본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9B%90%EC%B2%9C%EA%B8%B0%EC%88%A0%EA%B0%9C%EB%B0%9C
최신순
조회순
저전력·고속 터널 전계효과 트랜지스터 개발
물리학과 조성재 교수 연구팀이 기존의 금속 산화물 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET) 대비 작동전력 소모량이 10배 이상, 대기전력 소모량이 1만 배 가까이 적은 저전력, 고속 트랜지스터를 개발했다. 조 교수 연구팀은 2차원 물질인 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 두 물질의 접합이 아닌 단일 물질의 두께 차이에 의한 이종접합 터널을 제작하는 데 성공했다. 이러한 단일 물질의 이종접합을 터널 트랜지스터에 활용하면 서로 다른 물질로 제작한 이종접합 트랜지스터에서 발생했던 격자 불균형, 결함, 계면 산화 등의 문제를 해결할 수 있어 고성능 터널 트랜지스터의 개발이 가능하다. 김성호 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 1월 27일 자 온라인판에 게재됐다. (논문명 : Thickness-controlled black phosphorus tunnel field-effect transistor fro low-power switches). 무어 법칙에 따른 트랜지스터 소형화 및 집적도 증가는 현대의 정보화 기술을 가능하게 했지만 최근 트랜지스터의 소형화가 양자역학적 한계에 다다르면서 전력 소모가 급격히 증가해 이제는 무어 법칙에 따라 트랜지스터 소형화가 진행되지 못하는 상황이다. 최근에는 자율주행차, 사물인터넷 등의 등장으로 많은 양의 데이터를 저전력, 고속으로 처리할 수 있는 비메모리 반도체의 기술 발달이 시급히 요구되고 있다. 트랜지스터의 전력 소모는 크게 작동 전력 소모와 대기 전력 소모로 나뉜다. 작동 전력과 대기 전력을 같이 낮추기 위해서는 트랜지스터의 작동 전압과 대기 상태 전류를 동시에 낮추는 것이 필수적이다. 이를 위해서는 전류를 10배 증가시키는데 필요한 전압으로 정의되는 SS 값(subthreshold swing, 단위: mV/decade = mV/dec)의 감소가 필요한데, 금속 산화물 반도체 전계효과 트랜지스터에서는 SS 값이 상온에서 60 mV/dec 이하로 낮아질 수 없다. 이를 해결하기 위해서는 상온에서 SS 값을 60 mV/dec 이하로 낮출 수 있는 새로운 트랜지스터의 개발이 필요하다. 이전에 개발되었던 낮은 SS를 가지는 저전력 터널 트랜지스터의 경우 트랜지스터 채널을 구성하는 두 물질의 이종접합 계면에서 산화막 등의 문제가 발생하여 작동 상태에서 낮은 전류를 가지는 문제가 있었다. 작동 상태 전류는 트랜지스터 작동속도에 비례하기 때문에, 낮은 작동 상태 전류는 저전력 트랜지스터의 경쟁력을 떨어뜨린다. 조 교수 연구팀이 적은 전력소모를 위한 낮은 SS 값과 고속 작동을 위한 높은 작동 상태 전류를 단일 트랜지스터에서 동시에 달성한 것은 유례없는 일로 2차원 물질 기반의 저전력 트랜지스터가 기존의 금속 산화물 반도체 전계효과 트랜지스터의 전력 소모 문제를 해결하고, 궁극적으로 기존 트랜지스터를 대체하고 미래의 저전력 대체 트랜지스터가 될 수 있음을 의미한다. 조성재 교수는 “이번 연구는 기존의 어떤 트랜지스터보다 저전력, 고속으로 작동해 실리콘 기반의 CMOS 트랜지스터를 대체할 수 있는 저전력 소자의 필요충분조건을 최초로 만족시킨 개발이다”라며 “대한민국 비메모리 산업뿐 아니라 세계적으로 기초 반도체 물리학 및 산업 응용에 큰 의의를 지닌다”라고 말했다. 이번 연구는 한국연구재단 미래반도체신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.02.20
조회수 16291
생명화학공학과 대학원생들, 시스템 대사공학 전략 발표
〈 양동수 박사과정, 박다현 석사과정, 최경록 박사과정, 조재성 박사과정, 장우대 박사과정 〉 우리 대학 생명화학공학과 대학원생 다섯 명이 대사공학과 시스템 생물학, 합성 생물학의 결합 시스템 등 대사공학 전반의 전략에 대한 논문을 발표했다. 생명화학공학과는 최근 박사학위를 마친 최경록 연구원과 장우대, 양동수, 조재성 박사과정, 박다현 석사과정이 친환경 화학물질 생산을 위해 필수적인 미생물 공장을 개발하는 전략을 총정리했다. 이 연구의 결과는 셀(Cell)지가 발행하는 생명공학 분야 권위 리뷰 저널인 ‘생명공학의 동향(Trends in Biotechnology)’ 8월호 표지논문 및 주 논문 (Feature review)에 게재됐다. (논문명 : Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering) 시스템 대사공학은 기존의 석유화학산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 KAIST 생명화학공학과의 이상엽 특훈교수가 창시한 연구 분야다. 