본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9C%A0%EA%B8%B0%EB%B0%9C%EA%B4%91%EB%8B%A4%EC%9D%B4%EC%98%A4%EB%93%9C
최신순
조회순
세계 최초로 체내 OLED 빛치료 구현
빛 치료는 외과적 혹은 약물적 개입 없이도 다양한 긍정적 효과를 불러일으킬 수 있어 최근 꾸준히 주목받고 있다. 하지만 피부 내에서 빛의 흡수 및 산란 등의 한계로 인해 보통 피부 표면 등 체외 활용에 국한되며 내과적 중요성이 있는 체내 장기에는 적용하기 어려운 문제가 있었다. 우리 대학 전기및전자공학부 유승협 교수, 서울아산병원 소화기내과 박도현 교수, 그리고 한국전자통신연구원 실감소자연구본부로 이루어진 공동연구팀이 유기발광다이오드(organic light-emitting diode, OLED) 기반 *카테터를 세계 최초로 구현해, 빛 치료를 체내 장기에도 적용할 수 있는 길을 열었다고 13일 밝혔다. ☞ 카테터(catheter): 주로 환자의 소화관이나 기관지, 혈관의 내용물을 떼어 내거나 약제나 세정제 등을 신체 내부로 주입하는 등에 쓰이는 고무 또는 금속 재질의 가는 관. 공동연구팀은 카테터 형태의 OLED 플랫폼을 개발해 십이지장과 같은 튜브 형태의 장기에 직접 삽입할 수 있는 OLED 빛 치료기기를 개발, 이를 현대의 주요 성인병 중 하나인 제2형 당뇨병 개선 가능성을 확인하고자 했다. 공동연구팀은 기계적으로 안정적이면서도 수분 환경에서도 잘 동작할 수 있는 초박막 유연 OLED를 개발했고, 이를 원통형 구조 위를 감싸는 형태로 전 방향으로 균일한 빛을 방출하는 OLED 카테터를 구현했다. 그뿐만 아니라, 면 광원으로서 OLED가 갖는 특유의 저 발열 특성으로 체내 삽입 시 열에 의한 조직 손상을 방지했으며, 생체적합성 재료 활용을 통해 생체에 미치는 부작용을 최소화했다. 공동연구팀은 OLED 카테터 플랫폼을 통해 제2형 당뇨병 쥐 모델 (Goto-Kakizaki rat, GK rat)을 대상으로 동물실험을 진행했다. 십이지장에 총 798 밀리주울 (mJ)의 빛 에너지가 전달된 실험군의 경우 대조군에 비해 혈당 감소와 인슐린 저항성이 줄어드는 추세를 확인했다. 또한 간 섬유화의 저감 등 기타 의학적 개선 효과도 확인할 수 있었다. 이는 체내에 OLED 소자를 삽입하여 빛 치료를 진행한 세계 최초의 결과다. ☞ 밀리주울 (mJ): 천분의 일 주울 (Joule)로, 에너지의 단위이다. 광원에서 나오는 빛의 양은 단위 시간당 에너지의 단위인 밀리와트 (mW)로 통상 나타내는데, 밀리주울은 밀리와트에 시간 (초)을 곱하여 계산된다. 본 연구에서는 OLED 카테터로부터 1.33 밀리와트의 붉은색 빛을 10분간 (600초) 쪼여 총 798 mJ의 빛 에너지를 전달하였다. 우리 대학 유승협 교수 연구실의 심지훈 박사와 채현욱 박사과정, 울산대학교 의과대학 서울아산병원 박도현 교수 연구실의 권진희 박사과정이 공동 제1 저자로 수행한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스 (Science Advances)’ 2023년 9월 1일 자 온라인판에 게재됐다. (논문명: OLED catheters for inner-body phototherapy: A case of type 2 diabetes mellitus improved via duodenal photobiomodulation) 유승협 교수는 “생체 의료 응용으로의 OLED 기술 확보는, 주로 디스플레이 분야 또는 조명 분야에 국한된 OLED 산업의 새로운 지평을 여는데 중요한 과제 중 하나로서, 이번 연구는 새로운 응용분야를 발굴하고 원천기술 확보함에 있어 소자-의학 그룹 간의 체계적인 융합 연구와 협업의 중요성을 잘 보여주는 사례”라고 말했다. 또한 서울아산병원 박도현 교수는 “십이지장 내 OLED 광조사가 장내 마이크로바이옴에 영향을 주어 장내 유익균의 증가 및 유해균의 감소를 통한 제2형 당뇨병의 혈당 개선, 인슐린 저항성 감소 및 간 섬유화 억제를 일으키는 것으로 보인다. OLED의 이상적 광 특성을 활용해 인체 내에서 빛 치료 가능성을 본 연구로서 향후 다양한 응용 가능성이 기대된다. 