본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A0%84%EA%B8%B0%EB%B0%8F%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%EB%B6%80
최신순
조회순
당뇨병 만성상처 추적 스마트 헬스케어 기기 개발
우리 대학 연구팀이 당뇨병 등 상처 부위의 시공간 온도 변화 및 열전달 특성 추적을 통해 상처 치유 과정을 효과적으로 모니터링할 수 있는 무선 시스템을 개발했다. 전기및전자공학부 권경하 교수팀이 중앙대학교 류한준 교수와 상처 치유 과정을 실시간으로 추적해 적절한 치료를 제공할 수 있게 해주는 디지털 헬스케어 기술을 개발했다고 5일 밝혔다. 피부는 유해 물질로부터 인체를 보호하는 장벽 기능을 한다. 피부 손상은 집중 치료가 필요한 환자들에게 감염과 관련된 심각한 건강 위험을 초래할 수 있다. 특히 당뇨병 환자의 경우, 정상적인 혈액 순환과 상처 치유 과정에 문제가 생겨 만성 상처가 쉽게 발생한다. 이러한 만성 상처의 재생을 위해 미국에서만 매년 수백억 달러의 의료 비용이 지출되고 있다. 상처 치유를 촉진하는 다양한 방법이 있지만, 환자별 상처 상태에 따라 맞춤 관리가 필요하다. 이에 연구팀은 상처 부위와 주변 건강한 피부 사이의 온도 차이를 활용해 상처 내 발열 반응을 추적했으며, 열 전송 특성을 측정해 피부 표면 근처의 수분 변화를 관찰함으로써 흉터 조직의 형성 과정을 파악할 수 있는 기반으로 활용했다. 연구팀은 당뇨병이 있는 쥐를 통해 병적 상태에서 상처 치유가 지연되는 과정에서 실험을 진행했고, 수집된 데이터가 상처 치유 과정과 흉터 조직 형성을 정확히 추적할 수 있음을 입증했다. 해당 시스템은 상처가 치유된 후에 기기를 제거하는 과정에서 발생할 수 있는 조직 손상을 최소화하기 위해, 체내에서 자연 분해가 가능한 생분해성 센서 모듈과 통합됐다. 이 생분해성 모듈은 사용 후 별도로 제거할 필요 없이 몸속에서 저절로 분해되어 사라지므로, 추가적인 불편함이나 조직 손상의 위험을 최소화한다. 생분해성 재료를 사용한 이 장치는 사용 후 제거할 필요가 없으므로 상처 부위 내부에서도 모니터링할 수 있는 가능성을 제시한다. 연구를 주도한 권경하 교수는 "상처 부위의 온도와 열전달 특성을 지속적으로 모니터링함으로써, 의료 전문가들이 당뇨병 환자의 상처 상태를 더 정확하게 파악하고 적절한 치료를 제공할 수 있게 될 것으로 기대된다ˮ면서 "생분해성 센서를 사용해 상처 치유가 완료된 후 장치를 제거할 필요 없이 안전하게 분해될 수 있어, 병원뿐만 아니라 가정에서도 실시간 모니터링이 가능해질 것ˮ이라고 말했다. 연구팀은 향후 이 기기를 항균 특성을 가진 재료와 통합해, 염증 반응, 박테리아 감염 및 기타 병변을 관측 및 예방하는 기술로 확장할 계획이다. 온도 및 열전달 특성 변화를 통해 감염 수준을 감지 함으로써 병원이나 가정에서 실시간으로 사용할 수 있는 항균, 범용 상처 모니터링 플랫폼을 제공하는 것을 목표로 한다. 이번 연구 결과는 국제 학술지 `어드밴스드 헬스케어 머티리얼스(Advanced Healthcare Materials)'에 지난 2월 19일 발표됐으며, 표지 논문(Inside Back Cover Journal)으로 선정됐다. (논문명 : Materials and Device Designs for Wireless Monitoring of Temperature and Thermal Transport Properties of Wound Beds during Healing) 한편, 이번 연구는 한국연구재단의 기초연구사업, 지역혁신선도연구센터사업 및 BK21의 지원을 받아 수행됐다.
