본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9B%90%ED%8E%B8%EA%B4%91
최신순
조회순
7배 이상 높은 발광 3차원 퀀텀닷 나노구조체 개발
3차원 광학 나노구조체는 빛의 진폭, 위상, 편광 상태를 정밀하게 조작할 수 있어 포토닉스 분야에서 큰 관심을 받고 있다. 한국 연구진이 기존 기술로는 구현이 어려웠던 3차원 퀀텀닷 나노구조체를 정교하게 쌓아 올리는 적층 방식으로 구현하는 데 성공했다. 우리 대학 신소재공학과 정연식 교수, 전기및전자공학부 장민석 교수, 동국대학교 최민재 교수 공동 연구팀이 초미세 전사 프린팅 기반으로 3차원 퀀텀닷 구조 제작 기술을 개발했다고 27일 밝혔다. 연구팀이 개발한 이 기술은 대부분의 나노입자에 적용될 수 있어 범용성이 뛰어나고 우수한 패턴 품질을 제공할 수 있다. 또한, 프린팅 방식으로 대면적화가 가능해 고성능 소자 양산에 활용할 수 있는 장점을 가진다. 특히 편광 빛에 대한 선택적 반응을 보이는 구조적 비대칭성을 가진 대면적 카이랄 구조체를 구현해 기존 최고 기록인 19도* 대비 향상된 약 21도의 세계 최고 수준 **원편광 이색성(Circular dichroism) 성능을 달성했다. *참조: https://www.nature.com/articles/ncomms14180/figures/2 **원편광 이색성(Circular dichroism): 광학 활성이 있는 물질이 왼쪽과 오른쪽의 편광을 다르게 흡수해 나타나는 현상. 주로 단백질 등 유기화합물들의 구조체를 분석하는 용도로 활용됨. 높은 원편광이색성(단위: 도) 세기를 갖는 물질을 활용할수록 보다 정밀하고 빠른 검출이 가능해짐. 이론적으로 구현할 수 있는 최댓값은 45도임. 따라서 이 기술은 카이랄 특성을 가진 바이오 물질들을 검출할 수 있는 플랫폼으로 활용될 수 있으며, 높은 반응성 덕분에 더 정밀하고 빠른 약물 스크리닝이 가능할 것으로 기대된다. 또한, 장민석 교수팀이 설계한 그물 형태의 퀀텀닷 나노 패턴을 해당 기술을 활용하여 실험적으로 구현한 결과, 일반 퀀텀닷 필름 대비, 약 7배 이상 높은 발광 효율을 달성해 향후 고성능 퀀텀닷 디스플레이 소자에의 응용 가능성을 보였다. 연구를 주도한 정연식 교수는 “이번 연구는 퀀텀닷뿐만 아니라 다양한 고성능 콜로이드 소재를 3차원 나노 구조화함으로써, 차세대 광학 메타물질 및 고감도 바이오센서 분야 등에서 새로운 장을 열 것으로 기대된다 아울러 광학 설계 및 분석 연구와 초미세 나노공정 기술이 융합해 이룬 성공 사례의 하나로도 볼 수 있다”라고 말했다. 신소재공학과 김건영 박사와 전기및전자공학부 김신호 박사가 공동 제1 저자로 연구를 주도한 이번 연구는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 8월 14일 게재됐다. (논문명: Chiral 3D structures through multi-dimensional transfer printing of multilayer quantum dot patterns) 한편 이번 연구는 과학기술정보통신부와 한국연구재단이 지원하는 나노 및 소재기술개발사업, 교육부가 추진하는 이공분야 학술연구사업, 산업통상자원부에서 추진하는 전자부품산업기술개발사업의 지원을 받아 수행됐다.
2024.09.28
조회수 1393
빛 이용 나선형 구조체 방향조절 기술 개발
김 상 율 교수 우리 대학 화학과 김상율 교수, 서명은 교수 연구팀이 빛의 파동을 이용해 특정한 방향으로 꼬인 나선형 나노 구조체를 형성하는 데 성공했다. 연구 결과는 국제 학술지 네이처 커뮤니케이션(Nature Communications) 23일자 온라인 판에 게재됐다. 키랄성이란 오른손과 왼손처럼 모양은 같지만 서로 거울에 비친 형태를 가지는 물질을 말한다. 키랄성 물질은 돌리고 방향을 바꾸어도 서로 겹칠 수 없는 구조적 특성을 갖는다. 자연에 존재하는 DNA나 단백질 등을 구성하는 분자들은 이 중 한쪽 형태로만 이루어져 있다. 다량의 특정 키랄성 물질이 자연계에 존재하는 이유는 명백히 밝혀지지 않았다. 한 가지 가설은 유기 물질이 처음 생성될 시점에 우주로부터 나선을 따라 진동하는 빛의 파동인 원편광이 쬐어져, 원편광의 나선 방향이 유기 물질에 전달되어 한쪽 키랄성을 갖는 분자가 보다 많이 만들어 지게 됐다는 것이다. 연구팀은 이 가설에 입각해 원편광의 키랄성이 비키랄성 분자에 전달 및 증폭이 가능한지 알아보기 위해 빛에 반응하는 비키랄성 분자를 이용했다. 그리고 비키랄성 분자에 오른원편광, 왼원편광을 따로 노출시켜 분자들이 원편광의 방향에 따라 다른 방향의 나선을 그리며 쌓이는 것을 확인했다. 기존의 방법으로 나선형 구조체를 만들 때 반드시 키랄성 분자가 필요했던 것을 뒤집는 결과가 나온 것이다. 이처럼 단순히 특정 방향의 원편광을 비추는 것만으로 원하는 방향의 나선형 구조체를 만들 수 있고, 다시 반대 방향의 원편광을 비추면 나선의 방향을 뒤집는 것 또한 가능하다는 것을 증명했다. 뿐만 아니라 광중합을 이용해 나선형 구조체를 굳히는 방법을 개발해 구조체의 제작부터 방향을 고정시키는 전 과정을 빛을 이용해 제어하는 데 성공했다. 김상율 교수는 “원평광의 방향에 따라 비키랄성 분자의 자기조립 경로가 좌우되고, 자기조립을 통해 키랄성이 증폭되므로 결국 원편광의 방향이 나선 방향을 결정할 수 있다는 것이다”며 “키랄성의 기원에 대해 흥미로운 가능성을 제시하고 있다”고 말했다. 연구팀은 키랄성 센서를 만들거나 키랄성 분자를 분리하는 등의 응용 분야에 개발된 나선형 나노 구조체가 유용하게 사용될 것으로 전망했다. 한국연구재단 중견연구자 지원사업과 선도연구센터 육성사업의 지원을 받아 진행된 이번 연구는 김상율 교수와 서명은 교수가 교신 저자로, 김지성 학생이 제1저자로 참여했다. □ 그림 설명 그림1. 빛에 의해 형성된 나노 구조체의 주사전자현미경 사진 그림2. 전체 실험과정 모식도
2015.04.30
조회수 10406
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1