본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A0%84%EA%B8%B0%EC%9E%90%EB%8F%99%EC%B0%A8
최신순
조회순
고용량 차세대 배터리 수명 향상 소재 개발
전기자동차를 구매할 때 가장 망설이게 만드는 요인은 한번 충전으로 운행할 수 있는 주행거리가 짧다는 점이다. 주행거리를 늘리기 위해서는 배터리를 많이 탑재해야 하는데, 이는 차체의 무게와 가격을 증가시키는 문제가 생긴다. 이에 따라 같은 무게에 더 많은 에너지를 저장해 주행거리를 늘릴 수 있는 고용량 배터리 개발이 시급한 상황이다. 우리 대학 신소재공학과 조은애 교수 연구팀이 현재 사용되고 있는 배터리 양극재와 비교해 20% 이상 에너지 밀도가 높으면서 안정성을 유지하는 고용량의 리튬 과잉 양극 소재를 개발했다고 3일 밝혔다. 현재 전기자동차 배터리에는 니켈 함량이 높은 `하이니켈(Ni)' 양극 소재가 사용되고 있다. 배터리 양극 소재는 코발트(Co), 니켈(Ni), 망간(Mn)의 산화물인데, 니켈의 함량이 높을수록 용량이 높다(200mAh/g). 그러나 하이니켈 양극 소재로는 주행거리 향상에 한계를 드러내고 있으며, 연구팀은 하이니켈 양극 소재의 대안으로 리튬 과잉 양극 소재를 제안했다. 리튬 과잉 양극 소재는 리튬이 과량으로 함유된 차세대 양극 소재로, 저장된 리튬의 양이 많아 가용 용량이 250mAh/g 에 달해, 기존 하이니켈 양극 소재보다 20% 많은 에너지를 저장할 수 있다. 그러나, 리튬 과잉 양극 소재는 첫 충전과 방전 사이에 산화물을 구성하고 있는 산소가 기체가 돼 비가역적으로 추출되는 반응이 일어난다. 이에 따라, 산화물 양극재의 구조가 붕괴되고 배터리 성능이 급격히 감소해 사용되지 못하고 있다. 조은애 교수 연구팀은 비가역적 산소 반응이 주로 발생하는 양극재 표면에 선택적으로 바나듐(V) 이온을 도핑하는 기술을 개발해 리튬 과잉 양극 소재의 안정성을 높이는 데 성공했다. 리튬 과잉 양극 소재가 첫 충·방전에서 69%의 낮은 가역성을 갖지만, 바나듐을 도핑한 리튬 과잉 양극 소재는 첫 충·방전 시 81%에 달하는 높은 가역성을 나타냈으며, 100 사이클의 충·방전 이후에도 92%에 달하는 안정성을 확인했다. 조은애 교수는 "도핑된 바나듐 이온이 양극 소재 내 산소 이온의 전자구조를 변화시켜 충·방전 시 가역적인 산화·환원 반응이 가능하게끔 하였다ˮ고 설명하며 "전체 공정이 비교적 간단해서 대량생산에도 적합하다ˮ고 말했다. 신소재공학과 이용주 박사가 제 1저자로 참여한 이번 연구 결과는 재료 분야 저명 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 1월 29일 字 온라인판에 게재됐다. (논문명: Promoting the Reversible Oxygen Redox Reaction of Li-excess Layered Cathode Materials with Surface Vanadium Cation Doping) 한편 조은애 교수팀이 수행한 이번 연구는 한국연구재단이 추진하는 중견연구사업과 KAIST 글로벌 특이점 연구사업의 지원을 받아 이뤄졌다.
2021.03.03
조회수 91301
공기중 산소로 충전되는 차세대 배터리용 에너지 저장 소재 개발
우리 연구진이 공기 중에 널리 퍼져있는 산소로 충전되는 차세대 배터리인 리튬-공기 배터리의 에너지 저장 소재를 개발했다. 기존 리튬-이온 배터리에 비해 약 10배 큰 에너지 밀도를 얻을 수 있어 친환경 전기자동차용 배터리에 널리 쓰일 것으로 기대된다. 우리 대학 신소재공학과 강정구 교수가 숙명여대 화공생명공학부 최경민 교수 연구팀과 공동연구를 통해 원자 수준에서 촉매를 제어하고 분자 단위에서 반응물의 움직임 제어가 가능해 차세대 배터리로 주목받는 리튬-공기 배터리용 에너지 저장 전극 소재(촉매)를 개발했다. 연구팀은 이번 소재개발을 위해 기존 나노입자 기반 소재의 한계를 극복하는 원자 수준의 촉매를 제어하는 기술과 금속 유기 구조체(MOFs, Metal-Organic Frameworks)를 형성해 촉매 전구체와 보호체로 사용하는 새로운 개념을 적용했다. 금속 유기 구조체는 1g만으로도 축구장 크기의 넓은 표면적을 갖기 때문에 다양한 분야에 적용 가능한 신소재다. 이와 함께 물 분자의 거동 메커니즘 규명을 통해 물 분자를 하나씩 제어하는 기술도 함께 활용했다. 