다만, 본 결과는 소형 동물에서 얻어진 것으로, 소동물-대동물-사람 등의 순차적인 검증 단계가 필요하며, 그 원리에 관한 연구가 함께 수반되어야 한다”라고 말하며, 이번 연구의 중요성을 강조했다. 이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 한국전자통신연구원 연구운영비지원사업 (ICT 소재⦁부품⦁장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2023.09.13
조회수 4288
디스플레이 구동 가능한 OLED 전자 섬유 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 정보 출력이 가능한 유기발광다이오드(OLED) 전자 섬유를 개발했다고 12일 밝혔다. 전자 섬유는 실제 입을 수 있는 형태의 소자로서 기존 2차원 평면 소자와는 다르게 인체의 다양한 움직임에 순응하고 뛰어난 착용성과 휴대성을 제공할 수 있는 섬유의 1차원 구조 덕분에 차세대 폼 팩터(form-factor)로 주목받고 있다. 특히나 빛을 방출하는 전자 섬유는 패션, 기능성 의류, 의료, 안전, 차량 디자인 등 다양한 응용 잠재력에 많은 주목을 받고 있다. 하지만 지금까지의 발광 전자 섬유 연구는 디스플레이로 활용되기엔 부족한 전기광학적 성능을 보여 왔거나 단순히 소자 단위로만 연구가 진행 또는 종횡비가 긴 2차원 평면 단위에서 연구가 이루어져 응용 기술 개발에 어려움이 있었다. 최경철 교수 연구팀은 OLED 전자 섬유 디스플레이 구현을 위해 높은 전기광학적 성능 구현과 함께 주소 지정 체계 구축에 주목했다. 연구팀은 먼저 300 마이크로미터(µm) 직경의 원통형 섬유 구조에 적합한 RGB 인광 OLED 소자 구조를 설계했고 연구팀이 보유한 원천기술인 딥 코팅 공정을 활용해 평면 OLED 소자에 버금가는 수준의 OLED 전자 섬유를 개발했다. 특히 고효율을 얻을 수 있는 인광 OLED를 섬유에 성공적으로 구현해 최고 1만 cd/m2(칸델라/제곱미터) 수준의 휘도, 60 cd/A(칸델라/암페어) 수준의 높은 전류 효율을 보였다. (이는 기존 기술 대비 약 5배 이상의 전류 효율에 해당하는 수치다.) 연구팀은 아울러 OLED 전자 섬유를 기반으로 안정적인 디스플레이 구동을 위해, OLED 전자 섬유 위에 접촉 영역을 설계해 직조된 주소 지정 체계를 구축했다. 그리고 문자와 같은 정보를 디스플레이 해 실제 입을 수 있는 기능성을 확인했다. 최 교수 연구팀 관계자는 이 전자 섬유가 디스플레이라는 표시 장치 관점에서 반드시 요구되는 밝은 밝기와 낮은 전력 소모를 위한 높은 전류 효율, 낮은 구동 전압, 그리고 주소 지정성을 갖췄다고 밝혔다. 이번 연구를 주도한 최 교수 연구팀의 황용하 박사과정은 "섬유 기반 디스플레이 구현을 위해 필수적으로 요구되는 요소 기술들을 구현하는 데 집중했다ˮ며 "전자 섬유가 가진 뛰어난 착용성과 휴대성을 제공함과 동시에 디스플레이 기능성을 구현해 패션, 기능성 의류 등 다양한 응용 분야에 적할 수 있을 것이라 기대된다ˮ고 말했다. 최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도한 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' (피인용지수(IF) 16.836) 2월 4일 字로 온라인 게재됐으며, 5월 3일 字로 전면 표지 논문(Front Cover)으로 게재됐다. (논문명: Bright-Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Light-Emitting Fibers: Toward Wearable Textile Information Displays) 한편, 이번 연구는 산업통상자원부 전자부품산업핵심기술개발사업과 LG디스플레이의 지원을 받아 수행됐다.
