본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9B%A8%EC%9D%B4%ED%8D%BC
최신순
조회순
반도체 웨이퍼 절단 없는 두께 분석장비 개발
우리 대학 기계공학과 이정철 교수 연구팀이 근적외선의 간섭 효과를 이용해 실리콘 박막-공동 구조를 검사할 수 있는 웨이퍼 비파괴 분석 장비를 개발했다고 19일 밝혔다. 1 마이크로미터(이하 μm) 급의 두께를 갖는 박막-공동 구조는 압력센서, 마이크로미러, 송수신기 등의 다양한 미세전자기계시스템(MEMS) 소자로 사용된다. 이러한 MEMS 소자에서 박막의 두께와 공동의 높이는 소자 성능의 주요 설계 인자이기 때문에 소자의 거동 분석을 위해서는 제작된 구조의 두께 측정이 필수적이다. 하지만 최근까지 후속 공정에 사용할 수 없는 단점에도 불구하고 웨이퍼를 절단해 주사 전자 현미경과 같은 고해상도 현미경으로 두께를 측정하는 단면 촬영 기법이 사용됐다. 연구팀은 1μm 급의 두께를 갖는 실리콘 박막-공동 구조의 두께를 비파괴적으로 측정하기 위해 근적외선 간섭 현미경을 개발했다. 연구팀은 실리콘의 광특성과 빛의 간섭 길이를 고려해 근적외선 계측 장비를 설계 및 구축했으며 개발한 근적외선 간섭 현미경은 1μm 급과 서브 1μm 급의 단층 박막-공동 구조를 100 나노미터(nm) 미만의 편차로 측정했다. 이에 더불어 다중 반사로 인한 가상의 경계면을 특정하는 방법을 제안해 복층의 실리콘 박막-공동 구조에서 숨겨진 실리콘 박막의 두께 측정을 성공적으로 시연했다. 이번 연구는 국제학술지 `어드밴스드 엔지니어링 머터리얼즈(Advanced Engineering Materials)'에 지난 7월 14일 字에 온라인 게재됐으며 지난 10월 호의 후면 표지 논문(back cover)으로 선정됐다. 이번 연구는 실리콘 박막-공동 구조뿐만 아니라 기능성 웨이퍼인 실리콘 온 인슐레이터(Silicon-on-Insulator, SOI) 웨이퍼에서도 실리콘과 내부에 숨겨진 산화막의 두께를 성공적으로 측정함으로써 다양한 구조의 반도체 소자 비파괴 검사에 적용 가능함을 연구팀은 확인했다. 또한 연구팀은 적합한 파장 선택을 통해 실리콘뿐만 아니라 게르마늄 등 다른 반도체 물질의 비파괴 검사에도 적용할 수 있음을 밝혔다. 반도체 기판의 비파괴 검사 방법을 제안하는 이번 연구는 반도체 공정 중 소자 결함을 판별하기 위한 실시간 비파괴 검사에 적용될 수 있을 것으로 기대된다. 연구를 주도한 이정철 교수는 "개발된 기술은 널리 사용되는 적외선 광원을 사용해 비파괴 방식으로 반도체 물질 내부 구조를 측정한 점에서 기존 방법과 다르고, 안전하고 정밀한 장점 때문에 반도체 소재 및 소자 검사 속도를 향상하는 효과를 가져와 반도체 관련 산업과 우리 삶의 발전에 기여할 것이다ˮ라고 말했다. 한편 이번 연구는 한국연구재단의 중견연구자 지원사업과 기초연구실 지원사업의 지원을 받아 수행됐다.
2022.12.20
조회수 6176
서민호 박사, 윤준보 교수, 완벽 정렬된 나노와이어 옮기는 기술 개발
〈 서 민 호 박사, 윤 준 보 교수 〉 우리 대학 전기및전자공학부 서민호 박사, 윤준보 교수 연구팀이 완벽하게 정렬된 나노와이어 다발을 대면적의 유연 기판에 옮기는 데 성공했다. 이 나노와이어 전사(transfer) 기술은 기존 화학 반응 기반의 나노와이어 제작 기술이 갖고 있던 낮은 응용성과 생산성을 높였다는 의의를 갖는다. 서민호 박사가 1저자로 참여한 이번 연구는 나노 과학 및 공학 분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 5월 24일자에 게재됐다. (논문명 : Material-Independent Nano-Transfer onto a Flexible Substrate Using Mechanical-Interlocking Structure, 기계식 연동 구조를 활용하는 재료 선택폭 넓은 나노와이어 전사 방법) 대표적 나노 물질인 나노와이어는 작고 가볍다는 구조적 장점과 우수한 물리적, 화학적 특성 덕분에 소형 및 유연 전자 소자에 사용될 수 있다. 기존 나노와이어 전자 소자 제작은 화학적 합성법으로 제조된 나노와이어를 용액에 섞어 유연 기판에 무작위로 뿌리는 방식을 활용했다. 