2024.03.05
조회수 4149
강한 빛에서 0.02초 내에 새로운 촉매를 합성하다
대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다. 우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다. 연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다. 이번 기술은 대면적의 빛을 활용하고 대기 중의 환경에서 매우 빠른 시간(0.02초 이내)에 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현한 기술이다. 광열효과가 뛰어난 소재(탄소 나노섬유, 그래핀 산화물, 맥신(Mxene))에 다종 금속 염을 고르게 섞어주고 빛을 가하게 되면 초고온 및 매우 빠른 승/하온 속도를 기반으로 최대 9성분계의 합금 촉매를 합성할 수 있음을 밝혔다. 합금 촉매는 연료전지, 리튬-황전지, 공기 전지, 물 분해 수소 생산 등 저장 및 발전에 광범위하게 적용되며, 비싼 백금의 사용량을 획기적으로 줄이는데 유리하다. 연구팀은 광열효과를 통해 단일원자 촉매의 신규 합성법에도 성공했다. 그래핀 산화물에 멜라민 및 금속염을 동시에 혼합하여 빛을 조사하게 되면 단일원자 촉매가 결합된 질소 도핑 그래핀을 합성할 수 있음을 최초로 밝혔다. 백금, 코발트, 니켈 등의 다양한 단일원자 촉매가 고밀도로 결착되어 다양한 촉매 응용 분야에 활용할 수 있다. 최성율 교수와 김일두 교수는 "강한 빛을 소재에 짧게(0.02초 이내) 조사하는 간편한 합성기법을 통해 단일 원소 촉매부터 다성분계 금속 나노입자 촉매의 초고속, 대면적 합성을 가능하게 하는 새로운 촉매 합성 공정 플랫폼이 될 것으로 기대된다ˮ고 밝혔다. 특히, "매우 빠른 승/하온 속도를 기반으로 기존에 합성하기 어려웠던 고엔트로피 다성분계 촉매 입자를 대기 중 조건에서 균일하게 합성해 고성능 물 분해 촉매로 응용했다는 점에서 매우 의미있는 연구 결과이며, 응용 분야에 따라 촉매 원소의 크기와 조성을 자유롭게 조절해 제작할 수 있는 신개념 광 기반 복합 촉매 소재 합성 플랫폼을 구축했다ˮ고 밝혔다. 고엔트로피 촉매 제조 관련 연구는 공동 제1 저자인 차준회 박사(KAIST 전기및전자공학부, 現 SK하이닉스 미래기술연구원), 조수호 박사(KAIST 신소재, 現 나노펩 선임연구원), 김동하 박사(KAIST 신소재, 현 MIT 박사후 연구원, 한양대학교 ERICA 재료화학공학과 교수 임용)의 주도하에 진행됐으며, 최성율 교수(KAIST 전기및전자공학부), 김일두 교수(KAIST 신소재), 정지원 교수(KAIST 신소재, 現 울산대학교 신소재 교수)가 교신저자로 참여했다. 단일원자 촉매 제조 관련 연구는 공동 제1 저자인 김동하 박사와 차준회 박사의 주도하에 진행됐으며, 김일두 교수, 최성율 교수가 교신저자로 참여했다. 이번 연구 결과는 나노 분야의 권위적인 학술지인 `어드밴스드 매트리얼즈(Advanced Materials)' 11월호에 속표지 논문으로 선정되었으며, `에이씨에스 나노(ACS Nano)' 12월호에 속표지 논문으로 출간 예정이다. 한편 연구는 한국연구재단 중견연구자지원 사업, 과학기술정보통신부와 산업통상자원부 사업, 한국연구재단 미래소재디스커버리 사업의 지원, 과학기술정보통신부 반도체-이차전지 인터페이싱(InterFacing) 플랫폼 기술개발사업을 받아 수행됐다.
2023.12.06
조회수 5863
인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체 개발
우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single Thin-Film Transistor Synapses Over Single Thin-Body Transistor Neurons by Monolithic Vertical Integration). ‘Advanced Science’는 재료과학, 물리학, 화학, 생명과학, 엔지니어링 분야의 기초 및 응용 연구를 다루는 학제 간 오픈 액세스 저널이다. (impact factor : 17.521) 뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다. 뉴로모픽 하드웨어를 구현하기 위해서는 생물학적 뇌와 동일하게 일정 신호가 통합되었을 때 스파이크를 발생하는 뉴런과 두 뉴런 사이의 연결성을 기억하는 시냅스가 필요하다. 연구팀은 단일 박막 트랜지스터(thin-film transistor) 기반 시냅스 소자를 단일 트랜지스터 기반 뉴런 소자 위에 3차원 방식으로 수직 집적해, 높은 집적도와 전력 효율을 가지는 3차원 집적 뉴로모픽 반도체를 개발했다. 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자를 제작하기 위해, 엑시머 레이저 어닐링(excimer laser annealing) 기법을 활용했다. 또한, 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자의 내구성을 향상시키기 위해, 소자 내부의 줄열(Joule heat)을 이용한 자체 어닐링 기법도 제안했다. 이러한 뛰어난 내구성을 바탕으로, 이벤트 카메라(event camera)를 기반으로 제작된 손동작 기반의 수화 (手話) 패턴을 높은 성공률로 인식할 수 있음을 보였다.