전통적 대사공학에 시스템 생물학, 합성 생물학 및 진화 공학 기법을 접목한 시스템 대사공학은 직관적 전략이나 무작위 돌연변이 유발에 의존하는 기존의 대사공학과 비교해 적은 비용과 인력, 짧은 시간 내에 산업에서 이용 가능한 고성능 균주 개발을 가능하게 만든다. 연구 기획 단계에서부터 실제 공장에서 균주의 발효 공정 및 발효를 통해 생산된 물질의 분리/정제 공정까지 고려함으로써 산업 균주 개발 도중 불필요한 시행착오를 최소화할 수 있다. 본 논문에서는 시스템 대사공학 전략을 연구의 흐름에 따라 ▲프로젝트 디자인 ▲균주 선정 ▲대사회로 재구성 ▲표적 화합물에 대한 내성 향상 ▲대사 흐름 최적화 ▲산업 수준으로의 생산 규모 확대 등 일곱 단계로 나누고, 각 단계에서 활용할 수 있는 최신 도구 및 전략들을 총망라했다. 더불어 바이오 기반 화합물 생산의 최신 동향과 함께 고성능 생산 균주를 보다 효과적으로 개발하기 위해 시스템 대사공학이 나아가야 할 방향도 함께 제시했다. 주저자인 최경록 연구원은 “기후 변화가 커지며 기존의 석유화학 산업을 친환경 바이오산업으로 대체하는 것이 불가피하다”라며 “시스템 대사공학은 산업에서 활용 가능한 고성능 생산 균주의 개발을 촉진해 바이오산업 시대의 도래를 앞당길 것이다”라고 말했다. 지도교수인 이상엽 특훈교수는 “그간 우리 연구실과 전 세계에서 수행한 수많은 대사공학연구를 우리가 제시한 시스템 대사공학 전략으로 통합해 체계적으로 분석 및 정리하고 앞으로의 전략을 제시했다는 점에서 큰 의미가 있다”라며 “권위 있는 학술지에 주 논문이자 표지논문으로 게재된 훌륭한 연구를 수행한 학생들이 자랑스럽다”라고 말했다. 이상엽 특훈교수 연구팀은 실제로 시스템 대사공학 전략을 이용해 천연물, 아미노산, 생분해성 플라스틱, 환경친화적 플라스틱 원료, 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 바 있다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 및 한화케미칼이 지원하는 KAIST-한화 미래 기술 연구소의 지원을 받아 수행됐다.
2019.07.24
조회수 19627
이상엽 특훈교수, 김현욱 교수, 인공지능 이용한 효소기능 예측 기술 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수의 초세대 협업연구실 공동연구팀이 딥러닝(deep learning) 기술을 이용해 효소의 기능을 신속하고 정확하게 예측할 수 있는 컴퓨터 방법론 DeepEC를 개발했다. 공동연구팀의 류재용 박사가 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 6월 20일 자 온라인판에 게재됐다. (논문명 : Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers) 효소는 세포 내의 생화학반응들을 촉진하는 단백질 촉매로 이들의 기능을 정확히 이해하는 것은 세포의 대사(metabolism) 과정을 이해하는 데에 매우 중요하다. 특히 효소들은 다양한 질병 발생 원리 및 산업 생명공학과 밀접한 연관이 있어 방대한 게놈 정보에서 효소들의 기능을 빠르고 정확하게 예측하는 기술은 응용기술 측면에서도 중요하다. 효소의 기능을 표기하는 시스템 중 대표적인 것이 EC 번호(enzyme commission number)이다. EC 번호는 ‘EC 3.4.11.4’처럼 효소가 매개하는 생화학반응들의 종류에 따라 총 4개의 숫자로 구성돼 있다. 중요한 것은 특정 효소에 주어진 EC 번호를 통해서 해당 효소가 어떠한 종류의 생화학반응을 매개하는지 알 수 있다는 것이다. 따라서 게놈으로부터 얻을 수 있는 효소 단백질 서열의 EC 번호를 빠르고 정확하게 예측할 수 있는 기술은 효소 및 대사 관련 문제를 해결하는 데 중요한 역할을 한다. 작년까지 여러 해에 걸쳐 EC 번호를 예측해주는 컴퓨터 방법론들이 최소 10개 이상 개발됐다. 그러나 이들 모두 예측 속도, 예측 정확성 및 예측 가능 범위 측면에서 발전 필요성이 있었다. 특히 현대 생명과학 및 생명공학에서 이뤄지는 연구의 속도와 규모를 고려했을 때 이러한 방법론의 성능은 충분하지 않았다. 공동연구팀은 1,388,606개의 단백질 서열과 이들에게 신뢰성 있게 부여된 EC 번호를 담고 있는 바이오 빅데이터에 딥러닝 기술을 적용해 EC 번호를 빠르고 정확하게 예측할 수 있는 DeepEC를 개발했다. DeepEC는 주어진 단백질 서열의 EC 번호를 예측하기 위해서 3개의 합성곱 신경망(Convolutional neural network)을 주요 예측기술로 사용하며, 합성곱 신경망으로 EC 번호를 예측하지 못했을 경우 서열정렬(sequence alignment)을 통해서 EC 번호를 예측한다. 연구팀은 더 나아가 단백질 서열의 도메인(domain)과 기질 결합 부위 잔기(binding site residue)에 변이를 인위적으로 주었을 때, DeepEC가 가장 민감하게 해당 변이의 영향을 감지하는 것을 확인했다. 