2021.05.12
조회수 48544
최경철 교수, 자가발전으로 에너지 절약 및 세탁 가능한 입는 디스플레이 개발
〈 (오른쪽 위부터 시계방향으로) 정은교 연구원, 최경철 교수, 전남대 조석호 교수, 전용민 연구원 〉 우리 대학 전기및전자공학부 최경철 교수와 전남대학교 의류학과 조석호 교수 연구팀이 외부 전원 없이 자가발전 되고 세탁이 가능한 디스플레이 모듈 기술을 개발했다. 이번 연구는 기존 플라스틱 기판 웨어러블 전자소자가 아닌 옷감을 직접 기판으로 사용하는 전자소자의 상용화를 앞당길 수 있다는 점, 일상생활에 입는 전자소자가 외부 전원 없이 자가 발전해 에너지를 절약할 수 있다는 점에서 큰 의미가 있다. 정은교 박사과정과 전용민 연구원이 주도한 이번 연구는 국제 학술지 ‘에너지&인바이런멘탈 사이언스(Energy and Environmental Science, IF : 30.067)’ 1월 18일 자 온라인판에 게재됐고, 우수성을 인정받아 뒤표지 논문으로 선정됐다. 기존의 섬유형 웨어러블 디스플레이는 주로 디스플레이의 소자 구현에 초점을 맞춰 연구가 이뤄졌다. 이로 인해 소자를 구동하기 위한 별도의 외부 전원이 필요할 뿐 아니라 내구성 또한 부족한 특성을 가져 웨어러블 디스플레이로 응용하기에는 한계가 있다. 고분자 태양전지와 유기 발광 디스플레이 소자는 수분, 산소 등 외부 요인에 매우 취약해 소자를 보호하기 위한 봉지막이 필요하다. 그러나 기존에 개발된 봉지막 기술은 상온에서는 역할을 충분히 수행하지만, 습기가 많은 환경에서는 그 특성을 잃게 된다. 따라서 비 오는 날이나 세탁 이후에도 동작할 수 있어야 하는 착용형 디스플레이에서는 사용이 제한된다. 연구팀은 문제해결을 위해 외부 전원 없이도 안정적으로 전력을 공급할 수 있는 고분자 태양전지(PSC)와 수 밀리와트(milliwatt)로도 동작할 수 있는 유기발광다이오드(OLED)를 옷감 위에 직접 형성하고 그 위에 세탁이 가능한 봉지기술을 적용했다. 이를 통해 전기를 절약하면서도 실제 입을 수 있는 디스플레이 모듈 기술을 개발했다. 연구팀은 원자층 증착법(ALD)과 스핀코팅(spin coating)을 통해 세탁 후에도 특성 변화 없이 소자를 보호할 수 있는 봉지막 기술을 자가발전이 가능한 입는 디스플레이 모듈에 적용했다. 이 봉지막 기술을 통해 세탁 이후나 3mm의 낮은 곡률반경에서도 웨어러블 전자소자들의 성능이 유지되는 것을 증명했다. 연구팀은 일주일마다 세탁 및 기계적인 스트레스를 주입한 뒤 결과를 관찰한 결과 30일 이후 PSC는 초기 대비 98%, OLED는 94%의 특성을 유지함을 확인했다. 최경철 교수는 “기존의 플라스틱 기판 기반의 웨어러블 전자소자 및 디스플레이 연구와 달리 일상생활에 입는 옷감을 기판으로 활용해 세탁이 가능하고 외부 전원 없이 고분자 태양전지로 디스플레이를 구동하는 전자소자 모듈을 구현했다”라며 “태양에너지를 이용해 자가 구동 및 세탁이 가능한, 전기 충전이 필요 없는 진정한 의미의 입을 수 있는 디스플레이 기술 시대를 열었다”라고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 선도연구센터지원사업과 교육부 BK21 지원사업으로 수행됐으며, 이번 연구 성과로 1 저자인 정은교 연구원은 BK21 우수인력으로 사회부총리 겸 교육부장관 표창을 받는다. □ 그림 설명 그림1. 표지논문 이미지 그림2. 세탁 가능한 입는 디스플레이 모듈 모식도 및 구동 사진
2019.03.21
조회수 18356
유승협 교수, 무기LED 상응하는 고효율 OLED 구현