2023.09.21
조회수 4994
150% 쭉쭉 늘어나는 전자 섬유 개발
전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다. 우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다. 전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로미터이기 때문에, 기존에 이용된 딥-코팅(dip-coating)과 같은 단순한 방법으로 실에 코팅하는 것이 불가능하다. 연구진은 액체금속 입자가 높은 밀도로 실 위에 전달될 수 있고, 블레이드와 기판 사이에서 현탁액의 조성을 실시간으로 바꾸면서 화학적 변성을 통해 액체금속 입자를 실과 접착시킬 수 있는 새로운 방법인 현탁액 전단(suspension shearing) 방법을 통해 이를 해결했다. 추가로 기계적 안정성이 우수한 탄소나노튜브(CNT)가 포함된 액체금속 입자를 한층 더 코팅하는 방식으로, 액체금속 복합체의 기계적 안정성도 확보할 수 있었다. 제작된 신축성 전자 섬유는 추가적인 공정이 필요 없이 우수한 초기전도성을 보였고(2.2x10^6 S/m), 기존의 고체 금속 전도체 기반 섬유들과는 다르게 150% 늘려도 전기저항 변화가 거의 없다. 기계적 안정성도 우수해 반복되는 변형 실험에도 전기적 성질을 유지할 수 있었고, 다양한 전자 부품들과 쉽게 통합될 수 있다. 연구팀은 이를 이용해 실제 상용화된 옷에 다양한 전자회로를 구현했다. 나아가서 연구팀은 액체금속 복합체를 코팅하는 방법이 다양한 실에 호환 가능하고, 재료의 생친화성이 우수하기 때문에, 이를 이용해 신경과학 연구에 사용할 수 있는 섬유형 바이오 전자 섬유를 구현했다. 연구팀은 제안된 코팅 방법을 이용해 기계적 변형에 영향을 받지 않는 뇌 활동 전극, 신경 자극 전극, 다기능성 옵토지네틱 프로브를 제작해 넓은 범용성과 높은 공정 신뢰성을 갖는다는 것을 보였다. 우리 대학 이건희 박사, 이도훈 박사과정, 전우진 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)' 온라인 판에 7월 13일자 출판됐다. (논문명: Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics) 스티브박 교수는 "옷에 다양한 전자 공학적인 기능을 웨어러블 형태로 구현하는 가능성을 보여준 연구로 최근에 각광받고 있는 환자 편의성을 높인 웨어러블 헬스케어 소자나 최소침습형 임플란터블 전자소자 개발의 새로운 방향성을 제시한 의미있는 결과ˮ 라고 말했다. 한편 이번 연구는 한국연구재단, KAIST의 지원을 받아 수행됐다. 이건희 박사는 포스코청압재단의 지원을 받고 있다.
2023.07.25
조회수 5994
기존 반도체 전자소자 공정과 호환되는 신축성 전도체 포토패터닝 방법 개발
우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 기존의 반도체공정을 이용하여 고해상도로 패터닝할 수 있는 초기전도성이 확보된 액체금속 기반의 신축성 전도체 필름 제작 방법을 개발했다고 밝혔다. 신축성 전도체는 최근 각광받고 있는 사용자 친화형 웨어러블 소자, 신축성 디스플레이, 소프트 로봇의 전자 피부 개발에 핵심 요소로 여겨져 활발하게 연구가 진행되어왔다. 최근 신축성 전도체 중 하나로 높은 전기전도성과 신축성, 낮은 기계적 강성을 동시에 만족하고 안정성도 어느정도 확보가 된 갈륨기반의 액체금속 입자가 전도성 필러로 각광받고 있다. 하지만 액체금속 입자의 경우에는 기계적 불안정성으로 인하여 제한된 형태의 용액공정으로만 사용이 가능했기 때문에, 기존의 금속을 전자소자에 통합하는 방법인 반도체 공정을 이용하는 것이 어려웠다. 이런 이유로, 액체금속 입자 기반의 전자소자는 지금까지 연구실 수준에서 노즐 프린팅, 스크린 프린팅과 같은 제한된 방법으로 제작되는 것에 그쳤다. 나아가서 액체금속 입자는 초기에는 산화막의 존재로 인하여 전기전도성이 없기 때문에, 추가적인 후처리를 통해 전기전도성을 확보해야했다. 이런 추가적인 공정은 이 새로운 전자재료의 범용성 높은 사용을 막는 큰 장애물이었다. 이런 기존의 문제를 극복하여, 연구팀은 기존의 반도체 공정 (포토리소그래피 기반의 패터닝, 에칭을 이용한 다층구조 통합)과 호환이 가능한 안정적인 형태의 액체금속입자 필름을 코팅하는 방법을 제안하였다. 연구진은 먼저 안정적인 필름을 증착하기 위해 고분자로 쌓인 액체금속 마이크로입자 현탁액을 제작하였다. 용액전단 방법을 이용하여 이 현탁액을 미리 반도체공정을 이용하여 패터닝이 되어있는 기판 위에 대면적으로 균일하게 코팅을 할 수 있었다. 특히 현탁액을 물 기반으로 만들어 코팅 과정에서 포토레지스트 (Photoresist)에 손상을 가하지 않게 하여, 정밀한 패터닝이 가능하게 했다. 