이 결과, 합성된 원자 수준의 전기화학 촉매는 금속 유기 구조체의 1nm(나노미터) 이하 기공(구멍) 내에서 안정화가 이뤄져서 뛰어난 성능으로 에너지를 저장한다는 사실을 밝혀냈다. KAIST 신소재공학과 최원호 박사과정이 제1 저자로 참여한 이 연구결과는 재료 분야 저명 국제 학술지 `어드밴스드 사이언스 (Advanced Science)' 5월 6일 字에 게재됐다. (논문명 : Autogenous Production and Stabilization of Highly Loaded Sub-Nanometric Particles within Multishell Hollow Metal-Organic Frameworks and Their Utilization for High Performance in Li-O2 Batteries) 리튬-이온 배터리는 낮은 에너지 밀도의 한계로 인해 전기자동차와 같이 높은 에너지 밀도를 요구하는 장치들의 발전 속도를 따라잡지 못하고 있다. 이를 대체하기 위해 다양한 종류의 시스템들이 연구되고 있는데 이 가운데 높은 에너지 밀도의 구현이 가능한 리튬-공기 배터리가 가장 유력한 후보로 꼽힌다. 다만 리튬-공기 배터리는 사이클 수명이 매우 짧아서 이를 개선하기 위해 공기 전극에 촉매를 도입하고 촉매 특성을 개선하려는 연구가 활발히 진행되고 있다. 공동연구팀은 원자 수준의 촉매 도입 후 사이클 수가 3배 정도 증가하는 결과를 얻었다. 또 촉매의 경우 크기가 1nm(나노미터) 이하로 작아지면 서로 뭉치는 현상이 발생해서 성능이 급격하게 떨어진다. 공동연구팀은 이런 문제 해결을 위해 원자 수준 촉매 제어기술을 사용했는데 물 분자가 금속 유기 구조체의 1nm(나노미터) 이하의 공간에서 코발트 이온과 반응해 코발트 수산화물을 형성했고, 그 공간 내부에서도 안정화를 이뤘다. 안정화가 이뤄진 코발트 수산화물은 뭉침 현상이 방지되고, 원자 수준의 크기가 유지되기 때문에 활성도가 향상되면서 리튬-공기 배터리의 사이클 수명 또한 크게 개선되는 결과를 얻었다. 강정구 교수는 "금속-유기 구조체 기공 내에서 원자 수준의 촉매 소재를 동시에 생성하고 안정화하는 기술은 수십만 개의 금속-유기 구조체 종류와 구현되는 촉매 종류에 따라 다양화가 가능하다ˮ면서 "이는 곧 원자 수준의 촉매 개발뿐만 아니라 다양한 소재개발 연구 분야로 확장할 수 있다는 의미ˮ라고 설명했다. 한편 이번 연구는 과학기술정보통신부의 글로벌프론티어사업 및 수소에너지혁신기술개발사업의 지원을 받아 수행됐다.
2020.06.01
조회수 14792
전기자동차용 차세대 전지의 성능 극대화
〈 김 일 두 교수〉 우리 대학 신소재공학과 김일두 연구팀이 리튬-공기전지의 핵심 구성요소인 촉매를 대량생산할 수 있는 기술을 개발했다. 리튬-공기전지는 전기자동차에 쓰이는 리튬-이온전지를 대체할 차세대 전지로 주목받고 있으며, 이번에 연구팀이 개발한 원천기술을 통해 리튬-공기전지의 상용화에 한 발짝 다가갈 것으로 기대된다. 연구팀은 촉매활성이 뛰어난 두 소재인 루테늄산화물(RuO2)과 망간산화물(Mn2O3)이 균일하게 분포된 이중 나노튜브 구조를 손쉽게 대량 제조하는 원천기술을 확보했고, 이를 리튬-공기전지에 적용하는데 성공했다. 이번 연구는 나노재료 분야의 국제 학술지 ‘나노 레터스(Nano Letters)’ 3일자 온라인 판에 게재됐다. (논문명: One-Dimensional RuO2/Mn2O3 Hollow Architectures as Efficient Bifunctional Catalysts for Lithium-Oxygen Batteries) 리튬-공기전지는 리튬-이온전지에 비해 용량이 10배 이상 높고 대기 중의 산소를 연료로 활용하기 때문에 전기자동차를 위한 에너지 저장장치로 큰 주목을 받고 있다. 그러나 방전 시 생성되는 고체 리튬산화물(Li2O2)이 충전 과정에서 원활히 분해되지 않아 전지의 효율 및 수명특성이 저하돼 상용화에 어려움을 겪었다. 따라서 탄소재 양극 내의 리튬산화물의 형성 및 분해를 안정적으로 도와주는 촉매 개발이 필수적으로 요구됐다. 리튬-공기전지용 촉매는 가벼우면서 내구성이 우수하고 촉매의 표면적을 최대한 넓히는 것이 중요하다. 현재 상용화 수준으로 대량생산이 가능하고 우수한 촉매 활성을 갖는 소재는 아직 개발되지 않았었다. 연구팀은 위의 문제 해결을 위해 루테늄과 망간 전구체가 녹아 있는 고분자 용액을 전기 방사했다. 