〈 유승협 교수, 송진욱 박사과정 〉 우리 대학 전기및전자공학부 유승협 교수 연구팀이 무기 LED에 상응하는 높은 효율의 유기발광다이오드(OLED)를 구현하는 데 성공했다. 이번 연구는 서울대학교 재료공학부 김장주 교수, 경상대 화학과 김윤희 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 OLED 조명의 대중화 및 시장 성장에 이바지할 수 있을 것으로 기대된다. 송진욱 박사과정이 1저자로 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 10일자 온라인 판에 게재됐다. OLED는 수많은 모바일 기기와 고품질 TV 등의 디스플레이 기술에 광원으로 활용되고 있는 소자로, 두께가 얇고 유연 소자 제작이 가능하다는 장점을 갖고 있다. 최근에는 조명, 차량용 광원에도 OLED를 활용하기 위한 노력이 계속되고 있다. 이러한 응용에는 광원의 효율이 매우 중요하다. 최근 지속적인 연구 개발에 의해 OLED의 효율이 꾸준히 상승했고 일부는 기존 고효율 무기 LED 수준에 준하는 결과들이 보고되고 있다. 그러나 이러한 고효율 OLED의 연구 결과들은 OLED가 갖는 면광원(面光源)의 장점을 해치는 반구형 렌즈가 쓰이거나 소자 내부에 빛을 추출하는 나노 구조가 도입돼 안정적인 동작을 방해하는 등의 문제로 상용화에 한계가 있었다. 연구팀은 OLED의 광 추출용으로 개발됐던 여러 방법 중 실용화 가능성이 가장 큰 기술인 나노입자 기반의 광 산란층을 소자 외부에 도입하는 방법에 주목했다. 특히 광 산란을 이용한 기존 OLED 광 추출 향상 연구가 반복적인 실험을 통해 경험적인 방식으로 이뤄졌던 것과는 다르게 연구팀은 종합적이고 분석적 방법론을 정립해 최대 효율을 이끌어낼 수 있는 구조를 이론적으로 예측했다. OLED에 광 추출 구조를 적용해 가능한 최대의 효율에 도달하기 위해선 광 추출 구조와 OLED 구조를 각각이 아닌 전체로 보고 최적화를 이뤄야 한다. 연구팀은 산란 현상을 수학적으로 기술하는 이론을 OLED 발광 특성 예측 모델과 최초로 결합해 여러 구조를 가지는 수많은 소자들의 특성을 짧은 시간에 예측했고, 이를 기반으로 최대 효율을 갖는 최적 구조를 이론적으로 예측하는 데 성공했다. 연구진은 이론적으로 예측된 최적의 광 산란 필름을 실험적으로 구현하고 이를 고효율 유기 발광소재를 이용한 소자 구조에 접목해 56%의 외부 양자 효율 및 221lm/W의 전력 효율을 이끌어내는데 성공했다. 이는 큰 렌즈나 내부 광 추출구조 없이 구현된 OLED 단위 소자 효율로는 최고의 결과이다. 유승협 교수는 “다양한 OLED 광 추출 효율 향상 기술이 개발됐지만 실용화 가능성은 높지 않은 경우가 많았다. 이번 연구는 상용화 가능성에서 가장 의미가 큰 기술을 활용하면서 고효율 LED의 효율에 상응하는 OLED 구현 방법을 체계적으로 제시했다는데 의의가 있다”며 “낮은 전력소모가 특히 중요한 조명용 광원이나 웨어러블 기기의 센서용 광원에 OLED가 활용되는 데 기여할 것이다”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업 및 나노소재원천기술개발사업, 한국전자통신연구원(ETRI)의 초저가플렉서블 Lightning Surface 기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 외부 산란층과 결합된 OLED 구조 모식도
2018.08.21
조회수 15516
최경철 교수, 초고유연성 의류형 디스플레이 개발
〈 최 승 엽 박사과정 〉 우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물과 유기발광다이오드(OLED)를 융합해 높은 유연성을 갖는 최고 효율의 의류형 디스플레이 기술을 개발했다. 최승엽 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’ 7월 21자 온라인 판에 게재됐다. 디스플레이는 차세대 스마트 제품 외형의 대부분을 차지할 정도로 그 중요성이 커지고 있다. 더불어 사물인터넷과 웨어러블 기술의 비중이 늘어나면서 의류 형태의 웨어러블 디스플레이 기술도 주목받고 있다. 2011년 직물 위에 발광체를 형성한 연구 이후 실제 옷감 위에 디스플레이를 구현하기 위한 노력이 계속됐다. 하지만 직물 특유의 거친 표면과 유연한 특성 때문에 상용화 수준의 성능을 보여주지 못했다. 최 교수 연구팀은 의류 형태의 웨어러블 디스플레이 구현을 위해 직물(fabric)형과 섬유(fiber)형 두 가지 방식으로 연구를 진행했다. 