김현욱 교수는 “DeepEC의 성능을 평가하기 위해서 이전에 발표된 5개의 대표적인 EC 번호 예측 방법론과 비교해보니 DeepEC가 가장 빠르고 정확하게 주어진 단백질의 EC 번호를 예측하는 것으로 나타났다”라며 “효소 기능 연구에 크게 이바지할 것으로 기대한다”라고 말했다. 이상엽 특훈교수는 “이번에 개발한 DeepEC를 통해서 지속해서 재생되는 게놈 및 메타 게놈에 존재하는 방대한 효소 단백질 서열의 기능을 보다 효율적이고 정확하게 알아내는 것이 가능해졌다”라고 말했다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 및 바이오·의료기술 개발 Korea Bio Grand Challenge 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 인공지능 기반의 DeepEC를 이용한 효소 기능 EC 번호 예측
2019.07.03
조회수 19106
이상엽 교수, 지방산∙바이오디젤 생산 가능한 미생물 개발
〈 이상엽 특훈교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 비식용 바이오매스 기반의 최고성능을 갖는 지방산과 지방산 유도체로 전환하는 미생물 균주 및 발효 공정을 개발했다. 김혜미, 채동언 연구원 등이 참여한 이번 연구결과는 국제학술지 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)」 6월 17일 자 온라인판에 게재됐다. (논문명 : Engineering of an oleaginous bacterium for the production of fatty acids and fuels) 화석원료는 현대 산업의 기초 물질이자 우리 생활 전반에 광범위하게 이용되는 원료 및 에너지원으로 필수적인 물질이다. 그러나 원유 매장량 고갈에 대한 우려와 원유 산업으로 인한 온난화 등의 환경문제가 세계적으로 매우 심각한 상황이다. 특히 우리나라의 경우 석유를 전량 수입에 의존하기 때문에 국제 유가 변동에 매우 취약해 환경문제를 해결과 원유를 대체할 수 있는 지속 가능한 바이오 기반 재생에너지의 생산이 필수다. 따라서 재생 가능한 자원 기반의 바이오 연료 개발이 활발히 이뤄지고 있는데, 그중 경유를 대체할 수 있는 환경친화적 연료인 바이오 디젤이 있다. 바이오 디젤은 주로 식물성 기름이나 동물성 지방의 에스터교환(transesterification) 반응을 통해 만들어지고 있다. 이 특훈교수 연구팀은 바이오 디젤 생산을 위해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스 주성분인 포도당으로부터 지방산 및 바이오 디젤로 이용할 수 있는 지방산 유도체를 생산하는 균주를 개발했다. 연구팀은 자연적으로 세포 내 기름을 축적하는 것으로 알려진 미생물인 로도코커스(Rhodococcus)를 시스템 대사공학을 통해 대사 회로를 체계적으로 조작해 최고성능으로 지방산 및 바이오 디젤을 생산하는 균주를 개발했다. 먼저 로도코커스의 배양 조건을 최적화한 뒤 포도당을 섭취해 세포 내 과량의 기름(트리아실글리세롤, triacylglycerol)을 축적하게 했다. 이후 선별한 외부 효소를 도입해 효과적으로 기름을 지방산으로 전환해 최고 농도의 지방산 생산 균주를 개발했다. 또한, 지방산을 두 가지 형태의 바이오 디젤 연료 물질로 효율적으로 전환하는 추가적인 유전자 조작을 통해 바이오 디젤을 최고성능으로 생산하는 데 성공했다. 연구팀은 이전에 대장균을 이용해 바이오 연료인 휘발유를 생산하는 미생물 세계 최초로 개발한 바 있다. (Nature 표지논문 게재) 그러나 해당 기술은 생산성이 리터당 약 0.58g 정도로 매우 낮다는 한계가 있었다. 이를 극복하기 위해 로도코커스 균주를 이용해 포도당으로부터 리터당 50.2 g의 지방산 및 리터당 21.3 g의 바이오 디젤 생산에 성공했다. 이러한 성과를 통해 향후 식물성이나 동물성 기름에 의존하지 않고 비식용 바이오매스로부터 미생물 기반 바이오 연료의 대량 생산까지 가능하게 할 것으로 기대된다. 이상엽 특훈교수는 “이번에 개발한 고효율 미생물 기반 지방산과 바이오 디젤 생산 연구는 앞으로 환경문제 해결과 더불어 원유, 가스 등 화석연료에 의존해온 기존 석유 화학 산업에서 지속할 수 있고 환경친화적인 바이오 기반산업으로의 재편에 큰 역할을 할 것이다”라고 말했다. 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1. 미생물 내에 축적된 오일과 이를 기반으로 생산되는 지방산 및 바이오 디젤
2019.06.20
조회수 16382
이상엽 교수, 포도향 생산하는 미생물 개발
