본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9E%90%EC%97%B0%EC%96%B4%EC%B2%98%EB%A6%AC
최신순
조회순
혐오 발언 탐지의 문화적 차이 해결, NAACL 2024에서 Resource Award 수상
전산학부 Users & Information Lab. 연구실의 오혜연 교수와 제1저자 석사과정 이나연(오혜연 교수 지도 학생)의 연구가 지난 6월 16일부터 21일까지 멕시코시티에서 열린 '2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics' (NAACL 2024) 국제 학회에서 '교차 문화적 데이터셋 구축을 통한 영어 혐오 발언 어노테이션의 문화 간 차이와 영향 분석(Exploring Cross-Cultural Differences in English Hate Speech Annotations: From Dataset Construction to Analysis)'에 관한 논문으로 '리소스 어워드(Resource Award)'를 수상했다. NAACL은 자연어처리 분야에서 최고 권위를 자랑하는 국제 학회로, 올해는 2,434편의 논문이 제출되었으며 그 중 565편만이 채택되었다 (채택률 23.2%). Resource Award는 학회에서 주어지는 특별한 상 중 하나로, 제출 논문 중 혁신성, 활용 가능성, 영향력, 품질을 고려하여 선정된다. 이번 수상 연구는 교차 문화적 영어 혐오 발언 데이터셋을 구축하고, 문화 간 어노테이션 차이와 대형 언어 모델의 편향성을 분석하여 영어 혐오 발언 분류기의 문화적 민감성을 향상시키는 데 기여했다는점에서 높은 평가를 받았다. 이번 연구에는 KAIST 전산학부의 이나연, 정찬이, 명준호, 진지호 학생들과 Cardiff University의 Jose Camacho-Collados 교수, KAIST 전산학부의 김주호 교수, 오혜연 교수가 참여하였다. 본 연구는 미국, 호주, 영국, 싱가포르, 남아프리카 공화국의 5개 영어권 국가에서 수집된 데이터와 어노테이션을 기반으로 하여, 각국의 문화적 배경이 혐오 발언 어노테이션에 미치는 영향을 분석했다. 이를 통해 문화적 배경이 혐오 발언 인식에 미치는 중요한 차이를 밝혀냈으며, 특히 서구권 국가와 다른 문화적 맥락을 가진 국가 간의 어노테이션 차이가 두드러짐을 보였다. 오혜연 교수와 이나연 학생은 "이번 연구를 통해 혐오 발언 탐지에 있어 문화적 차이의 중요성을 밝힐 수 있어 기쁩니다. 연구팀의 노력 덕분에 이러한 성과를 얻을 수 있었으며, 앞으로도 자연어처리 분야에서 문화적 다양성을 고려한 연구를 지속해 나가겠습니다."라고 소감을 전했다. 이번 수상은 KAIST 연구팀의 혁신적인 접근과 자연어처리 분야에서의 문화 간 연구의 중요성을 국제적으로 인정받은 결과이다. 이는 앞으로 관련 연구 발전에 큰 기여를 할 것으로 기대된다. 연구 결과는 혐오 발언 탐지 분야뿐만 아니라, 다문화 사회에서의 인공지능 윤리와 문화적 편향성 해소 등 다양한 분야에 활용될 수 있을 것으로 기대된다. 자세한 내용은 논문 링크(https://aclanthology.org/2024.naacl-long.236)에서 확인할 수 있다.