연구팀은 2015년에 열접착 평탄화 기술을 통해 거친 직물 위에서 수백 나노미터 두께의 유기발광소자를 동작하는 데 성공했다. 2016년에는 용액 속 실을 균일한 속도로 뽑는 딥 코팅(dip-coating) 기술을 통해 얇은 섬유 위에서도 높은 휘도를 갖는 고분자발광소자를 개발했다. 위와 같은 연구를 바탕으로 최 교수 연구팀은 옷감의 유연성을 유지하면서 높은 휘도와 효율 특성을 갖는 직물형 유기발광소자를 구현했다. 최고 수준의 전기 광학적 특성을 갖는 이 소자는 자체 개발한 유무기 복합 봉지(encapsulation) 기술을 통해 장기적 수명이 검증됐고, 굴곡 반경 2mm의 접히는 환경에서도 유기발광소자가 동작한다. 연구팀은 최고 수준의 휘도와 효율을 갖는 의류 형태의 유기발광 다이오드를 구현했다는 의의가 있으며 보고된 직물 기반의 발광소자 중 가장 유연하다고 밝혔다. 이번 연구를 통해 의류형 발광소자의 기계적 특성에 대한 심층적 분석이 더해져 직물 기반 전자산업 발전에 도움이 될 수 있을 것으로 기대된다. 최승엽 박사과정은 “직물 특유의 엮이는 구조와 빈 공간은 유기발광소자에 가해지는 기계적 스트레스를 크게 낮추는 역할을 한다”며 “직물을 기판으로 사용해 디스플레이를 구현하면 유연하며 구겨지는 화면을 볼 수 있다”고 말했다. 최경철 교수는 “우리가 매일 입는 옷 위에서 디스플레이를 보는 것이 먼 미래가 아니다”며 “앞으로 빛이 나는 옷은 패션, 이-텍스타일(E-textile) 뿐 아니라 자동차 산업, 광치료와 같은 헬스케어 산업에도 큰 영향을 끼칠 것이다”고 말했다. 이번 연구는 ㈜코오롱글로텍과의 공동 연구로 진행됐고 산업통상자원부 산업기술혁신사업의 지원으로 수행됐다. □ 사진 설명 사진1. 옷감 위에서 구동 되고 있는 유기발광다이오드 사진 사진2. 유기발광다이오드 사진3.고유연성 직물 기반 유기발광다이오드의 전류-전압-휘도 및 효율 특성
2017.08.24
조회수 17910
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다. 기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다. 연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다. 특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다. 연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다. 이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다. 최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다. 이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다. □ 그림 설명 그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도 그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼 그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 18768
최경철 교수, 직물위에 유기발광다이오드(OLED) 형성 기술 개발
〈 학술지에 게재된 표지논문 〉 옷처럼 편하게 입으면서도 디스플레이 기능을 수행할 수 있는 OLED 기술이 개발됐다. 우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물 기판 위에 유기발광다이오드(OLED)를 형성해 웨어러블 디스플레이를 실현할 수 있는 원천기술을 개발했다. 연구팀의 직물 OLED는 다층 박막봉지 기술(Thin-film Encapsulation)을 적용한 상태에서도 유연함을 잃지 않았고 1천 시간 이상의 동작 수명을 유지했다. ㈜코오롱글로텍과 공동으로 진행된 이번 연구는 나노전자 기술 분야 국제 학술지 ‘어드밴스드 일렉트로닉 머티리얼즈(Advanced Electronic Materials)’ 11월 16일 표지논문으로 선정됐다. 