〈 이상엽 특훈교수 〉 〈 1저자 루오 쯔 웨(Zi Wei Luo) 박사후 연구원, 조재성 박사과정 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대사공학 기법을 이용해 재조합 미생물 기반의 포도향을 생산하는 공정을 개발했다. 연구팀의 기술은 재생 가능한 탄소 순환형 바이오매스를 통해 화학적 촉매 반응 없이 순수한 생물학적 공정만으로 메틸안트라닐산을 제조하는 기술이다. 생산 공정이 단순하고 친환경적이기 때문에 경제적인 방식으로 고부가가치 물질인 메틸안트라닐산을 생산할 수 있다는 의의가 있다. 루오 쯔 웨(Zi Wei Luo) 박사후연구원, 조재성 박사과정이 공동 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원회보(PNAS)’ 5월 13일 자 온라인판에 게재됐고 하이라이트 논문으로 소개됐다. (논문명 : Microbial production of methyl anthranilate, a grape flavor compound) 석유 자원의 고갈과 기후 변화 및 환경 문제 우려가 커지면서 여러 유용한 화학물질 생산을 위한 친환경적이고 지속 가능 공정의 중요성과 관심이 날로 커지고 있다. 특히 대사공학은 재생 가능한 비식용 바이오매스로부터 다양한 천연 및 비천연 화합물 생산을 가능하게 해 지속 가능한 발전을 위한 해결책을 제공해 왔다. 그러나 식물 유래의 천연화합물 생산을 위한 미생물 개발은 여전히 부족해 계속 도전해야 할 분야로 남아있다. 메틸안트라닐산은 콩코드 포도 특유의 향과 맛을 내는 주요 천연화합물로 여러 과일 및 식물에 함유돼 있다. 화장품이나 의약품 등에 향미 증진제로 광범위하게 사용되는 물질로 다방면으로 활용할 수 있다. 그러나 식물에서 메틸안트라닐산을 추출하는 방식은 경제성이 낮아 지난 100여 년간 유기용매를 사용하는 석유 화학적 방법으로 제조돼 인공착향료로 분류됐다. 이 특훈교수 연구팀은 대사공학 기법으로 미생물의 대사 회로를 설계해 포도당과 같이 재생 가능한 바이오매스로부터 100% 천연 메틸안트라닐산을 화학 촉매 없이 효율적으로 생산하는 공정을 최초로 개발했다. 연구팀은 이상(二相) 추출 발효 과정을 이용해 생산되는 메틸안트라닐산 메틸을 정제하는 방법도 개발했다. 이 특훈교수는 “지난 100년 동안 석유화학 기반으로만 생산된 메틸안트라닐산을 100% 바이오 기반의 친환경 방식으로 생산할 수 있게 된 기술이다”라며 “천연 메틸안트라닐산은 향후 식품, 의약품 및 화장품 산업에 다방면으로 이용할 수 있을 것이다”라고 밝혔다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’의 지원을 받아 수행됐다. □ 그림 설명 그림1. 메틸안트라닐산 생산 과정
2019.05.20
조회수 15982
이도창, 김신현 교수, 반도체 나노막대로 초박막 편광필름 개발
우리 대학 생명화학공학과 이도창, 김신현 교수 연구팀이 반도체 나노막대가 일렬로 배열된 수 나노미터 두께의 편광필름을 개발했다. 이 교수 연구팀은 나노막대입자의 상호작용력을 미세하게 조절해 나노막대들이 스스로 공기-용액 계면에서 일렬종대로 조립되게 설계했다. 이러한 자기조립기술은 전기장이나 패터닝된 기판 등 외부의 도움이 필요하지 않기 때문에 다양한 분야에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 김다흰 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano letters)’ 2월 19권 2호에 출판됐다. (논문명 : Depletion-mediated interfacial assembly of semiconductor nanorods). 반도체 나노막대는 막대의 긴 방향을 따라 편광 빛을 내는 독특한 광학 특성이 있어 디스플레이 분야에서 막대한 빛 손실을 가져왔던 기존 편광판을 대체할 수 있는 전도유망한 나노소재로 주목받고 있다. 단일 나노막대의 편광 특성을 소자 면적의 필름에서 구현하기 위해서는 구성하는 모든 나노막대가 한 방향으로 정렬된 뗏목 형태인 스멕틱(smectic) 자기조립 구조가 필요하다. 그러나 수십 나노미터의 길이와 수 나노미터 두께의 나노막대를 대면적에서 정렬하기 위해서는 전기장을 유도하는 전극 기판 혹은 한정된 공간에서 입자를 조립할 수 있는 패터닝된 기판을 필요로 해 실제 소자에 적용하기에는 한계가 있다. 이렇게 조립된 나노막대 필름은 두께가 불균일하고 두꺼워 균일한 초박막 층을 사용해야 하는 필름 소자에는 적합하지 않았다. 연구팀은 문제 해결을 위해 공기-용액 계면과 나노막대 간의 인력, 나노막대와 나노막대 간의 인력을 순차적으로 유도해 단일층 두께의 나노막대 스멕틱 필름을 제작했다. 연구팀의 고배향 필름 제작 기술은 기판으로 사용된 공기-용액 계면을 용액 증발과 함께 제거할 수 있고 조립 면적에 제한이 없어 소자 종류에 상관없이 적용할 수 있다. 연구팀은 길이 30나노미터, 지름 5나노미터의 나노막대들이 수십 마이크로 제곱 면적에 걸쳐 88%의 정렬도로 초박막 필름을 형성함을 확인했다. 나아가 계면과 나노막대, 나노막대와 나노막대 간 상호작용력을 정량적으로 계산 및 비교함으로써 나노막대가 계면에서 조립되는 원리를 밝혔고, 계면에서 얻을 수 있는 다양한 형태의 자기조립구조를 증명했다. 