포토레지스트 위에 코팅된 액체금속 입자필름은 유기용매를 이용한 lift-off를 통해 최소 10um의 높은 해상도로 패터닝이 가능했다. 특히, 연구진은 이 과정에서 극성유기용매인 DMSO (dimethyl sulfoxide)를 사용하여, 액체금속과 고분자간의 상분리를 유도하였다. 이 과정에서 액체금속 입자 표면의 고분자와 산화막이 제거되어 다른 추가적인 공정없이 초기 전도성을 갖는 도선을 기판 위에 패터닝할 수 있었다. (그림1) 이 공정을 이용해 제작된 신축성 전도체는 기존의 고체 금속 전도체기반 섬유들과는 다르게 50%의 인장이 가해져도 전기저항변화가 거의 없어 이상적인 신축성 도선의 성질을 보였다. 또, 기계적, 화학적으로 안정적이어서 다양한 기판에 전이 (transfer) 공정이 가능하였e다. 액체금속 입자가 패턴된 기판을 마스크 얼라이너 (Mask aligner) 장비 및 에셔 (Asher) 장비를 이용해 고해상도 멀티레이어 회로를 제작할 수 있었다. 연구진은 이 기술을 이용하여 (그림 2)와 같이 신축성 디스플레이, 유연 로봇에 사용할 수 있는 고해상도 전자 피부 등의 구현이 가능함을 보여주었다. 우리 대학 이건희 박사, 김현지 석사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `머터리얼즈 투데이 (Materials Today)' 온라인 버전에 7월 14일 출판됐다. (논문명: Large-area photo-patterning of initially conductive EGaIn particle-assembled film for soft electronics) 연구팀은 "새로운 전자재료를 기존의 표준공정이라할 수 있는 반도체공정에 적용하여 차세대 전자소자의 양산화 가능성을 보여준 의미있는 연구ˮ라고 말했다. 또, "최근에 각광받고 있는 신축성 전도체인 액체금속의 고해상도 패터닝 및 초기전도성을 얻을 수 있는 방법을 제시하여 유연 전자소자 연구의 새로운 방향성을 제시할 수 있을 것으로 기대된다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다. 이건희 박사는 포스코청암재단의 지원을 받고 있다.
2023.07.17
조회수 4237
이성주, 신진우 교수팀, 스스로 새로운 환경 적응하는 인공지능 기술 개발
우리 대학 전기및전자공학부 이성주 교수와 AI대학원 신진우 교수 연구팀이 공동연구를 통해 스스로 환경변화에 적응하는 테스트타임 적응 인공지능 기술을 개발했다고 밝혔다. 해당 연구는 “NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation”라는 제목으로 인공지능 분야 최고권위 국제학술대회 ‘신경정보처리시스템학회(NeurIPS) 2022'에서12월 발표될 예정이다. 이성주 교수와 신진우 교수 공동 연구팀이 스스로 새로운 환경에 적응하는 “테스트타임 적응 (Test-Time Adaptation)” 인공지능 기술을 개발하였다. 연구팀이 제안한 알고리즘은 기존의 최고 성능 알고리즘보다 평균 11% 향상된 정확도를 보였다. 기계학습 모델들의 한계점은 학습했던 데이터와 다른 분포의 데이터에 적용되면 성능이 급격히 하락한다는 것이다. 이를 푸는 여러 방법 중에서 데이터를 미리 수집할 필요없이 모델이 스스로 테스트 데이터를 분석하여 변하는 환경에 적응하고 성능을 향상시키는 기술인 테스트타임 도메인 적응 (Test-Time Adaptation) 방법이 최근 산학계에서 크게 각광을 받고 있었다. 연구팀은 기존의 테스트타임 도메인 적응 기술들이 모두 데이터가 이상적인 균일분포를 따른다는 가정을 한다는 문제점에 착안했다. 실제 데이터는 환경 변화나 시간 변화에 따라 데이터 분포가 변하거나 비균일분포의 데이터에 대해서는 기존 기술을 동작하지 않는다. 하지만 연구팀이 제시한 “NOTE” 기술은 비균일분포의 데이터에서도 기존 최대 성능 알고리즘 보다 평균 11%만큼 향상된 정확도를 보였다. 이성주 교수 연구팀과 신진우 교수 연구팀의 공동연구로, 공태식 박사과정이 제1저자로 연구를 이끌었고, 정종헌 박사과정, 김태원 학사과정, 김예원 석사과정이 공동 저자로 기여하였다. 이성주 교수와 신진우 교수는 ”테스트타임 도메인 적응은 인공지능이 스스로 환경 변화에 적응하여 성능을 향상시키는 기술로, 활용도가 무궁무진하다. 이번에 발표될 NOTE 기술은 실제 데이터 분포에서 성능향상을 보인 최초의 기술이고 자율주행, 인공지능 의료, 모바일 헬스케어 등 다양한 분야에 적용이 가능할 것으로 기대된다.” 라고 밝혔다. 이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원 (No. NRF-2020R1A2C1004062)과 방위사업청과 국방과학연구소의 지원(UD190031RD)으로 한국과학기술원 미래 국방 인공지능 특화연구센터에서 수행된 연구이다.