이는 누에가 실을 뽑듯이 고분자 용액을 재료로 삼은 실을 뽑아내 루테늄-망간 전구체를 기반으로 한 고분자 복합 섬유를 합성해내는 기술이다. 이후 이 섬유를 고온 열처리하면 거푸집 역할을 하는 고분자 템플릿(Template)이 타서 없어지고, 루테늄산화물 및 망간산화물의 이종 물질이 함께 복합체를 이루는 이중튜브 구조의 촉매가 완성된다. 연구팀이 개발한 이중 튜브는 직경 220 나노미터의 외부튜브와 80 나노미터의 내부튜브로 이뤄져 안쪽 및 바깥쪽 벽이 동시에 촉매 반응에 참여 가능하고, 비어있는 공간이 많아 가볍다는 장점을 갖는다. 연구팀은 초기 충전, 방전 시의 과전압 차이가 약 0.8V 이내로 감소하는 효과를 얻었다. 기존 탄소재 사용시 과전압은 약 2.0V 이상이다. 또한 용량제한 1000 mAh/g 하에서 100사이클 이상의 안정적인 리튬-공기전지 특성을 확인했다. 위의 기술 향상이 가능한 이유는 리튬산화물의 생성반응(산소환원 반응)을 도와주는 망간산화물 촉매와 분해반응(산소발생 반응)을 돕는 루테늄산화물 촉매가 내, 외부 튜브에서 나노단위로 균일하게 존재하기 때문이다. 김 교수 연구팀의 핵심 기술인 전기방사 기술은 고분자, 금속 전구체가 포함된 용액을 전기적 인력으로 연신시켜 수십에서 수백 나노 직경의 나노섬유를 얻을 수 있는 기술이다. 이 기술은 쉽게 기능성 나노섬유를 대량생산할 수 있어 수처리용 필터, 황사 마스크, 마스크팩 소재, 바이오 필터 등에 활발히 사용되고 있다. 연구팀은 “휘발점이 다른 두 용매의 온도 상승 속도를 조절하는 간단한 공정을 통해 리튬-공기전지의 충전 및 방전에 이상적인 촉매구조 디자인에 성공했다”고 밝혔다. 김 교수는 “생산 공정이 매우 손쉽고 대량생산이 가능한 기술이다”며 “촉매의 성능이 우수해 차세대 전지로 각광받는 리튬-공기전지의 상용화를 앞당기는 데 기여할 것이다”고 말했다. 신소재공학과 김상욱 교수와 공동 연구로 진행된 이번 연구는 윤기로 박사과정이 제1저자로 참여했고, ‘한국 이산화탄소 포집 및 처리 연구개발센터(Korea CCS R&D Center)’ 및 현대자동차의 지원을 받아 수행됐다. □ 그림 설명 그림1. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 미세구조 사진 그림2. 나노튜브 촉매가 사용된 리튬-공기전지의 구성 그림3. 리튬-공기전지의 구동 원리 그림4. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 형성원리
2016.02.16
조회수 16037
힘세고 오래가는 리튬이온 배터리 개발
최장욱 교수 - 출력 향상으로 전기자동차 가속성능 획기적 향상 기대 -- 결정면 제어해 출력은 5배 이상, 수명은 3배, 고온 수명은 10배 이상 향상 - 나노기술을 이용해 고출력은 물론 수명이 훨씬 길어진 리튬이온 이차전지가 개발됐다. 우리 학교 EEWS 대학원 최장욱 교수 연구팀이 기존의 리튬이온 이차전지보다 출력은 5배 이상 높으면서도 수명은 3배 이상 길어진 리튬이온 이차전지 양극소재를 개발하는 데 성공했다. 그동안 배터리 성능이 모터의 출력을 따라가지 못해 내연기관 보다 가속 시 굼뜨는 단점이 있었던 기존 전기자동차에 이 배터리를 적용할 경우 가속성능이 획기적으로 개선될 것으로 관련업계는 기대하고 있다. 이와 함께, 차세대 지능형 전력망인 스마트 그리드와 전동 공구 등 고출력 배터리를 필요로 하는 분야에도 다양하게 활용될 수 있을 것으로 전망된다. 현재 가장 널리 상용화된 리튬이온 이차전지용 리튬-코발트계 양극소재는 비싼 가격, 강한 독성, 짧은 수명, 긴 충·방전 시간 등의 단점이 있다. 또 충·방전 시 발생하는 열에 취약, 대용량 전류밀도를 요구하는 전기자동차엔 적용이 어려웠다. 반면, 최장욱 교수 연구팀이 이번에 연구한 리튬-망간계 양극소재는 풍부한 원료, 저렴한 가격, 친환경성 등과 같은 장점을 갖고 있으며, 특히 고온 안정성이 뛰어나고, 높은 출력을 낼 수 있기 때문에 전기자동차용 전극 소재로 각광을 받고 있다. 순수 리튬망간계 양극소재는 수명이 평균 1~2년 정도에 불과할 정도로 매우 짧은 단점이 지적돼 왔다. 이는 망간이 전해액으로 녹아나오는 용출 현상에 기인하며, 이를 해결하기 위해 다양한 연구가 진행돼 왔지만 소재의 고유 결정구조로 인해 난제로 남아 있었다. 