연구팀이 개발한 반도체 나노막대의 스멕틱 필름은 편광 발광층으로 디스플레이 분야에 활발히 적용돼 소자 두께의 최소화, 비용 절감, 성능 강화 등에 이바지할 수 있을 것으로 기대된다. 1 저자인 김다흰 연구원은 “입자의 상호작용력 조절을 통해 단일층 두께에서 나노막대 스스로가 방향성을 통제하며 고배열로 정렬할 수 있다는 것을 보였다. 이는 외부 힘 없이도 더욱 정교한 자기조립구조가 가능하다는 것을 보여주는 결과이다”라며 “고배열, 고배향을 갖는 다양한 나노입자의 초박막 필름 제작 및 필름 소자에 활발히 사용될 것이다”라고 말했다. 이번 연구는 한국연구재단 나노․소재원천기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 공기-용액 계면에서 나노막대의 자기조립 과정을 보여주는 모식도 그림2. 나노막대 표면을 감싸고 있는 리간드 층 밀도에 따른 자기조립구조 모식도와 전자현미경 이미지
2019.03.20
조회수 12080
김용훈 교수, 페로브스카이트 나노선 기반 소자 구현방안 제시
〈 이주호 박사과정, 무하메드 칸 박사후 연구원, 김용훈 교수 〉 우리 대학 전기및전자공학부 김용훈 교수 연구팀이 저차원 페로브스카이트 나노소재의 새 물성을 밝히고 이를 이용한 새로운 비선형 소자 구현 방법을 제시했다. 연구팀은 최근 태양전지, 발광다이오드(LED) 등 광소자 응용의 핵심 요소로 주목받는 페로브스카이트 나노소재가 차세대 전자 소자 구현에도 유망함을 증명했다. 또한 초절전, 다진법 전자 소자 구현에 필요한 부성 미분 저항 소자를 구현하는 새로운 이론적 청사진을 제시했다. 무하메드 칸(Muhammad Ejaz Khan) 박사후연구원과 이주호 박사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 7일자 온라인판에 게재됐고, 표지논문으로 선정돼 출간될 예정이다.(논문명 : Semimetallicity and negative differential resistance from hybrid halide perovskite nanowires, 하이브리드 할로겐화 페로브스카이트 나노선에서의 준금속성과 부성미분저항 발현) 유무기 하이브리드 할로겐화 페로브스카이트 물질은 우수한 광학적 성능뿐만 아니라 저비용의 간편한 공정으로 제작할 수 있어 최근 태양전지 및 LED 등 다양한 광소자 응용 분야에서 주목받고 있다. 그러나 할로겐화 페로브스카이트의 전자 소자 응용에 관한 연구는 세계적으로도 아직 부족한 상황이다. 김 교수 연구팀은 최근 새롭게 제조 기술이 개발되고 양자효과가 극대화되는 특성을 가진 저차원 유무기 할로겐화 페로브스카이트 물질에 주목했다. 연구팀은 슈퍼컴퓨터를 활용해 우선 1차원 페로브스카이트 나노선의 유기물을 벗겨내면 기존에 보고되지 않은 준 금속성 특성을 발현할 수 있다는 것을 발견했다. 이 1차원 무기 틀을 전극으로 활용해 단일 페로브스카이트 나노선 기반의 터널링 접합 소자를 제작하면 매우 우수한 비선형 부성미분저항(negative differential resistance, NDR) 소자를 구현할 수 있음을 확인했다. 부성미분저항은 일반적인 특성과는 반대로 특정 구간에서 전압이 증가할 때 전류는 오히려 감소해 전류-전압 특성 곡성이 마치 알파벳 ‘N’모양처럼 비선형적으로 나타나는 현상을 말한다. 차세대 소자 개발의 원천기술 이 되는 매우 중요한 특성이다. 연구팀은 나아가 이 부성미분저항 특성은 기존에 보고된 바 없는 양자 역학적 혼성화(quantum-mechanical hybridization)에 기반을 둔 새로운 부성미분저항 원리에 기반함을 밝혀냈다. 연구팀은 저차원 할로겐화 페로브스카이트의 새로운 구조적, 전기적 특성을 규명했을 뿐 아니라 페로브스카이트 기반의 터널링 소자를 이용하면 획기적으로 향상된 부성미분저항 소자 특성을 유도할 수 있음을 증명했다. 김 교수는 “양자역학에 기반한 전산모사가 첨단 나노소재 및 나노소자의 개발을 선도할 수 있음을 보여준 연구이다”라며 “특히 1973년 일본의 에사키(Esaki) 박사의 노벨상 수상 주제였던 양자역학적 터널링 소자 개발의 새로운 방향을 제시한 연구이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구개요
2019.02.21
조회수 18616
이현주 교수(전기및전자공학부), 움직이는 쥐에 초음파 뇌 자극 실험 성공