플라스틱 기판을 기반으로 한 유연 디스플레이는 플라스틱 기판이 얇을수록 뛰어난 유연성을 보인다. 하지만 얇게 만들수록 쉽게 찢어지는 문제가 발생하고 내구성이 약해지게 된다. 반면 직물은 씨실과 날실로 이뤄진 구조로 전체 직물은 두껍지만 여러 가닥의 수 마이크로미터 두께의 섬유들이 엮여있어 매우 유연하면서도 뛰어난 내구성을 갖는다. 연구팀은 이 점에 주목해 직물 OLED 형성 기술을 연구했다. 일반 옷감에 쓰이는 직물은 표면이 거칠고 온도 상승에 따라 부피가 팽창하는 열팽창계수(Coefficient of Thermal Expansion)가 커 열 증착 과정을 거치는 OLED 소자 형성 과정에서 문제가 발생한다. 연구팀이 개발한 평탄화 공정은 이러한 문제를 해결했다. 직물의 유연한 성질을 잃지 않으면서도 유리 기판과 같이 평평한 형태의 직물을 구현했다. 또한 이 평탄화된 직물은 동일 두께의 플라스틱 기판보다 더 유연했다. 연구팀은 평탄화 된 직물 위에 진공 열 증착 공정으로 OLED를 형성했고 OLED를 보호하기 위해 수분과 산소의 침투를 막는 다층 박막봉지 기술을 적용했다. 다층 박막봉지 기술이 적용된 직물 OLED는 1천 시간 이상의 동작 수명과 3천 500시간 이상의 유휴 수명을 갖는 것으로 확인됐다. 결과적으로 플라스틱보다 유연하면서 소자의 신뢰성까지 보장할 수 있는 디스플레이 소자를 구현했다. 연구팀은 이번 연구 결과가 산업적으로 플라스틱 OLED에서 진보된 패브릭 기판의 OLED 기술을 제시할 것이라고 예상했다. 최 교수는 “플라스틱보다 유연하면서 뛰어난 신뢰성을 보인 직물 OLED는 옷처럼 편한 웨어러블 디스플레이를 구현할 수 있을 것이다”며 “작년 실 한 올마다 OLED를 구축했던 성과에 이어 보다 실현 가능한 기술을 개발했다는 데 의미가 있다”고 말했다. 김우현 박사와 권선일 박사과정이 공동 1저자로 참여한 이번 연구는 산업통상자원부의 산업기술혁신사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 제작된 직물 기판 위에 형성된 OLED 구동 사진 그림2. 직물 위에 형성된 OLED 구조 그림3. 단면 SEM 사진
2016.11.22
조회수 18623
유승협 교수, 효율성과 유연성 갖춘 OLED 기술 개발
〈 유 승 협 교수 〉 우리 대학 전기및전자공학부 유승협 교수와 POSTECH 신소재공학과 이태우 교수 공동 연구팀이 손상 없이 반복적으로 휘어지면서 우수한 효율을 갖는 플렉서블 유기발광다이오드 (OLED) 기술을 개발했다. 그래핀, 산화티타늄, 전도성 고분자를 복합 전극으로 활용하는 이 기술로 효율 극대화와 우수한 유연성을 동시에 얻을 수 있어 향후 편의성과 활용도를 높일 수 있을 것으로 기대된다. 최성율 교수, 김택수 교수가 공동 연구팀으로 참여하고 이재호 박사과정 학생, POSTECH 한태희 박사와 박민호 박사과정 학생이 공동 1저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 2일자 온라인 판에 게재됐다. 현재 플렉서블 OLED 기술은 엣지형 스마트폰, 커브드 OLED 텔레비전 등에 사용되지만 플렉서블 OLED를 곡면 형태로 휘게 만든 후 고정 시키는 방식으로만 적용되고 있다. 반복적 휨이 가능한 플렉서블 OLED의 구현을 위해선 소재 및 관련 기술의 지속적 발굴이 중요하다. 특히 반복적으로 휘어질 때 각 구성 요소들이 깨지거나 손상되지 않도록 하는 것이 매우 중요하다. 그래핀은 얇은 두께를 통한 우수한 유연성 및 전기적 특성, 광학적 투명성을 갖는다. 이 특성들은 OLED에 주로 사용되는 산화물계 투명전극의 쉽게 깨지는 현상을 극복할 수 있는 기술로 각광받고 있다. 그러나 플렉서블 OLED가 주로 쓰이는 웨어러블 기기는 배터리 용량이 제한적이기 때문에 유연성과 동시에 OLED의 효율을 함께 확보하는 것이 중요하다. OLED는 일반적으로 공진현상(Resonance)(용어설명) 현상을 활용해 발광 효율을 향상시킬 수 있다. 