최 교수 연구팀은 망간산화물이 만들어지기 직전 나노소재를 합성하는 단계에서 반응온도를 조절해 결정면의 구조를 분석한 결과 220℃에서 망간이온의 용출이 억제되는 결정면과 리튬이온 이동을 원활하게 하는 면이 동시에 존재한다는 것을 발견했다. 각각의 결정면은 수명과 출력을 동시에 좋게 해 출력은 5배 이상 향상되면서 수명은 3배 이상 높아졌다. 게다가 기존에 가장 취약하다고 알려진 고온 수명 특성은 10배 이상 좋아지는 것을 확인했다. 최장욱 교수는 “배터리에 10 마이크로미터 수준의 덩어리 입자로 존재했던 리튬망간계 양극소재를 수백 나노 수준에서 결정면을 제어함으로써 출력과 수명을 모두 획기적으로 개선했다”며 “관련 기술에 대해 국내외 특허 출원을 완료했으며, 앞으로 기업과 연계해 2~3년 내 상용화할 계획”이라고 밝혔다. 이차전지의 세계적인 석학인 스탠포드 대학 추이 교수는 “이번 연구는 나노기술이 이차전지 분야를 획기적으로 발전시킬 수 있는 단적인 예를 보여준 사례”라고 평가했다. 한편, 최장욱 교수가 주도하고 김주성 연구원이 참여한 이번 연구 성과는 나노과학분야 세계적 권위지 ‘나노 레터스(Nano letters’)지 온라인판(11월 27일자)에 발표됐다. 그림1. 잘린 면을 갖는 스피넬 리튬망간산화물의 주사전자현미경 사진(좌)과 이 구조가 다른 구조에 비해 다른 구조와 비교 시 더 우수한 출력 특성을 보여 주는 배터리 데이터(우). 초록색이 잘린 면을 갖는 구조의 데이터이다. 그림2. 결정면 제어를 한 스피넬 리튬망간산화물의 개략도. 파란색 면 방향은 수명특성에 기여하며, 분홍색의 면은 출력 특성에 기여하도록 결정면이 디자인됐다.
2012.11.27
조회수 15099
KAIST 무선충전전기자동차, CNN 방영
우리 학교에서 개발한 무선충전전기자동차가 지난 8월 29일 미국 CNN방송의 "Eco Solutions"라는 프로그램에 방영됐다. CNN은 올 7월 19일 서울대공원에서 상용서비스를 시작한 KAIST 무선충전전기자동차가 기존 디젤 "코끼리열차"에 비해 매연과 소음이 없는 친환경 전기자동차로 방문객들로부터 커다란 호응을 받고 있다고 소개했다. CNN 링크 : http://edition.cnn.com/CNNI/Programs/eco.solutions/index.html YouTube 링크 : http://www.youtube.com/watch?v=QLzmFFqPJfo
2011.09.04
조회수 10689
KAIST 무선충전전기자동차 본격 운행!
- 서울대공원 코끼리전기열차 3대 상용운행 시작 - - ‘주행 중 무선충전방식’ 기술 세계 최초로 상용화, 관련 기술 선도 기대 - 우리 학교가 개발한 무선충전 전기자동차(Open Leading Electric Vehicle, OLEV)가 서울대공원에서 본격적인 상용운행에 들어갔다. 우리 대학은 지난 19일 오전 11시 서울대공원 동물원 입구에서 KAIST 서남표 총장, 주대준 대외부총장 등 주요 보직자들과 서울시의회 환경수자원위원회 서영갑 부위원장 등 서울시 관계자들이 참석한 가운데 ‘서울대공원 코끼리전기열차 개통식’을 가졌다. 이 열차에는 KAIST가 개발한 무선충전 기술이 적용됐다. 도로 하부 5cm 밑에 특수 전기선을 매설해 자기장을 발생시킨 후 발생된 자기력을 차량이 무선으로 공급받아 이를 전기로 변환, 동력원으로 사양하는 친환경 전기차다. 지난해 3월 KAIST는 서울시와의 시범사업으로 과천 서울대공원에서 디젤기관으로 운행되고 있는 무궤도 코끼리 열차를 무선충전 전기열차로 교체했다. 경유를 연료로 운행해 매연과 소음이 심각했던 코끼리 열차가 친환경 전기자동차로 탈바꿈한 것이다. 이후 시험운행을 실시해 시스템 안정성 및 효율성 등에 대한 검증을 완료하고, 서울시는 3대의 무선충전 전기열차를 추가 제작했다. 이로써 서울대공원을 방문하는 시민들 뿐만 아니라 동물원에 있는 동물들에게도 쾌적한 환경을 제공할 수 있게 됐다. 서울시와 추진한 시범사업 이후 KAIST는 ▲무선으로 대용량의 에너지를 안전하게 전달할 수 있는 자기장을 형상화하는 기술(SMFIR)의 원천기술을 상용수준으로 끌어올리고, ▲자기장이 인체에 미치는 전자기장(EMF) 안전성을 충분히 확보했으며, ▲주파수 배분, 전기안전 검증 등 신기술 상용운행에 대한 법제도 기반을 마련해 서울대공원 코끼리전기열차의 상용운행의 길을 열었다. 