우리 대학 전기및전자공학부 이현주 교수 연구팀이 초소형화 및 초경량화한 미세 초음파 소자(CMUT)를 통해 자유롭게 움직이는 쥐의 뇌에 초음파 자극을 줄 수 있는 기술을 개발했다. 이 교수 연구팀은 1g 미만의 초경량 초음파 소자 개발을 통해 움직이는 쥐의 뇌 초음파 결과를 얻는 데 성공했다. 이는 쥐 무게의 6배에 달하는 초음파 변환기를 사용해 움직이는 쥐에 적용할 수 없었던 기존 기술의 한계를 극복한 것이다. 김형국 석사가 주도하고 김성연 석사과정과 덴마크 공과대학교 (DTU) 티어샤(Thielscher) 교수 연구팀이 참여한 이번 연구는 국제 학술지 ‘브레인 스티뮬레이션(Brain Stimulation)’ 11월 17일자 온라인판에 게재됐고, 3월자 12권 2호에 출판될 예정이다. (논문명 : 자유롭게 움직이는 동물에서 비침습 뇌자극이 가능한 초소형 초음파 링 변환자 어레이, Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals) 최근 뇌 자극 기술로 비침습적이고 집속이 가능한 초음파 자극 기술이 차세대 뇌 자극 기술로 주목받고 있다. 뇌를 자극하는 기존 방법에는 뇌의 특정 영역을 미세 자극할 수 있는 심부뇌자극술(DBS)과 광유전학 기반의 광 자극이 있지만 침습도가 높아 임상에 적용이 어렵다. 경두개전기자극술(TES)과 경두개자기자극술(TMS) 등은 비침습적이지만 자극 부위가 넓고 심부 자극이 불가능해 적용 범위에 한계가 있다. 초음파는 비침습적이기 때문에 동물실험뿐만 아니라 인체에도 안전하게 적용할 수 있어 임상 시험에 활용된다. 또한 초음파 집속을 통해 국소부위 자극과 심부 자극이 모두 가능해 타 기술 대비 이점이 많다. 초음파 뇌 자극 기술은 개발 초기 단계이기 때문에 지금까지는 쥐를 고정한 상태에서의 연구 결과만 발표됐다. 뇌 자극 관련 연구는 동물의 행동실험이 필수적임에도 불구하고 무거운 초음파 소자 때문에 쥐를 고정 및 마취해야만 했다. 연구팀은 미소 전자 기계 시스템(MEMS) 기술을 통한 정전용량 미세 초음파 소자(CMUT)의 초소형, 초경량화를 연구했다. 쥐의 구조에 맞는 중심 주파수, 크기, 초점 거리, 초음파 세기를 갖는 1g 미만의 소자와 행동실험에 적합한 실험 장치를 제작했다. 연구팀은 초음파 소자의 성능 평가를 위해 쥐 뇌의 운동 피질 (motor cortex)을 자극해 쥐의 앞발이 움직이는 운동 반응을 확인하고 승모근의 근전도를 측정했다. 연구팀은 초음파의 강도를 높일수록 운동 피질을 자극할 때 나오는 쥐의 앞발이 움직이는 현상이 더 자주 발생함을 확인했다. 결과적으로 초음파가 세지면서 반응의 성공률이 높아지는 결과를 얻어냈다. 연구팀의 초음파 소자는 쥐 뇌의 3~4mm 깊이까지 초음파가 전달되고 쥐 뇌 전체 크기의 25% 영역을 자극할 수 있다. 이 교수 연구팀은 향후 자극 범위를 국소화해 소형 동물 뇌의 단일 영역도 특이적으로 자극할 수 있는 차세대 뉴로툴 기술을 개발할 계획이다. 연구팀은 움직이는 쥐의 결과를 실시간으로 얻어낸 이번 연구 결과를 토대로 초음파가 수면에 미치는 영향을 연구 중이다. 향후 수면 연구뿐 아니라 다양한 행동실험 연구에 초음파 자극 기술을 적용할 수 있을 것으로 예상된다. 이 교수는 “머리를 고정하고 마취를 매번 시켰던 동물실험 방식을 벗어나 움직이는 쥐의 초음파 뇌 자극이 처음으로 가능해졌다”라며 “향후 수면장애, 파킨슨병, 치매, 우울증 등 여러 뇌 질환의 새로운 치료법 연구와 특이적 뇌 회로 규명에 광범위하게 적용될 수 있을 것이다”라고 말했다. 이번 연구는 과학기술정보통신부 뇌과학원천기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 행동실험이 가능한 초소형 비침습 초음파 자극 장치 그림2. 정전용량형 미세 초음파 소자의 (a-c) 구조 및 (d) 2D 시뮬레이션 빔 형
2019.02.11
조회수 12443
유승협 교수, 초저전력 심박 및 산소포화도 센서 구현
〈 유승협 교수, 이현우 박사과정〉 우리 대학 전기및전자공학부 유승협 교수 연구팀이 유기발광다이오드(OLED)와 유기포토다이오드(OPD)를 이용해 초저전력 심박 및 산소포화도 센서 구현에 성공했다. 전기및전자공학부 유회준 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 심박 및 산소포화도 센서가 다양한 웨어러블 기기에 적용될 수 있는 계기가 될 것으로 기대된다. 이현우 박사과정이 1저자로 참여한 이번 연구는 ‘사이언스 어드밴스 (Science Advances)’11월 9일자 온라인 판에 게재됐다. (논문명 : Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch) 심박 및 산소포화도 센서는 신체의 건강 상태를 나타내는 가장 중요한 생체 신호의 하나인 심장 박동과 혈액 내 산소와 결합한 헤모글로빈의 농도로서 신체 내 원활한 산소 공급 여부를 가늠할 수 있는 산소포화도를 측정하는 기기이다. 심박 및 산소포화도 센서에는 일반적으로 LED와 포토다이오드로 구성된 광학적 방법이 이용된다. 이 기술은 간단하고 소형화가 용이한 비 침습적 방법이면서 주요 생체신호의 모니터링이 가능하다는 이점이 있어 병원용 기기뿐 아니라 스마트 워치 등 웨어러블 기기에도 탑재되는 경우가 많다. 이러한 센서는 배터리 용량이 매우 제한적인 웨어러블 기기의 특성상 센서의 전력소모를 줄이는 것이 매우 중요하다. 그러나 현재 상용 심박 및 산소포화도 센서는 이산소자들의 배열로 구성돼 피부에서 산란으로 인해 전방위로 전달되는 빛을 효율적으로 감지하기 어렵다. 