이로 인해 같은 방법을 사용해도 제작된 전자 소자들의 특성이 매우 다르다는 불균일성 문제가 있었다. 이러한 문제 때문에 화학적 표면 처리를 이용한 나노와이어 전사 공정이 개발돼 유연 기판 위 정렬된 나노와이어를 균일하게 제작하는 방법이 개발되기도 했다. 그러나 이 기술은 화학적인 접촉력의 조절이 가능한 일부 나노와이어만 제작 가능하기 때문에 사용 범위가 극히 제한적이다. 연구팀은 문제 해결을 위해 기계식 접촉력 조절 원리를 활용하는 새로운 나노와이어 전사 기술을 개발했다. 이 기술은 전사의 모체(master mold)가 되는 나노그레이팅 기판(nanograting substrate)에 나노희생 층(nanosacrificial layer)과 나노와이어를 순차적으로 형성한 후, 나노희생 층을 건식 식각 공정을 통해 구조적으로 약하게 만든다. 나노희생 층은 나노와이어와 모체를 매우 약하게 연결하고 있기 때문에 이후 유연 기판이 되는 재료를 이용하면 마치 테이프를 이용해 바닥의 먼지를 떼어내듯 나노와이어를 쉽게 모체에서 유연 기판으로 옮길 수 있다.이 기술은 일반적인 물리적 증착법을 기반으로 제작되고 재료 의존성이 낮기 때문에 손쉽게 나노와이어를 유연 기판에 제작할 수 있다. 연구팀은 개발한 기술을 이용해 금, 백금, 구리 등 다양한 금속 나노와이어와 결정화된 금속 산화물을 유연 기판 위에 완벽하게 정렬해 제작했다. 또한 이를 유연 히터와 가스 센서 소자에 응용함으로써 실제 생활에 사용될 수 있는 안정적인 응용 소자를 구현할 수 있음을 증명했다. 서민호 박사는 “우수한 물성의 다양한 금속, 반도체 나노와이어를 웨이퍼 수준으로 완벽 정렬해 유연 기판에 옮기고 이를 소자 제작에 응용했다”며 “다양한 나노와이어 재료의 유연 기판 위 제작을 위한 플랫폼 기술로 고성능 유연 전자 소자의 안정적 개발에 기여할 것이다”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업, 나노종합기술원 오픈 이노베이션 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 연구팀의 기술로 제작된 금 단면
2018.05.29
조회수 10405
신기루 현상 착안해 테라헤르츠파 광학렌즈 개발
무더운 여름, 아스팔트 도로에 물웅덩이가 보이다가 가까이 다가가면 사라지고 좀 가다보면 또 물웅덩이가 나타난다. ‘신기루’라고 불리는 이 현상은 지표면 가까운 공기층의 큰 온도차로 인한 공기밀도 변화로 빛이 굴절되기 때문이다. 우리 학교 바이오및뇌공학과 정기훈 교수는 물리학과 안재욱 교수와 신기루 현상에서 착안한 물리적 효과를 이용해 테라헤르츠파 굴절률 분포형 렌즈를 세계 최초로 개발했다. 실리콘 소재를 곡면으로 가공해 만드는 카메라렌즈에 사용되는 기존방식과는 달리 이번에 개발된 렌즈는 평평한 실리콘 웨이퍼를 소재로 반도체 양산공정으로 제작해 비용을 최대 1/100 수준으로 낮출 수 있으며 제작시간도 훨씬 단축시킬 수 있다. 광원 추출효율은 4배 이상 향상시켰다. 테라헤르츠파는 0.1THz~30THz(테라헤르츠, 1조헤르츠) 대역의 전자기파로 가시광선이나 적외선보다 파장이 길어 X선처럼 물체의 내부를 높은 해상도로 정확히 식별할 수 있어 보안검색, 의료영상기술 등 비파괴 검사 도구나 의료용 진단기구의 성능을 획기적으로 향상시킬 수 있을 것으로 전망된다. 그러나 넓은 대역의 주파수 특성으로 인해 손실되는 전자기파의 비율이 높아 테라헤르츠파를 높은 효율로 집중시킬 수 있는 광학소자 개발이 요구됐다. 정 교수 연구팀은 평평한 실리콘에 테라헤르츠파 파장(약 300㎛) 보다 작은 80~120㎛ 크기의 구멍을 반도체 양산방법인 광식각공정으로 만들었다. 렌즈 가장자리로 갈수록 홀 사이즈는 크게 만들었다. 테라헤르츠파를 쪼이자 공기와 실리콘 중 공기 비율이 높은 가장자리는 굴절률이 낮았으며, 상대적으로 공기의 비율이 낮은 가운데는 굴절률이 높았다. 평평한 소재를 광학특성을 공학적으로 설계해 빛을 모으는 볼록렌즈와 같은 기능을 한 것으로 신기루 현상과 같은 물리적 효과와 같다. 이번 연구를 주도한 정기훈 교수는 “자연현상에서 착안해 자연계에 존재하지 않는 다양한 광학특성을 띄는 메타물질을 인공적으로 만든 것”이라며 “물질적 제약으로 인해 다양한 광학소자개발이 더딘 테라헤르츠파 기술 진보에 상당한 도움이 될 것”이라고 연구의의를 밝혔다. 