2022.10.21
조회수 7308
투명 스마트 복합 필름 상용화에 성공
우리 대학 기계공학과 이승섭 교수와 전기전자공학부 윤준보 교수 공동 연구팀이 `투명 스마트 복합 필름' 상용화에 성공했다고 19일 발표했다. `투명 스마트 복합 필름'은 투명한 필름 혹은 유리판 위에 안테나, 열선, 발광 기능이 복합적으로 구현된 것으로, 시야 방해 없이 원활한 5G 통신, 고효율 방열, 정보 전달 기능이 동시에 가능하다. 한편, 자동차부품 기업인 ㈜티에이치엔은 5G 안테나 기업인 ㈜센서뷰와 함께 관련 기술을 이용해 자동차용 제품 개발을 진행 중이며 시제품이 2022년 현대자동차 테크데이에 선정됐다고 발표했다. 이승섭 교수 연구팀과 윤준보 교수 연구팀은 서로 다른 방법으로 투명 필름 연구를 수행했는데, 이승섭 교수팀은 투명 전도성 필름 기반의 안테나와 열선을 연구했고, 윤준보 교수팀은 초소형 3차원 패턴을 이용한 투명 발광을 연구했다. 이승섭 교수팀이 개발한 투명 전도성 필름은 투명도 90% (PET 필름 포함), 면저항 0.3옴/sq, 헤이즈 1%의 세계 최고 성능을 가지고 있다. 투명 안테나 필름은 짧은 주파수 특성으로 많은 안테나를 요구하는 5G 특화망을 대상으로 개발됐는데, 스마트 빌딩과 팩토리는 물론 자율주행 및 커넥티드 모빌리티 등에 적용이 예상된다. 투명 열선 필름은 저전력 고효율 방열이 가능해 유리창 서리 제거, 외부 카메라 시야 확보, 겨울철 라이더 적용은 물론 복사열을 이용한 실내 난방 등에 광범위하게 응용될 수 있다. 윤준보 교수팀의 투명 발광 필름은 가장자리에 배치된 LED에서 도광된 빛이 필름의 한쪽 방향으로만 나오는 특징을 지니는데, 이미 `매직라이팅 시트' 라는 상표로 제품화됐다. 투명 발광 필름은 투명해서 하늘을 볼 수 있다가 밤이 되면 실내 조명으로 변하는 `라이팅 썬루프', 차량 유리에서 특정 모양으로 빛이 나오도록 하는 `라이팅 유리' 등 미래 모빌리티 조명을 주 시장으로 하고 있으며, 비전 검사 장비에 설치할 수 있는 `투명 비전 조명' 으로 출시된 바 있다. 이승섭 교수와 윤준보 교수는 관련 기술을 바탕으로 각각 ㈜제이마이크로와 ㈜멤스룩스를 창업했다. 연구를 주도한 이승섭 교수는 "세계 최고 성능을 가진 투명 전도성 필름에 5G 통신, 고효율 방열 등이 가능하도록 개발된 이번 투명 스마트 복합 필름의 상용화를 통해 차량, 실내 난방뿐만 아니라 나아가 스마트 빌딩, 스마트 팩토리, 자율주행 등 광범위하게 응용이 가능할 것으로 기대된다ˮ라고 설명했다.
2022.10.19
조회수 6899
유해가스 및 와인을 구별하는 전자 코 뉴로모픽 반도체 모듈 개발
우리 대학 전기및전자공학부 최양규 교수와 기계공학과 박인규 교수 공동연구팀이 `인간의 후각 뉴런을 모방한 뉴로모픽 반도체 모듈'을 개발했다고 4일 밝혔다. 인간의 뇌, 시각 뉴런, 그리고 촉각 뉴런을 모방한 뉴로모픽 반도체 모듈을 각각 개발하는 데 성공했던 연구팀은, 인간의 후각 뉴런과 같이 가스 성분을 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 반도체 모듈을 통해 뉴로모픽 기반의 전자코(eletronic nose)를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 한준규 박사과정과 강민구 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 2022년 4월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : Artificial olfactory neuron for an in-sensor neuromorphic nose) 인공지능을 이용한 후각 인식 시스템은 높은 정확도로 가스를 인식할 수 있어 환경 모니터링, 음식 모니터링, 헬스케어 등 다양한 분야에 걸쳐 유용하게 사용되고 있다. 하지만 이러한 시스템 대부분은 CPU와 메모리가 분리된 구조인 폰노이만 컴퓨터가 필요한 소프트웨어를 기반으로 하므로, 데이터가 CPU와 메모리 사이를 이동할 때 높은 전력이 소모된다. 또한 센서에서 CPU로 데이터가 전송될 때 필요한 변환 회로에서도 추가 전력 소비가 발생한다. 따라서 모바일 또는 사물인터넷(IoT) 장치에 적용되기는 어렵다. 한편, 생물학적 후각 시스템은 감각 세포 자체에서 스파이크 형태로 감각 정보를 전달하고, 이를 뇌에서 병렬적으로 처리함으로써 낮은 전력 소비만으로 가스를 판별할 수 있다. 따라서 저전력 후각 시스템을 구축하기 위해, 생물학적 후각 시스템을 모방해 센서 단에서 스파이크 형태로 정보를 전달하는 `인 센서 컴퓨팅(In-Sensor Computing)' 기반 뉴로모픽 후각 시스템이 주목을 받고 있다. 