앞으로 서울대공원을 달릴 코끼리전기열차는 주행 및 정차 중 무선으로 대용량의 에너지를 실시간 전달받기 때문에 별도의 충전이 필요 없으며, 비접촉 무선충전으로 감전의 위험에서 자유롭다. 또한, 서울대공원 무궤도열차 순환구간 2.2km 중 약 16% 구간에 급전인프라를 구축해 무제한 운행하므로 경제성이 뛰어나며, 대기오염 물질을 전혀 배출하지 않는 친환경 전기열차다. 전자파 안전성 부분에서는 국내에서 규정하고 있는 기준(62.5mG)을 만족하고, 공인시험기관으로부터 성적서도 확보한 상태이다. KAIST 조동호 온라인전기자동차사업단장은 “KAIST가 세계최초로 개발한 무선으로 대용량 에너지를 안전하게 전달하는 원천기술(SMFIR)은 다양한 분야에 적용가능하다”며 “서울대공원 코끼리전기열차 상용운행을 시작으로 버스에 이어, 철도 항만 등의 수송시스템에 우리 기술을 접목하는 연구를 진행할 계획이고, 앞으로는 가전이나 휴대기기에 대한 연구도 진행할 생각”이라고 말했다. 서울대공원 코끼리전기열차 상용운행은 냄새와 먼지 없는 아름답고 쾌적한 공원 환경을 조성한다. 더불어 국내 최대의 종합테마공원인 서울대공원을 방문하는 수많은 어린이 및 청소년에게 세계 최초로 KAIST가 개발한 전기자동차 기술을 직접 체험할 수 있는 기회를 제공함으로써 또 하나의 과학 체험 교육의 장을 마련했다는 의의도 갖게 된다. 한편, KAIST 무선충전전기자동차는 2010년 미국 시사주간지인 타임(Time)지가 꼽은 세계 50대 발명품 가운데 하나로 선정된 바 있다.
2011.07.21
조회수 18925
홍합모방 리튬이차전지용 분리막의 출력 특성 향상
- 재료분야 저명 국제학술지 ‘어드밴스드 머티어리얼스 (Advanced Materials)’ 인터넷판 (5월25일)에 게재 - 출력 특성 증가해 차세대 자동차용 리튬이온전지용 분리막 개발의 핵심 기술이 될 것 우리학교 EEWS 대학원의 최장욱, 박정기 교수 공동 연구팀은 유명현 박사 과정 연구원과 더불어 홍합의 족사를 모방한 고분자를 소재로 한 출력 특성 향상을 위한 분리막 코팅 기술을 개발했다. 이 연구 결과는 재료 분야 저명 국제 학술지인 어드밴스드 머티리얼스(Advanced Materials)지에 25일 인터넷판으로 게재되었다. 리튬이차전지는 현재 대부분의 휴대용 전자기기의 에너지원으로 사용되고 있으며, 전기자동차(EV)를 필두로 한 차세대 운송수단으로의 에너지원, 더 나아가 신재생 에너지를 저장하는 전력저장 수단으로 주목 받고 있다. 이에 따라 리튬이차전지는 지금보다 더 높은 에너지 밀도와 출력 특성이 절실히 요구되고 있다. 전지의 구성요소인 분리막은 음극 및 양극 사이에 위치하여 두 전극간의 기계적 접촉을 방지할 뿐만 아니라, 리튬이온이 이동할 수 있는 통로의 역할을 수행한다. 지금까지의 리튬이차전지에서는 폴리에틸렌 중심의 폴리올레핀 계열의 다공성 분리막이 사용되어 왔지만, 이들 분리막은 현재 사용중인 전해질과 표면 친화성이 떨어져, 전해질과의 젖음 특성 및 함침 특성의 저하를 초래하였다. 이러한 분리막의 특성은 막 내의 이온이동능력 저하시켜 전지의 출력 특성을 감소시키는 큰 원인이 되어왔다. 출력 특성은 전기자동차의 경우, 가속력과 직결되는 것이다. 이에 연구팀은 홍합의 족사를 모방하여 제조한 고분자를 분리막에 코팅함으로써, 리튬 이차전지의 출력특성을 획기적으로 개선하였다. 홍합은 파도에 쓸려가지 않고 바위나 선박 등에 달라붙어 있기 위해 매우 강한 접착력을 가진 접착물(족사)를 분비하는데, 주로 엠이에프피-5(Mefp-5)라는 특정 단백질로 구성되어 있다. 이번 연구에서는 홍합 족사의 해당 단백질을 모방하여 제조한 폴리도파민이라는 고분자가 핵심적인 역할을 했다. 폴리도파민 고분자 코팅은 분리막의 표면에 매우 효과적으로 친수성을 부여하기 때문에 전해질 함침양을 기존 분리막 대비 30% 정도 증가시킬 수 있었다. 그 결과 폴리도파민으로 표면을 처리한 분리막이 도입된 전지의 출력 특성은 기존의 분리막과 대비하여 방전 조건에 따라 최대 2배 정도까지의 향상을 보였다. 또한 홍합의 단백질과 마찬가지로 매우 강한 접착력을 보유하기 때문에 분리막의 표면으로부터 쉽게 떨어지지 않아, 코팅 이후에도 매우 우수한 기계적 물성을 유지할 수 있다는 것이 기존의 연구와 구별된다. 특히, 처리 과정이 쉽고 환경친화적이어서 바로 산업계의 공정에 적용될 수 있을 것으로 기대된다. 이번 연구는 EEWS Flagship 프로그램의 지원을 받아 수행되었다.