공진현상을 일으키기 위해서는 일정량 이상의 빛 반사가 발생하는 투명 전극이 필요한데 그래핀만을 투명전극으로 사용하면 반사가 적어 광 효율이 낮다는 한계가 있다. 연구팀은 위의 유연성 및 효율성 문제를 해결하기 위해 기존의 그래핀에 산화티타늄(TiO2)과 전도성 고분자 형태를 결합한 복합 전극층을 개발했다. 이 구조에서 각각의 전극 층은 서로의 단점을 보완해주는 협력적 역할을 해 공진 효과를 극대화한다. 연구팀이 개발한 복합전극 층은 산화티타늄의 높은 굴절률과 전도성 고분자의 낮은 굴절률이 함께 활용된다. 이를 통해 전극으로부터의 유효 반사율을 높여줘 공진현상이 충분히 활용될 수 있다. 또한 전도성 고분자의 낮은 굴절률은 표면 플라즈몬의 손실로 인한 효율 감소까지 줄여준다. 기존 27.4%의 양자효율에서 1.5배 향상된 40.5%의 외부양자효율을 보이는 OLED를 구현했다. 이는 동일 발광재료를 이용해 보고된 그래핀 기반 OLED 중 가장 높은 효율이다. 효율을 향상시키는 구조를 도입하면 유연성 등의 다른 특성이 나빠지는 트레이드 오프 현상이 종종 발생한다. 연구팀은 산화티타늄 막이 구부러질 때 깨짐을 방해하는 자체 특성이 있어 기존 산화물 투명전극보다 4배 높은 변형에도 견디는 것을 확인했다. 이를 이용해 유연성 저하를 최소화하고 성능 극대화에 성공했다. 연구팀의 플렉서블 OLED는 곡률 반경 2.3mm에서 1천 회 구부림에도 밝기 특성이 변하지 않아 높은 성능과 유연성을 동시에 확보할 수 있음을 증명했다. 유 교수는 “분야를 넘어선 융합연구가 아니었다면 이번 연구는 불가능했을 것이다”며 “이번 연구 성과가 플렉서블, 웨어러블 디스플레이나 인체 부착형 센서용 플레서블 광원의 성공에 중요한 기틀을 제공할 것이다”고 말했다. 이번 연구는 한국연구재단 공학연구센터 사업의 일환인 차세대 플렉서블 디스플레이 융합센터 (CAFDC), 글로벌 프론티어 소프트 일렉스토닉스 연구단, KAIST 그래핀 연구센터, 산업통상자원부의 IT R&D 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 그래핀 복합 전극층 기반 OLED의 동작사진 그림2. 산화티타늄 (TiO2)-그래핀-전도성 고분자 복합 전극 기반 플렉시블 OLED 구조 모식도
2016.06.03
조회수 15021
정기훈 교수, 반딧불이 구조 적용한 유기발광다이오드(OLED) 개발
〈 정 기 훈 교수 〉 우리 대학 바이오 및 뇌공학과 정기훈 교수 연구팀이 반딧불이 발광기관 구조의 광학적 역할을 밝혀내고 이를 공학적으로 모사하는데 성공했다. 이를 통해 기존 유기발광다이오드(Organic Light-Emitting Diode: OLED) 보다 발광효율을 향상시킨 반딧불이 모사 유기발광다이오드를 개발했다. 김재준 박사가 주도한 이번 연구는 나노분야의 국제 학술지 ‘나노 레터스(Nano Letters)’ 5일자 온라인 판에 게재됐다. 반딧불이는 스스로 빛을 내는 대표적인 자연발광체이며 자연계 내에서 가장 높은 발광효율을 가져 예전부터 반딧불이에 대한 연구가 이뤄졌다. 이전 연구는 주로 발광 원리를 밝혀내는 과정에 집중됐고 상대적으로 반딧불이 발광기관의 광학적 구조에 대한 연구는 활발하지 않았다. 반딧불이의 발광기관은 외피층, 발광세포층, 반사층으로 구성된다. 발광세포층은 빛을 발생시키는 역할, 반사층은 외피층으로 향하지 않는 빛을 반사시키는 역할을 하고 최종적으로 발생된 빛은 외피층을 통해 밖으로 빠져나간다. 이 중 빛을 발생시키는 발광세포층에 대한 연구는 많이 이뤄졌지만 반사층 및 외피층이 어떤 광학 구조를 갖고 어떤 역할을 수행하는지는 명확하지 않았다. 연구팀은 반딧불이의 발광기관 외피에 마이크로 및 나노구조가 결합된 계층적 구조가 있음을 발견했다. 그리고 광학수치해석과 실험을 통해 이 계층적 구조의 역할은 발광세포층에서 발생되는 빛을 효과적으로 추출하면서 넓은 광 분포를 구현하는 것임을 밝혀냈다. 