미래창조과학부가 지원하는 한국연구재단의 도약연구자지원사업, 그린나노기술개발사업, 글로벌프론티어사업의 일환으로 수행된 이번 연구는 미국물리협회에서 발간하는 귄위 있는 국제학술지인 ‘어플라이드 피직스 레터(Applied Physics Letter)’에 9월자 특집논문 및 표지논문(제1저자 박상길 박사과정)으로 게재됐다. 그림1. 유전체 메타물질을 이용한 실리콘 굴절률 분포형 렌즈. 머리카락 굵기(80~120µm) 수준의 구멍이 실리콘 기판에 서로 다른 크기로 형성돼 있다. 그림2. 굴절률 분포형 렌즈 원리 그림3. 신기루 현상신기루는 아스팔트 도로 위에서 흔하게 나타나는 대기 굴절 현상이다. 이 현상은 도로면이 물체를 반사하는 것처럼 보이게 하는데 이 때문에 도로면에 물웅덩이가 있는 것처럼 착각하게 된다. 아래 사진에는 멀리서 다가오는 차의 상이 도로면을 통해 보인다. <사진 : 경기북과학고등학교 조영우 선생님 제공> 그림4. 논문표지
2014.09.24
조회수 20110
다양한 물질로 만든 나노선 상용화 가능성 열려
- 산·학·연 2년간 공동연구 끝에 나노선 상용화 가능한 기술 개발 -- 폭 50nm, 길이 20cm 나노선 2시간이면 200만 가닥 대량생산 가능해 - 폭이 수십 나노미터 정도로 매우 얇은 나노선의 상용화를 앞당길 혁신적인 기술이 국내 산·학·연 공동연구진에 의해 개발됐다. 향후 나노선을 이용한 반도체, 고성능 센서, 생체소자 등 다양한 분야에 활용될 것으로 전망된다. 우리 학교 전기및전자공학과 윤준보 교수 연구팀은 (주)LG이노텍(대표 이웅범), 나노종합기술원(원장 이재영)과 공동으로 첨단 과학 분야에서 핵심적인 소재로 쓰이고 있는 나노선을 다양한 소재로 필요한 길이만큼 대량 생산할 수 있는 기술을 개발했다. 연구결과는 나노 과학 분야의 권위 있는 학술지인 ‘나노 레터스(Nano Letters)’ 7월 30일자 온라인판에 게재됐다. 나노선은 폭이 최대 100나노미터 정도에 불과한 긴 선 모양의 구조체로 기존에 발견되지 않았던 다양한 열적, 전기적, 기계적 특성을 보이는 다기능성 나노 소재다. 나노 세계에서만 보이는 특성을 활용하기 위해 나노선은 반도체, 에너지, 생체소자, 광학소자 등 다양한 분야에 활용될 수 있는 첨단 소재로 각광 받고 있다. 그러나 수 밀리미터를 성장시키는데 3~4일이 소요될 만큼 합성 속도가 매우 느리고 대량 생산이 어려운 것은 물론 원하는 물질을 자유자재로 나노선으로 제작할 수 있는 기술이 개발되지 않았다. 또 제작된 나노선을 실제로 적용하기 위해서는 가지런히 정렬시켜야 하는데 기존 기술은 정렬을 위해 복잡한 후처리를 해야 하고 정렬 상태도 완벽하지 못해 상용화에 커다란 걸림돌이었다. 연구팀은 이러한 종래의 문제점을 극복하기 위해 기존의 화학적 합성법을 사용하지 않고 반도체공정을 적용했다. 연구팀은 직경 20센티미터의 실리콘 웨이퍼 기판에 광식각 공정을 이용해 목표하는 주기보다 큰 패턴을 형성한 뒤 이 주기를 반복적으로 줄여가는 방법을 이용해 100나노미터 초미세 선격자 패턴을 제작했다. 이 패턴을 기반으로 반도체 제조과정에서 널리 쓰이는 박막증착공정을 활용해 폭 50nm(나노미터), 최대 길이 20cm(센티미터)의 나노선을 완벽한 형태로 대량 제조하는데 성공했다. 개발된 기술은 장시간의 합성 공정을 거칠 필요가 없으며 별도의 후처리를 하지 않아도 완벽하게 정렬된 상태로 만들 수 있어 상용화 가능성이 높은 것으로 학계와 산업계는 평가하고 있다. 윤준보 교수는 이번 연구에 대해 “낮은 생산성, 긴 제조시간, 물질합성의 제약, 나노선 정렬 등과 같은 기존 기술의 문제점을 해결했다는 데 의미가 있다”면서 “그동안 나노선을 산업적으로 널리 활용하지 못했지만 개발된 기술을 활용하면 나노선을 사용한 고성능의 반도체, 광학, 바이오 소자 등의 상용화를 앞당길 수 있을 것”이라고 밝혔다. KAIST 전기및전자공학과 연정호 박사과정 학생, LG이노텍 이영재 책임연구원 나노종합기술원 유동은 선임연구원이 참여한 이번 연구는 미래창조과학부(장관 최문기)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행됐다.
2013.08.22
조회수 15667
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1