이러한 이유로 좀 더 강한 빛을 필요로 하기 때문에 장기간 실시간 모니터링에는 한계가 있다. 연구팀은 문제 해결을 위해 광원의 발광 파장에 따른 피부에서의 빛의 전달 형태를 실험과 피부 모델 시뮬레이션을 통해 검토했다. 유기소자의 경우 자유로운 패턴 구현이 용이한 점을 최대한 이용해 유기포토다이오드가 유기발광다이오드를 동심원 형태로 감싸 피부에서 전방위로 분포되는 빛을 효율적으로 감지하는 최적 구조를 갖는 유연 심박 및 산소포화도 센서를 구현했다. 이를 통해 평균소비전력 약 0.03밀리와트(mW)만으로도 심박 및 산소포화도를 측정할 수 있었다. 이는 LED와 PD가 일렬로 배치된 상용 센서가 갖는 통상 전력소모 양의 약 수십 분의 일에 해당하는 매우 작은 값으로 24시간 동작에도 1밀리와트시(mWh)가 채 되지 않는 양이다. 이 기술은 매우 낮은 전력 소모 외에도 유기소자가 갖는 유연 소자의 형태적 자유도도 그대로 갖는다. 따라서 스마트 워치부터 작게는 무선 이어폰, 스마트 반지, 인체 부착형 패치 등의 웨어러블 기기에서 배터리로 인한 제한을 최소화하면서 일상에 지장 없이 지속적인 생체 신호 모니터링을 가능하게 할 것으로 기대된다. 유승협 교수는 “생체 신호의 지속적인 모니터링은 건강의 이상 신호를 상시 검출 할 수 있게 할 뿐 아니라 향후 빅데이터 등과 연계하면 이들 생체신호의 특정 패턴과 질병 간의 상호 관계를 알아내는 등에도 활용될 수 있다.”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단-나노·소재원천기술개발사업 및 선도연구센터 사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 연구팀이 개발한 센서
2018.11.12
조회수 11668
김상욱 교수, 홍합접착제 이용해 성능 높인 그래핀 섬유 개발
〈 김인호 박사과정, 김상욱 교수〉 우리 대학 신소재공학과 김상욱 교수 연구팀이 흑연계 그래핀을 이용해 우수한 물성을 갖는 신개념의 탄소섬유를 개발했다. 연구팀이 개발한 탄소섬유는 홍합접착제로 잘 알려진 폴리도파민(poly-dopamine)을 이용해 그래핀 층간 접착력을 높여 고강도, 고전도도를 갖는다. 이 신소재는 직물형태의 다양한 웨어러블 장치용 원천소재로 활용 가능할 것으로 기대된다. 김인호 박사과정이 1저자로 참여한 이번 연구는 재료과학분야 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 10월 4일자 표지논문으로 선정됐다. (논문명 : Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity, 홍합접착제를 이용한 구조적 결함 제어를 통한 고강도/고전도도의 그래핀 액정 섬유 제조) 김상욱 교수 연구팀은 그래핀이 액체에 분산됐을 때 액정을 형성하는 새로운 현상을 최초로 밝히고 관련 원천특허를 보유하고 있다. 이후 그래핀 액정을 기반으로 하는 다양한 신소재 관련 후속연구를 통해 해당 분야를 선도하고 있다. 최근에는 그래핀 액정을 이용한 값싼 습식 섬유공정을 통해 기존 탄소섬유보다 훨씬 저렴한 탄소섬유의 제조가 가능한 것으로 규명됐다. 그러나 현재까지의 공정으로는 섬유 형성 과정에서 그래핀 층의 접힘 현상이 발생해 공극이 발생한다는 고질적인 문제점이 있다. 이러한 구조적 결함은 탄소섬유의 기계적 물성 뿐 아니라 전기전도성도 취약하게 만든다. 김 교수 연구팀은 문제 해결을 위해 자연계의 홍합에서 영감을 얻어 개발된 고분자인 도파민의 접착 성질에 주목했다. 다양한 분야에서 연구되는 이 도파민을 이용하면 그래핀 층간의 접착력을 증가시켜 구조적 결함을 방지하는 효과를 기대할 수 있다. 연구팀은 이를 통해 구조적 결함이 제어된 고강도의 탄소섬유 제작에 성공했다. 또한 폴리도파민의 탄화과정을 통해 전기전도도 역시 향상된 섬유를 제조하는 데 성공했다. 연구팀은 도파민에 열처리를 가하면 그래핀과 유사한 구조를 갖는다는 이론을 바탕으로 그래핀 액정 상에서 도파민의 고분자화 조건을 최적화시켰고, 이를 섬유화해 기존 그래핀 섬유의 본질적인 결함 제어 문제를 해결했다. 또한 도파민의 구조 변환을 통해 기존 고분자의 근본적 한계인 전도도 측면에서 손해를 보지 않으면서, 도파민 분자에 존재하는 질소의 영향으로 전기전도도 측면에서도 물성이 향상됨을 확인했다. 연구를 주도한 김상욱 교수는 “그래핀 액정을 이용한 탄소섬유는 기술적 잠재성에도 불구하고 구조적 한계를 극복해야 하는 한계가 있었다”며 “이번 기술은 추후 복합섬유 제조 및 다양한 웨어러블 직물기반 응용소자에 활용 가능할 것이다”고 말했다. 신소재공학과 박정영 교수, KIST 정현수 박사의 지원을 받아 수행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업(하이브리드인터페이스기반 미래소재연구단), 나노․소재원천기술개발 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 머티리얼즈 표지 그림2. (좌) 일반적인 그래핀 섬유의 단면과 (중), (우) 도파민을 이용하여 두단계로 결함 제어된 후의 그래핀 섬유의 단면의 전자현미경 이미지