2011.05.31
조회수 17018
OLEV, 전자파 안전성 검증받아
- 온라인전기자동차 전자파 측정치, 국제기준보다 훨씬 낮아 - KAIST(총장 서남표)는 올 해 6월과 9월 두 차례에 걸쳐 온라인전기자동차(OLEV)의 전자파를 측정한 결과 모두 안전성을 검증받았다고 19일 밝혔다. 지난 6월 전자파인체유해성 확인을 위해 한국표준과학연구원에서 서울대공원에 설치된 온라인전기열차를 대상으로 전자파를 측정했으며, 그 결과 0.05~61mG로 국내 기준인 62.5mG(밀리가우스)이내에 들었다. 한국표준과학연구원은 IEC 62233 ‘가전기기 및 유사기기에 대한 자속밀도 측정을 위한 시험조건 규정’에 따라 온라인전기자동차 측면 및 중앙에서부터 일정 거리(30cm)와 높이(5cm~150cm)를 달리하면서 총 22곳의 전자파를 측정했다. 또한, 온라인전기자동차의전자파에 대한 안정성 문제를 제기해왔던 교육과학기술위원회 소속 박영아 의원이 교육과학기술부를 통해 온라인전기자동차의 전자파 재측정을 요구해 지난 13일 또 한 번의 측정이 이뤄졌다. 이번 측정은 박영아 의원실 지정기관인 (주)EMF Safety에서 진행했고 지난 6월과 동일한 열차를 사용했다. 이번 전자파 측정결과도 0~24.1mG로 국내 기준을 만족했으며, 측정 현장에는 측정의 신뢰도를 보장하기위해 박영아 의원실을 비롯한 몇몇 외부 참관인도 이 자리에 함께했다. 참고로, 이 측정결과는 미국 국제전기전자기술자협회(IEEE)가 정하고 있는 전자파 인체보호기준(1,100mG)보다는 훨씬 안전한 수준이다. 현재 온라인전기자동차에 대한 구체적인 전자파 측정방법이 법으로 명시되어 있지 않아 이번 측정에는 박영아 의원이 요청한 대로 IEC 62110 ‘전력설비에 대한 자기장 측정방법’을 따라 온라인전기자동차 측면 및 중앙에서부터 거리 20cm에서 높이(50cm~150cm)를 달리하면서 총 15곳의 전자파를 측정했다. 한편, KAIST 온라인전기자동차는 차량 하부에 장착된 고효율 집전장치를 통해 주행 및 정차 중 도로에 설치된 급전라인으로부터 비접촉 자기유도 방식으로 전력을 공급받아 충전 걱정 없이 운행하는 신개념의 전기자동차 개발 사업이다. 붙임 : 측정 기준 및 방법, 참고사항 <측정기준 및 방법> ○‘전자파 인체보호 기준(방송통신위원회 고시 제2008-37호)’에 명시되어 있는 일반인에 대한 전자파 강도 기준에 근거 (3kHz 이상~150kHz 미만, 자속밀도 6.25μT=62.5mG) - 온라인전기자동차의 경우, 20kHz 사용으로 자속밀도 기준은 62.5mG임 ○IEC* 62233, 가전기기 및 유사기기에 대한 자속밀도 측정을 위한 시험조건규정 ○IEC 62110, 전력설비에 대한 자기장 측정 방법 * IEC(International Electrotechnical Commission) : 국제전기표준회의 <참고사항> 국내에서 현재 따르고 있는 3kHz이상~150kHz미만에서 자속밀도를 제정한 국제비전리방사보호위원회(Intenational Commission on Non-Ionizing Radiation Protection, ICNIRP)는 62.5mG를 기준으로 하고 있으며, 미국 국제전기전자기술자협회(Institute of Electrical and Electronics Engineers, IEEE)는 동일한 주파수에서 1,100mG를 기준으로 삼고 있음.