2024.07.16
조회수 1981
멀티모달 대형언어모델이 GPT-4V를 뛰어넘다
멀티모달 대형 언어모델이란 텍스트뿐만 아니라 이미지 데이터 유형까지 처리할 수 있는 초대형 언어모델을 말한다. 해외 대형 기업의 풍부한 컴퓨팅 자원의 지원으로부터 인간의 뇌에 있는 신경망의 개수와 유사한 수준초대형모델들이 만들어지고 있으나 학계에서는 이런 개발이 쉽지 않았다. KAIST 연구진이 오픈AI의 GPT-4V와 구글의 제미나이-프로(Gemini-Pro)를 뛰어넘는 멀티모달 대형언어모델을 개발하여 화제다. 우리 대학 전기및전자공학부 노용만 교수 연구팀이 오픈AI(OpenAI)의 GPT-4V 등 기업에서 비공개하고 있는 상업 모델인 초대형 언어모델의 시각 성능을 뛰어넘는 공개형 멀티모달 대형 언어모델을 개발해 출시했다고 20일 밝혔다. 노용만 교수 연구팀은 단순히 모델의 크기를 키우거나 고품질의 시각적 지시 조정 데이터셋을 만들지 않고 멀티모달 대형언어모델의 시각 성능을 획기적으로 높인 콜라보(CoLLaVO), 모아이(MoAI) 2가지 기술을 연속적으로 개발했다고 밝혔다. 연구팀이 개발한 첫번째 기술인 ‘콜라보(CoLLaVO)’는 현존하는 공개형 멀티모달 대형언어모델이 비공개형 모델의 성능에 비해 현저하게 낮은 이유를 일차적으로 물체 수준에 대한 이미지 이해 능력이 현저하게 떨어진다는 것을 먼저 검증해 보였다. 해당 능력을 효율적으로 증가시켜 시각-언어 태스크에 대한 성능을 향상 하기 위해 연구팀은 이미지 내의 정보를 배경과 물체 단위로 분할하고 각 배경 및 물체에 대한 정보를 멀티모달 대형언어모델에 입력으로 직접 넣어주는 새로운 방법‘크레용 프롬프트(Crayon Prompt)’라는 시각적 프롬프트를 새롭게 제안했다. 또한 시각적 지시 조정 단계에서 크레용 프롬프트로 학습한 정보를 잃어버리지 않기 위해 연구팀은 물체 수준 이미지 이해 능력과 시각-언어 태스크 처리 능력을 서로 다른 파라미터로 학습해 서로 간의 정보를 잃지 않게 만드는 획기적인 학습 전략인 ‘듀얼 큐로라(Dual QLoRA)’를 제안했다. 이를 통해, 콜라보(CoLLaVO) 멀티모달 대형언어모델은 이미지 내에서 배경 및 물체를 구분하는 능력이 뛰어나 일차원적인 시각 구분 능력이 크게 향상됐다고 밝혔다. 두 번째 대형언어모델인 ‘모아이(MoAI)’는 인간이 사물을 판단할 때 물체의 존재, 상태, 물체 간의 상호작용, 배경에 대한 이해, 텍스트에 대한 이해 등으로부터 상황을 판단하는 인지과학적인 요소에 영감을 받아서 만들어졌다고 밝혔다. 이는 기존 멀티모달 대형언어모델이 텍스트에 의미적으로 정렬된 시각 인코더(vision encoder)만을 사용하기 때문에, 이미지 픽셀 수준에서의 상세하고 종합적인 실세계 장면 이해가 부족하다는 점을 지적하며 이런 컴퓨터 비전 모델들의 결과를 받으면 모두 인간이 이해할 수 있는 언어로 변환한 뒤에 멀티모달 대형언어모델에 입력으로 직접 사용했다. 노용만 교수는 “연구팀에서 개발한 공개형 멀티모달 대형언어모델이 허깅페이스 일간 화제의 논문(Huggingface Daily Papers)에 추천됐고, 각종 SNS를 통해 세계 연구자에게 알려지고 있으며, 모든 모델을 공개형 대형언어모델로 출시 했기 때문에 이 연구모델이 멀티모달 대형언어모델 발전에 기여할 것이다”이라고 언급했다. 연구팀이 개발한 멀티모달 대형언어모델인 콜라보(CoLLaVO)와 모아이(MoAI)는 KAIST 전기및전자공학부 이병관 박사과정이 제1 저자로 참여하고 박범찬 석박사통합과정, 김채원 박사과정이 공동 저자로 참여했다. 콜라보(CoLLaVO)는 자연어 처리(NLP) 분야 최고의 국제 학회인 ‘Findings of the Association for Computational Linguistics(ACL Findings) 2024’에 5월 16일 자로 학회에 승인받았고, 모아이(MoAI)는 컴퓨터 비전 최고의 국제 학회인 ‘European Conference on Computer Vision(ECCV) 2024’학회 승인 결과를 기다리고 있다고 밝혔다. 한편 이번 연구는 KAIST 미래국방 인공지능 특화연구센터 및 전기및전자공학부의 지원을 받아 수행됐다. [1] CoLLaVO 데모 GIF 영상 https://github.com/ByungKwanLee/CoLLaVO [2] MoAI 데모 GIF 영상 https://github.com/ByungKwanLee/MoAI