2018.10.17
조회수 14176
이상엽 교수, 미생물 발효한 친환경 기술로 햄(haem) 생산 기술 개발
〈 이 상 엽 특훈교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대장균을 발효시켜 바이오매스로부터 헴(haem)을 생산하고 세포 밖으로 분비할 수 있는 기술을 개발했다. 이는 대사공학 전략을 통해 헴의 생산량을 대폭 높이고 생산된 헴을 효과적으로 세포 바깥에 분비하는 데 성공한 친환경적, 효율적 원천기술로 생산한 헴을 이용해 각종 산업의 확장에 기여할 수 있을 것으로 기대된다. 자오신루이, 최경록 연구원이 참여한 이번 연구는 국제 학술지 ‘네이처 카탈리시스(Nature Catalysis)’ 8월 28일자 온라인 판에 게재됐다. 헴은 생명 유지에 필수적인 철분으로 혈액에서 산소를 운반하는 헤모글로빈이나 세포 호흡에 필수적인 사이토크롬을 비롯한 여러 중요한 단백질 기능에 핵심적 역할을 한다. 특히 인체 흡수율이 높기 때문에 고급 철분제나 약물로 이용된다. 무분별한 가축의 사육이 여러 사회 이슈를 불러일으키는 상황에서 최근 헴이 고기 맛을 내는 핵심 요소로 밝혀지며 콩고기에 미생물이나 식물에서 추출한 헴을 넣어 맛과 영양, 환경 등을 고려한 콩고기 조리법이 주목받기도 했다. 그러나 기존의 헴 생산 방식은 유기 용매를 이용한 동물의 혈액과 일부 식물 조직으로부터의 추출에 의존하고 있기 때문에 비효율적일 뿐 아니라 친환경적이지 않다는 한계가 있다. 대장균을 이용한 헴 생산 기술이 개발된 바 있지만 생산량이 수 밀리그램(mg)에 그치고 생산된 헴이 세포 내에 축적되기 때문에 헴 추출 등의 문제를 해결하지 못했다. 따라서 고농도로 헴을 생산하면서도 세포 바깥으로 헴을 분비해 정제를 용이하게 하는 친환경 생산 시스템 개발이 필요했다. 연구팀은 바이오매스를 이용한 고효율 헴 생산 미생물을 제작하기 위해 대장균 고유의 헴 생합성 회로를 구성했다. 또한 기존에 사용되지 않았던 C5 대사회로를 사용해 헴 생산의 전구체인 5-아미노레불린산을 생합성했다. 이를 통해 원가가 비싸고 세포 독성을 일으키는 물질인 글리신을 사용하지 않고도 헴 생산량을 대폭 높였다. 이 과정에서 연구팀은 헴 생산량이 향상됨에 따라 생산된 헴이 상당 비율로 세포 바깥으로 분비되는 것을 발견했다. 연구팀은 구성한 대장균의 헴 분비량을 더욱 높이기 위해 사이토크롬 생합성에 관여한다고 알려진 단백질인 헴 엑스포터를 과발현함으로써 헴 생산량과 세포외 분비량 모두가 향상된 헴 분비생산 균주를 개발했다. 이를 통해 헴 엑스포터와 헴의 세포외 분비 사이의 연관성을 밝혔다. 이번 연구를 통해 개발된 기술을 활용하면 환경, 위생, 윤리적 문제없이 재생 가능한 자원을 통해 헴 생산을 할 수 있다. 향후 의료 및 식품 산업 등 헴을 이용하는 다양한 분야에 중요한 역할을 할 것으로 예상된다. 이 특훈교수는 “건강 보조제, 의약품, 식품 첨가물 등 다양한 활용이 가능한 헴을 미생물발효를 통해 고효율로 생산했다”며 “생산된 헴의 3분의 2 가량을 세포 바깥으로 분비하는 시스템을 개발함으로써 산업적 활용을 위한 헴의 생산 및 정제를 용이하게 했다는 의의를 갖는다”고 말했다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 지원을 받아 수행됐다. □ 그림 설명 그림1. 대장균을 이용한 헴 생산 및 세포외 분비 전체 개념도
2018.09.06
조회수 14769
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다. 이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다. 이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다. 탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다. 탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다. 고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다. 그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다. 김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다. 폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다. 또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다. “김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구 개요 모식도
2018.04.26
조회수 20214
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3