연구팀은 이러한 반딧불이의 광학구조를 OLED에 적용해 기존 OLED가 갖는 문제점을 해결하고자 했다. OLED는 발생된 빛이 내부에 갇혀 약 20%의 빛만 외부로 추출되는 문제를 갖는다. 연구팀은 반도체공정 및 미세몰딩공정을 이용해 반딧불이의 광학구조를 모사하는데 성공했고, 이를 OLED에 적용해 광 추출 효율을 최대 61%까지 향상시켰다. 또한 계층적 구조를 이용해 기존 OLED보다 넓은 광 분포도를 구현했다. 향후에는 광학구조의 설계 변경을 통한 다양한 광 분포 조절로 OLED 기반 조명 및 디스플레이에 적용이 가능하고 이를 통해 OLED의 발광 효율을 효과적으로 향상시킬 수 있을 것으로 기대된다. 연구팀은 “반딧불이 발광기관에서 발견된 계층적 광학구조를 성공적으로 모사했고 이를 통해 OLED의 발광효율을 효과적으로 향상시켰다”며 “이 연구를 기점으로 생물발광기관 모사 연구가 활발히 진행될 것으로 기대된다”고 말했다. 정 교수는 “이번 연구는 자연의 신비를 밝힘과 동시에 OLED의 광추출 효율을 높이는 새로운 방법을 제시했다”며 “이 연구가 생물발광체 관련 생체모사연구에 대한 연구자들의 관심을 불러일으킬 것이다”고 말했다. □ 그림 설명 그림1. 기존 OLED(좌)와 반딧불이 모사 OLED의 발광 사진(우) 그림2. 반딧불이 사진 그림3. 반딧불이 발광기관에서 발견된 계층적 구조의 전자현미경 사진(비대칭 마이크로구조 위에 나노구조가 형성되어 있음) 그림4. 반딧불이 모사 OLED의 구조
2016.04.26
조회수 13652
유기발광다이오드 고효율 제조기술 개발
- 용액으로 제조해 값싸며, 대기 중에서 제조할 수 있는 OLED 길 열려 차세대 디스플레이로 각광받는 유기발광다이오드(OLED)의 제조공정이 크게 개선된다. 우리학교 기계공학과 양민양 교수팀은 대기 중에서도 쉽게 제조할 수 있는 고분자 유기발광다이오드를 개발하는 데 성공했다. 연구팀은 음극이나 양극과 같은 금속 전극을 제외한 기능성 층(정공주입층, 발광층, 전자수송층, 전자주입층)을 모두 액상으로 제조할 수 있도록 했다. 이 액상물질은 인쇄기술과 같은 용액공정을 적용할 수 있어 매우 저렴한 비용으로 제조가 가능할 것으로 기대된다. 기존 유기발광다이오드에는 LiF, CsF, Cs2CO3 등과 같은 알칼리․알칼리토금속을 포함하는 물질들이 전자주입층으로 구성돼 있다. 이 전자주입물질들이 음극과 발광층 사이에서 전자가 극복해야 할 전자주입장벽을 낮추어 발광효율을 높이는 역할을 하기 때문이다. 그러나 이 물질들은 대기 중에서 불안정할 뿐만 아니라 1nm(나노미터)정도의 초박막을 진공에서 증착을 통해 막을 입혀야 하기 때문에 대면적으로 얇은 층을 구현하기 어렵다. 또한, 아래층의 표면품질에 소자의 효율이 큰 영향을 받는다는 문제가 있어 모든 층을 용액공정으로 소자를 제조하는 데 어려움이 있었다. 양 교수팀은 5nm의 크기를 갖는 산화아연 나노입자 용액과 암모늄 이온용액을 통해 용액공정의 적용이 가능한 전자수송․주입 복합구조를 제시했다. 이들 용액은 알칼리․알칼리토금속을 전혀 포함하고 있지 않아 대기 중에서 안정해 모든 층을 용액공정으로 제조가 가능해졌다. 특히, 산화아연 나노입자층과 암모늄이온 복합층에 존재하는 암모늄 이온은 일정 이상의 전계를 가하면 발광층과 음극 사이에서 이온들이 전계에 따라 정렬해 계면쌍극자(interface dipole)를 형성한다. 이를 효과적으로 발광층과 음극사이의 전자주입 장벽을 낮추어 알칼리․알칼리 토금속을 사용하지 않음에 의해 발생하는 효율이 저감되는 문제를 극복해 발광효율 10cd/A와 휘도 50000cd/m2의 고성능을 구현했다. 한편, KAIST 양민양 교수와 윤홍석 박사과정 학생이 주도한 이번 연구결과는 권위 있는 학술지인 "어플라이드 피직스 레터스(Applied Physics Letters)"지 12월 14일자 온라인 판에 게재됐고 현재 국내 및 국제 특허 출원 완료됐다. [그림1] 연구팀이 개발한 고휘도 고발광효율 유기발광다이오드
2011.01.25
조회수 13038
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1