2024.06.20
조회수 3795
‘당신 우울한가요?’ 스마트폰으로 진단하다
요즘 현대인들에게 많이 찾아오는 우울증을 진단하기 위한 스마트폰으로 진단하는 연구가 개발되어 화제다. 우리 대학 전기및전자공학부 이성주 교수 연구팀이 사용자의 언어 사용 패턴을 개인정보 유출 없이 스마트폰에서 자동으로 분석해 사용자의 정신건강 상태를 모니터링하는 인공지능 기술을 개발했다고 21일 밝혔다. 사용자가 스마트폰을 소지하고 일상적으로 사용하기만 해도 스마트폰이 사용자의 정신건강 상태를 분석 및 진단할 수 있는 것이다. 연구팀은 임상적으로 이뤄지는 정신질환 진단이 환자와의 상담을 통한 언어 사용 분석에서 이루어진다는 점에 착안해 연구를 진행했다. 이번 기술에서는 (1) 사용자가 직접 작성한 문자 메시지 등의 키보드 입력 내용과, (2) 스마트폰 위 마이크에서 실시간으로 수집되는 사용자의 음성 데이터를 기반으로 정신건강 진단을 수행한다. 이러한 언어 데이터는 사용자의 민감한 정보를 담고 있을 수 있어 기존에는 활용이 어려웠다. 이러한 문제의 해결을 위해 이번 기술에는 연합학습 인공지능 기술이 적용됐는데, 이는 사용자 기기 외부로의 데이터 유출 없이 인공지능 모델을 학습해 사생활 침해의 우려가 없다는 것이 특징이다. 인공지능 모델은 일상 대화 내용과 화자의 정신건강을 바탕으로 한 데이터셋을 기반으로 학습되었다. 모델은 스마트폰에서 입력으로 주어지는 대화를 실시간으로 분석하여 학습된 내용을 바탕으로 사용자의 정신건강 척도를 예측한다. 더 나아가, 연구팀은 스마트폰 위 대량으로 주어지는 사용자 언어 데이터로부터 효과적인 정신건강 진단을 수행하는 방법론을 개발했다. 연구팀은 사용자들이 언어를 사용하는 패턴이 실생활 속 다양한 상황에 따라 다르다는 것에 착안해, 스마트폰 위에서 주어지는 현재 상황에 대한 단서를 기반으로, 인공지능 모델이 상대적으로 중요한 언어 데이터에 집중하도록 설계했다. 예를 들어, 업무 시간보다는 저녁 시간에 가족 또는 친구들과 나누는 대화에 정신건강을 모니터링 할 수 있는 단서가 많다고 인공지능 모델이 판단해 중점을 두고 분석하는 식이다. 이번 논문은 전산학부 신재민 박사과정, 전기및전자공학부 윤형준 박사과정, 이승주 석사과정, 이성주 교수와 박성준 SoftlyAI 대표(KAIST 졸업생), 중국 칭화대학교 윤신 리우(Yunxin Liu) 교수, 그리고 미국 에모리(Emory) 대학교 최진호 교수의 공동연구로 이뤄졌다. 이번 논문은 올해 12월 6일부터 10일까지 싱가폴에서 열린 자연어 처리 분야 최고 권위 학회인 EMNLP(Conference on Empirical Methods in Natural Language Processing)에서 발표됐다. ※ 논문명(FedTherapist: Mental Health Monitoring with User-Generated Linguistic Expressions on Smartphones via Federated Learning) 이성주 교수는 "이번 연구는 모바일 센싱, 자연어 처리, 인공지능, 심리학 전문가들의 협력으로 이루어져서 의미가 깊으며, 정신질환으로 어려워하는 사람들이 많은데, 개인정보 유출이나 사생활 침범의 걱정 없이 스마트폰 사용만으로 정신건강 상태를 조기진단 할 수 있게 되었다ˮ라며, "이번 연구가 서비스화되어 사회에 도움이 되면 좋겠다ˮ라고 소감을 밝혔다. 이 연구는 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행됐다. (No. 2022-0-00495, 휴대폰 단말에서의 보이스피싱 탐지 예방 기술 개발, No. 2022-0-00064, 감정노동자의 정신건강 위험 예측 및 관리를 위한 휴먼 디지털 트윈 기술 개발)
2023.12.21
조회수 5221
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1