함께 이 교수팀은 단백질의 구조 변화뿐만 아니라 접히는 과정의 속도가 기존에 알려진 보통의 지수함수 형태가 아니라 늘어진 지수함수 형태임을 밝혀냈다. 이로써 풀린 단백질에서 접힌 상태로 가는 경로가 매우 다양하다는 것을 실험적으로 알아낸 것이다. 제1 저자인 김태우 연구원은 "단백질 접힘은 3차원 단백질 구조가 만들어지는 가장 중요한 생명현상인데, 접힘 과정에 대한 이해는 단백질 구조기반 신약 개발의 기초가 될 것ˮ이라고 기대했다. 공동 교신저자로 참여한 KAIST 화학과 이영민 교수도 "단백질 접힘 이론 모형에 대한 실험적 검증은 이론 생물리학 관점에서 더욱 정확한 계산 방법 개발에 중요한 자산이 될 것ˮ라고 강조했다. 한편 이번 연구는 기초과학연구원, 한국연구재단 등의 지원을 받아 수행됐다.
2020.07.09
조회수 22823
이효철 교수 연구팀, 분자가 탄생하는 모든 순간(35펨토 초) 포착
우리 대학 화학과 이효철 교수(기초과학연구원(IBS) 나노물질 및 화학반응 연구단 부연구단장) 연구팀은 원자가 결합하여 분자가 탄생하는 모든 과정을 실시간으로 관찰하는데 성공했고 이번 성과가 세계 최고 권위의 학술지 네이처(Nature, IF 43.070)誌 온라인 판에 6월 25일 0시(한국시간) 게재됐다고 밝혔다. 연구진은 펨토 초(1/1,000조 초)의 순간을 관측하기 위해 특수 광원인 포항 4세대 방사광가속기의 X-선자유전자레이저(펨토 초 엑스선 펄스*)를 이용하여 화학결합을 형성하는 분자 내 원자들의 실시간 위치와 운동을 관측하는데 성공했다. * 펄스는 짧은 시간동안 만 빛이 방출되는 형태로, 펨토 초 엑스선 펄스는 X선이 펄스의 형태로 생성되고 그 시간 길이가 펨토 초 정도일 때를 말함 물질을 이루는 기본 단위인 원자들이 화학결합을 통해 분자를 구성한다. 하지만 원자는 수 펨토 초에 옹스트롬(1/1억 cm) 수준만 움직이기 때문에 그 움직임을 실시간으로 포착하기는 어려웠다. 연구진은 이전에 분자결합이 끊어지는 순간(Science, 2005)과 화학결합을 통해 분자가 탄생하는 순간(Nature, 2015) 분자의 구조를 원자 수준에서 관측한 바 있으며, 이번에 세계 최초로 화학반응의 시작부터 끝까지 전 과정의 원자의 움직임을 관찰하는데 성공했다. 화학반응의 시작인 반응물과 끝인 생성물은 상대적으로 오랫동안 구조를 유지하지만, 반응과정의 전이상태(transition state)의 경우 매우 짧은 시간 동안만 형성되기 때문에 관찰이 더 까다로웠다. 연구진은 기존보다 더 빠른 움직임을 볼 수 있도록 향상시킨 실험기법과 구조 변화 모델링 분석기법으로 금 삼합체(gold trimer)* 분자의 형성과정을 관찰했다. 그 결과, 세 개의 금 원자를 선형으로 잇는 두 개의 화학결합이 동시에 형성되는 것이 아니라, 한 결합이 35펨토 초 만에 먼저 빠르게 형성되고, 360펨토 초 뒤 나머지 결합이 순차적으로 형성됨을 규명했다. * 세 개의 금 원자로 이뤄진 화합물(화학식 : [Au(CN)2-]3)로, 수용액 상에서 가까운 곳에 흩어져 있다가 빛(레이저)을 가하면 반응하여 화학결합을 시작하는 특징이 있다. 또한, 화학결합이 형성된 후 원자들이 같은 자리에 머물지 않고 원자들 간의 거리가 늘어났다가 줄어드는 진동 운동을 하고 있음도 관측했다. 연구진은 앞으로 단백질과 같은 거대분자에서 일어나는 반응뿐만 아니라 촉매분자의 반응 등 다양한 화학반응의 진행 과정을 원자 수준에서 규명해 나갈 계획이다. 제1 저자인 김종구 IBS 선임연구원(우리 대학 화학과 박사과정 졸업생)은 “장기적 관점에서 꾸준히 연구한 결과, 반응 중인 분자의 진동과 반응 경로를 직접 추적하는 ‘펨토초 엑스선 회절법’을 완성할 수 있었다”며 “앞으로 다양한 유‧무기 촉매 반응과 체내에서 일어나는 생화학적 반응들의 메커니즘을 밝혀내게 되면, 효율이 좋은 촉매와 단백질 반응과 관련된 신약 개발 등을 위한 기초정보를 제공할 수 있을 것”이라고 포부를 밝혔다.
2020.06.26
조회수 22909
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1