2010.09.24
조회수 15508
"리튬이온 이차전지용 고성능 나노선"개발
- 내연기관 출력과 맞먹는 고성능 리튬 이차전지 개발 길 열려 - 전기자동차 상용화를 위한 가장 큰 걸림돌인 배터리 문제를 해결하는 데 한 걸음 더 나아가게 됐다. 우리학교 신소재공학과 김도경 교수팀은 ‘리튬망간산화물 미세나노선’ 을 개발하는 데 성공했다고 15일 밝혔다. 이 물질은 기존의 리튬이온 이차전지용 양극물질에 비해 100배 이상의 출력밀도를 나타내며, 제조기법이 단순하고 공정비용도 저렴해 앞으로 전기자동차용 배터리 분야에 폭넓게 이용될 수 있을 것으로 기대된다. 일반적으로 리튬이온 이차전지는 전기자동차용 배터리에 적용되기에는 충분히 높은 출력밀도를 가지지 못한다. 김 교수팀은 10nm(나노미터, 10억분의 1m) 미만 굵기의 미세나노선 구조를 대량 합성해 양극물질에 적용함으로써, 기존 리튬이온 이차전지보다 100~200배가량 높은 출력밀도를 나타내는 데 성공했다. 이는 엔진으로 사용되는 내연기관의 출력밀도에 근접한 수준이다. 하지만, 지금까지 개발된 리튬이온 이차전지는 내연기관의 출력밀도에 훨씬 미치지 못해 중량이 많이 나갔다. 또한, 값비싼 원료와 공정법을 이용하는 등 리튬이온 이차전지는 전기자동차에 사용하는 데에 있어서 극복해야 할 한계를 안고 있었다. 이번 연구에서는 10nm 미만의 미세한 나노선이 가지는 구조적 유연함을 이용해 기존 리튬망간산화물이 지니고 있었던 ‘얀-텔러 뒤틀림(Jahn-Teller distortion)" 현상을 극복할 수 있음을 보여주었다. 높은 출력밀도를 보인 리튬망간산화물 미세 나노선 제조에 관한 연구는 산업적 응용이 조기에 가능할 것으로 예상되며, 국가 과학기술 경쟁력 제고 측면에 기여할 것으로 기대된다. 한편, 이번 연구 결과는 나노기술(NT) 분야의 가장 권위 있는 학술지인 "나노 레터스(Nano Letters)"지 8월 26일자 온라인 판에 게재됐고, 현재 국내특허 출원 중이다. <용어설명> ○리튬이온 이차전지 : 이차 전지의 일종으로서, 에너지 밀도가 높고 기억 효과가 없으며, 사용하지 않을 때에도 자연방전이 일어나는 정도가 낮음. ○출력밀도(Power density) : 단위 무게당 출력되는 전력의 정도. ○얀-텔러 뒤틀림(Jahn-Teller distortion) 현상 : 리튬이온전지의 충전과 방전 시 양극물질의 구조가 뒤틀려져 성능이 급격히 저하되는 현상 ○리튬망간산화물 : 리튬이온전지에 이용되는 양극재료 중의 하나. 현재 상용화되는 리튬 코발트 산화물에 비하여 원자재 가격이 저렴하며, 친환경적이다.
2010.09.15
조회수 16094
KAIST가 개발한 온라인 전기차, 서울 대공원 달린다
- KAIST 온라인전기자동차 상용화를 위한 첫걸음 내딛어 - 매연과 소음이 심각한 코끼리 열차 친환경 전기 자동차로 탈바꿈 우리대학이 심혈을 기울여 개발한 온라인 전기자동차(On-Line Electric Vehicle, OLEV)가 서울대공원을 힘차게 달린다. 무선으로 전력을 공급받아 운행되는 전기자동차를 세계 최초로 개발하여 서울대공원에 시범사업으로 적용했다. 과천 서울대공원에서 디젤기관으로 운행되고 있는 무궤도 코끼리 열차를 KAIST의 기술력을 통해 온라인 전기자동차로 새롭게 제작했다. 경유를 연료로 운행해 매연과 소음이 심각했던 코끼리 열차가 친환경 전기자동차로 탈바꿈했다. 온라인전기자동차(OLEV)는 정차 및 주행 중에 도로에 매설된 전력선으로부터 무선으로 전력을 전송받아 구동에너지로 사용하거나 배터리를 충전하는 신개념의 전기자동차로써 전기자동차의 상용화를 크게 앞당길 수 있는 기술이다. 즉, 온라인전기자동차는 일반도로에 안전하고 견고하게 보호된 전선을 매설하고 차량하부에 별도의 집전장치를 부착하여 도로에 매설된 전선에 전력이 공급될 때 발생하는 자기장을 차량하부의 집전장치를 통해 효과적으로 모아 동력원으로 사용한다. 집전장치를 통해 모아진 전력은 주행 중 모터로 바로 연결되어 쓰이거나 필요한 경우에는 자동으로 배터리에 충전이 된다. 동력차와 객차 3량으로 이뤄진 이 전기자동차가 서울대공원에서 호수 순환도로 총 길이 2.2Km 구간을 운행한다. 급전구간은 1,2,3구간 각 122.5M, 4구간 5M로 4개 구간 총 372.5M이다. 집전효율은 최대 62kw 효율 74%에 달한다. 전자파 측정결과 정차 중 동력차 옆에서 50mG이내, 주행 중 객차내부는 20mG이내로 매우 안전하다.(국제기준치 20Khz-62.5mG) 이번 시범사업을 통해 KAIST는 온라인 전기차에 대한 신뢰성을 확보하고, 온라인 전기차의 상용화에 성큼 다가섰다. 지난해 2월, 공극간격 1cm에서 80% 효율이 기술적으로 가능하다는 것을 입증했으며, 7월에는 자체 개발한 급전장치 및 집전장치를 개조된 하이브리드 버스에 장착해 세계 최초로 공극간격 17cm 이상에서 최대 70% 이상의 효율을 달성하는데 성공했다. 