이러한 뉴로모픽 후각 시스템을 구현하기 위해서는 인간의 후각 뉴런처럼 화학 신호를 스파이크 형태의 전기 신호로 변환해주는 구성 요소가 필요하다. 하지만, 일반적인 가스 센서는 이러한 기능을 수행할 수 없다. 연구팀은 반도체식 금속산화물 기반 가스 센서와 단일 트랜지스터 기반 뉴런 소자를 이용해, 가스를 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 반도체 모듈을 개발했다. 연구팀은 제작된 뉴로모픽 반도체 모듈을 바탕으로 유해가스를 구분할 수 있는 가스 인식 시스템과 와인을 구분할 수 있는 전자 소믈리에 시스템을 구축했다. 특히, 여러 가지 가스 분자가 섞여 있어 구분이 힘든 와인을 뉴로모픽 시스템을 이용해서 구분할 수 있음을 보인 것에서 그 의미가 크다. 연구를 주도한 한준규 박사과정은 "개발된 뉴로모픽 반도체 모듈은 전자코에 적용되어 사물인터넷(IoT) 분야, 환경 모니터링, 음식 모니터링, 헬스케어 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ며, "이는 `인-센서 컴퓨팅(In-Sensor Computing)' 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 국민위해인자대응기술개발사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2022.07.04
조회수 9291
헬스케어용 액체금속 전자문신 기술 개발
우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 건강 모니터링 및 치료를 위한 개인 맞춤형 전자문신을 즉석으로 구현할 수 있는 기술을 개발했다고 4일 밝혔다. 기존의 전자문신 (e-tattoo)은 주로 얇은 박막 위에 전도성 물질을 패터닝 하는 방식으로 만들어졌다. 하지만 소자를 일률적인 공정을 통해 제작해야 하기 때문에, 시술자의 요구를 즉석에서 반영할 수 없었다. 또 기판의 존재로 인한 제한된 신축성과 통기성은 사용을 제한하는 단점이 있었다. 나아가서 기존의 비싸거나 상대적으로 전도성이 낮은 신축성 재료들과 달리 금속처럼 전도성이 높으면서도 상대적으로 저렴한 재료를 이용해야 전자문신의 적용성을 높일 수 있었다. 이 문제를 해결하기 위해 연구팀은 액체금속 복합체 기반의 현탁액(suspension)을 이용해 전자문신을 구현할 수 있는 기술을 개발했다. 연구팀은 전도성이 우수하고 상대적으로 저렴하면서 생친화성도 우수한 갈륨기반의 액체금속을 백금으로 기능화된 탄소나노튜브와 함께 팁소니케이션을 통해 현탁액을 만들어 전자문신에 사용될 수 있는 잉크를 제작하였다. 추가로 연구팀은 잉크의 용매로 에탄올을 이용하여 높은 습윤성과 입자간의 낮은 전기적 반발력, 그리고 빠른 증발을 가능하게 하여 10초 이내에 피부 위에 발릴 수 있는 전자문신을 개발하였다. 피부에 증착된 전자문신은 높은 전도성, 내구성, 신축성 및 생친화성을 가져 사용자의 신체에 맞춰 최적화된 생체전극으로 사용될 수 있다. 연구팀은 전자문신을 피부에 증착하여 생체의 심전도신호 (ECG)를 측정하거나 근육에 전기자극을 전달할 수 있는 생체전극을 제작했다. 또한 액체금속 복합체가 빛에 반응하여 열을 발생시킬 수 있다는 점(photothermal effect)을 이용하여 물리치료에 적용될 수 있는 빛-열 전환 패치도 제작하는데 성공하였다. 나아가서 액체금속 복합체에 효소를 부착하여 땀에 많이 포함되어 있는 바이오마커인 포도당(glucose), 젖산(lactate), 알코올(ethanol)을 측정하는 웨어러블 바이오 센서로서의 가능성도 구현하였다. 우리 대학 신소재공학과 이건희(스티브 박, 정재웅 교수 공동 지도) 박사과정, 우희진 석사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머터리얼즈(Advanced Materials)' 온라인 버전에 6월 14일 字 출판됐다. (논문명: Personalized electronic tattoo for healthcare realized by on-the-spot assembly of intrinsically conductive and durable liquid-metal-composite) 스티브 박 교수는 "최근 주목받고 있는 액체금속 입자의 한계점을 극복하고, 액체금속-탄소 복합체 기반 현탁액의 다양한 적용 가능성을 보여주었다ˮ라고 말했다. 정재웅 교수는 "헬스케어에 대한 관심이 증가하면서 각광받고 있는 맞춤형 전자소자의 새로운 방향성을 제시한 의미있는 결과ˮ 라고 말했다. 한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2022.07.04
조회수 7392
강한 빛을 쏘아 나노 촉매 제조해 황 기반 가스 검출센서 구현 성공
우리 대학 신소재공학과 김일두 교수 연구팀과 전기및전자공학부 최성율 교수 연구팀이 공동연구를 통해 강한 빛(400 나노미터~900 나노미터 파장)을 금속산화물 나노 시트에 짧게 조사해, 0.02초 만에 다성분계 금속 합금 나노입자 촉매를 합성하고, 이를 극미량의 황 기반 생체지표(biomarker) 가스를 감지할 수 있는 가스 센서 플랫폼에 성공적으로 적용했다고 18일 밝혔다. 이 가스 센서 플랫폼은 사람의 날숨에 포함된 다양한 질병과 관련된 미량의 생체지표 가스를 선택적으로 감지해 관련된 특정 질병을 실시간 모니터링할 수 있는 기술이다. 날숨만으로 각종 질병 여부를 파악하는 비침습적 호흡 지문 센서 기술은 핵심 미래 기술이다. 날숨 속 특정 가스들의 농도변화를 검사해 건강 이상 여부를 판단할 수 있다. 날숨 가스의 성분에는 수분 외에도 구취의 생체지표 가스인 황화수소(hydrogen sulfide), 메틸머캅탄(methyl mercaptan), 디메틸설파이드(dimethyl sulfide)의 3종 황 화합물이 포함된다. 그중에서 황화수소는 구취, 메틸머캅탄 가스는 잇몸병 환자에게서 높은 농도로 배출되는 생체지표 가스로서 상기 3종 황화합물 가스를 선택적으로 감지하는 것이 매우 중요하다. 공동연구팀은 이번 연구에서 전자(electron)가 속박 상태에서 자유롭게 벗어나기 위해 필요한 에너지 차를 의미하는 밴드 갭(band gap, 물질의 전기적, 광학적 성질을 결정하는 요인)이 커 빛 흡수율이 낮은 백색 산화물 나노소재에서의 광열효과를 극대화하는 전략을 최초로 제시했다. 일반적으로 소재의 밴드갭이 커질수록 빛 흡수율이 낮아지며, 유리와 같이 밴드 갭이 매우 큰 물질은, 빛이 투과되어 투명하게 보이게 된다. 연구팀은 주석산화물(SnO2)이 10 나노미터 이하의 나노 결정립들로 구성된 나노 시트 형상을 나타낼 때, 흡수된 빛에너지가 열에너지로 효과적으로 전환됨을 최초로 관찰하였다. 또한, 높은 기공 구조와 나노 시트 내 다수의 결함을 통해 열 전도도를 인위적으로 낮춰 발생 된 열이 소재 외부로 잘 빠져나가지 않게 했다. 대면적 제논 램프(Xenon lamp)의 빛이 조사된 부분은 소재의 온도가 1,800oC 이상까지 급격하게 상승하는 것을 적외선 센서 시스템을 통해 확인했다. 공동연구팀은 이를 활용해 금속산화물의 상을 제어함과 동시에 다성분계 금속 나노입자 촉매를 대기 중에서 0.02초 만에 광열 합성하는 데 성공했다. 합성한 다성분계 입자 촉매들이 결착된 금속산화물 나노 시트를 센서 소재로 활용해 세계 최고 수준의 황 기반 가스 감지 성능을 구현했다. 특히, 백금(Pt)과 3성분계 백금-루테늄-이리듐(PtRuIr) 촉매가 각각 결착된 주석산화물의 경우 1ppm(백만분의 일) 수준의 황화수소 (H2S)와 디메틸 설파이드 (C2H6S)가스에 대해 약 3,165배, 6,080배의 세계 최고 수준의 저항 변화비 특성을 나타냄을 확인했다. 추가로, 연구팀은 미세전자기계시스템(MEMS) 기반 휴대용 가스 센서를 개발했다. MEMS 센서는 센서부 크기가 0.1밀리미터 크기로 작아서, 1g의 감지 소재로 8천여 개 정도의 센서를 제작할 수 있다. 연구팀은 MEMS 가스 센서 어레이화와 모바일 기기와의 연동을 통해 초저전력(< 10 mW), 초소형 생체지표 검출 가스 센서 플랫폼을 개발했다. 우리 대학 최성율 교수와 김일두 교수는 "강한 빛을 1초도 안되는 짧은 시간동안 간편하게 조사하는 방식과 소재의 광열효과를 극대화하는 합성기법은 금속산화물의 상(phase) 조절과 촉매 기능화를 초고속, 대면적으로 가능하게 하는 새로운 공정 플랫폼이 될 것으로 기대된다ˮ고 밝혔다. 특히, "램프 조사 횟수에 따라 단일원자 촉매의 대기 중 합성도 성공해, 세계 최고 수준의 가스 감지 성능 결과를 유도했다는 측면에서 매우 의미가 있는 연구 결과이며 매일같이 호흡 가스를 분석해 질병을 조기 모니터링하는 자가 진단 호흡 센서기기의 상용화에 효과적으로 적용될 수 있는 기술이 될 것이다ˮ고 밝혔다. 이번 연구는 공동 제1 저자인 김동하 박사(우리 대학 신소재, 현 MIT 박사후 연구원)와 차준회 박사(KAIST 전기및전자공학부)의 주도하에 진행됐으며, 최성율 교수(KAIST 전기및전자공학부)와 김일두 교수(KAIST 신소재)가 교신저자로 참여했다. 이번 연구 결과는 나노 및 화학 분야의 권위적인 학술지이자 Cell지의 자매지인 `켐(Chem)' 4월호에 표지 논문으로 선정됐으며, ‘광열램핑(Flash-Thermal Lamping) 합성’으로 켐 프리뷰(Chem Preview)로도 소개되었다. 본 연구는 한국연구재단 중견연구자지원 사업, 과학기술정보통신부와 산업통상자원부 사업, 한국연구재단 미래소재디스커버리 사업의 지원을 받아 수행됐다.
2022.04.19
조회수 10330
수소 가스 민감성 광투과도 변화 필름을 활용한 무전원 가스센서 기술 개발
우리 대학 기계공학과 박인규 교수 연구팀과 전기및전자공학부 윤준보 교수, POSTECH 노준석 교수 공동 연구팀이 외부 전력 공급 없이도 장기간 안정적으로 동작할 수 있는 무전원 수소 감지 센서를 개발했다고 18일 밝혔다. 연구팀은 유연한 폴리머 나노 창살(nanograting)의 한쪽 측벽에 팔라듐(Pd)을 비대칭적으로 코팅하면, 팔라듐(Pd)이 수소 분자를 흡수함에 따라 부피가 팽창하면서 폴리머 나노 창살이 기계적으로 굽혀 일종의 ‘커튼’과 같이 광투과도 변화를 일으킨다는 것을 발견했다. 이러한 현상을 활용하여 태양전지 표면에 감지막을 부착하면 수소 가스에 노출되었을 때 태양전지에 도달하는 빛을 가리고, 이는 태양전지 출력 변화로 이어져 외부의 전력 공급 없이도 수소 가스의 농도를 정밀하게 포착하게 된다. 수소 가스는 석유화학, 반도체, 제약 등 다양한 산업에서 널리 활용되고 있으며 차세대 친환경 에너지원으로도 주목받고 있지만, 누출 발생 시 폭발의 위험이 큰 만큼 안전한 사용을 위해 지속적인 모니터링이 필수적이다. 그러나 기존의 수소 감지 장치들은 지속적인 전원 공급이 필요해 다양한 무선환경에서 장시간 사용하는데 큰 제약이 있었다. 연구팀에서 개발한 무전원 수소 감지 센서는 외부 전원 없이도 수소 가스의 농도를 정밀하게 예측할 수 있어 수소를 활용하는 다양한 무선 원격 환경에서 널리 활용될 것으로 기대된다. 연구팀은 센서의 성능을 극대화하기 위해 수치 시뮬레이션을 통해 팔라듐 코팅 조건(입사각)을 최적화해 0.1%의 저농도 수소 가스에 대해서도 높은 센서 민감도를 달성할 수 있었고, 또한 반복적인 수소 가스 노출 및 습도 변화에도 안정적인 신호를 유지하는 것을 검증했다. 특히 연구팀은 개발한 무전원 수소 센서를 모바일 장치에 탑재해 감지된 수소 농도를 스마트폰에서 원격으로 확인할 수 있는 시제품을 함께 선보여 실제 무선환경에서의 활용성을 높였다. 본 시제품은 수소 감지에 활용되는 태양전지뿐만 아니라 주변 광 세기 변화를 보상하기 위한 추가적인 태양전지를 탑재해 실시간 보상이 이뤄지며, 블루투스를 통해 스마트폰으로 신호를 전송한다. 스마트폰 앱에서는 수소 가스의 폭발 하한 농도인 4%를 초과했을 때 알람을 울려 사용자에게 알려준다. 박인규 교수는 “이번 연구는 첨단 나노기술을 통해 수소 가스를 정밀하게 감지할 수 있는 새로운 감지 메커니즘을 규명했을 뿐만 아니라 개발된 시제품은 센서 전원 공급이 원활하지 않은 원격지에서의 활용성을 크게 높여, 차세대 에너지원으로 주목받고 있는 수소의 안전한 사용에 기여할 것으로 기대된다”라고 말했다. 한국연구재단의 선도연구센터지원사업, 나노·소재기술개발사업의 지원을 받아 진행된 이 연구의 성과는 국제학술지 ‘ACS Nano’2020년 12월자에 게재됐다. (논문명: Chemo-Mechanically Operating Palladium-Polymer Nanograting Film for a Self-Powered H2 Gas Sensor)
2021.01.18
조회수 69683
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1