올해에는 20Cm이상에서 최대 효율 80%에 이르는 기술을 확보할 목표이다. 연구개발 1년 만에 놀라운 기술적 진보를 이뤄낸 것. 노력과 끈기로 연구원들이 만들어낸 값진 연구개발 성과이며 KAIST의 무한한 도전정신이 보여준 놀라운 결과다. 온라인전기자동차의 전력 전달 원리인 비접촉 자기유도 방식 충전기술이 자동차에 적용되어 일반도로에서 실용화가 되기 위해서는 현재 운행되는 자동차의 환경에 맞게 도로바닥으로부터 차량 하부까지의 지상고를 법적 기준치(한국 12cm) 이상으로 유지하면서 높은 효율을 유지해야 한다. KAIST는 세계적으로 불가능한 것으로 여겨졌던 이 기술적 한계를 도로, IT, 자동차, 전기, 전자 분야 전문가로 구성된 융합연구팀을 가동하여 2009년 원천기술개발 단계에서 극복하고, 산학연 협력 연구체계를 구축하여 실제 도로환경에 구현하여 실용화 가능성을 입증하였다. 현재 120건 이상의 특허가 출원된 상태이다. KAIST는 서울시와 협의하여 대공원의 나머지 코끼리열차 7대를 추가로 개조하여 운행할 계획이다. 또한, 제주도 중문단지, 서울 상암 월드컵 공원 순환도로 등에도 온라인전기버스 시험인프라를 구축할 계획이다. 온라인 전기자동차사업단 조동호 단장은 “주차장, 버스 시점, 종점, 교차로 등에 온라인전기버스용 비접촉 충전인프라를 구축(전체 전용버스 노선의 20% 수준)하여 본격적인 도로 급전인프라 구축 이전에 온라인전기버스 보급 촉진에 기여할 예정이다” 라며 “지방자치단체와 협력하여 시험사업 및 시범사업 추진을 통해 제한된 지역을 운행하는 버스 중심 대중교통 시스템을 우선 공략하여 상용화 가능성을 실증할 것”이라고 밝혔다. 한편, 온라인 전기차 준공식 및 시승행사가 지난 9일(화) 11시부터 서울 대공원 동물원 입구(무궤도열차 순환구간)에서 있었다. <보충자료> ■ KAIST는 지난 2009년 5월 정부의 추경사업으로 온라인전기자동차사업을 본격적으로 시작한 이후 캠퍼스 내의 테스트베드에서 온라인전기버스, 온라인전기승용차(SUV)의 실험모델 운행에 성공하여 주목을 받은 바 있다. ■ 전세계 자동차 시장은 석유에너지 고갈과 환경오염 문제로 인해 친환경 에너지 절약형 자동차 위주로 변신하고 있는 중이다. 세계 각국 정부는 그린카 기술개발, 전기자동차의 구입지원, 탄소가스 배출에 대한 과세, 연비향상 의무화 등의 정책을 적극적으로 채택하고 있으며, 이에 따라 자동차업체들은 친환경 자동차 특히 전기자동차 개발에 경쟁적으로 투자를 하고 있는 상황이다. 주행 중에 이산화탄소를 전혀 배출하지 않고 소음이 적으며 화석연료에 의존하지 않는 전기자동차 상용화를 위한 많은 노력에도 불구하고 현재까지 개발되고 있는 순수 전기자동차는 배터리에만 전적으로 의존하기 때문에 배터리의 중량과 부피가 지나치게 크고 비용이 과도하게 증가하는 난제를 안고 있다. 일부 국가에서는 배터리를 국가가 소유하고 배터리를 교환하는 방식을 통해 문제 해결을 시도하거나, 구입 초기 세제지원 등을 통한 전폭적인 지원을 통해 전기자동차의 보급을 위해 노력하고 있으나 구입후 배터리 유지보수에서 개인의 부담금이 과다한 문제 등 아직까지 현재 전기자동차가 가지고 있는 배터리 문제와 충전 인프라 문제를 근본적으로 해결하는 데는 한계를 지니고 있다.■ 이러한 일반 전기자동차의 배터리 문제와 충전 인프라문제, 배터리 유지보수 과다 부담금 문제 등을 동시에 해결하는 방안으로 제시된 개념이 주행 중 도로 바닥에서 급전을 받고 배터리도 충전을 하면서 급전선로가 없는 구간에서는 배터리만으로 주행하도록 하는 온라인전기자동차 방식이다. 온라인전기자동차는 일반도로에 안전하고 견고하게 보호된 전선을 매설하고 차량하부에 별도의 집전장치를 부착하여 도로에 매설된 전선에 전력이 공급될 때 발생하는 자기장을 차량하부의 집전장치를 통해 효과적으로 모아 동력원으로 사용하는 원리로써 집전장치를 통해 모아진 전력은 주행 중 모터로 바로 연결되어 쓰이거나 필요한 경우에는 자동으로 배터리에 충전이 된다. 이 경우 온라인 전기자동차는 일반 전기차와 비교하여 약 1/5수준의 배터리를 장착하고도 자유로운 운행이 가능하므로 비싼 배터리 문제를 해결할 수 있으며, 별도의 충전소 개념없이 도로에 충전소를 설치하는 원리이므로 충전인프라 문제 또한 쉽게 해결할 수 있다. 온라인전기자동차 기술을 일반 노선버스에 적용할 경우 버스 시점, 종점, 정류장, 교차로 및 주차장 등에 전체 버스 운행노선의 20% 가량에만 급전 인프라를 구축하더라도 충전의 걱정없이 편리하게 운행이 가능하다. ■ 온라인전기자동차의 향후 사업 추진 방향은 1단계로 정해진 노선과 지역을 운행하는 버스 중심의 대중교통시스템 진입을 통해 경제성과 안전성을 확보하고 2단계로 핵심기술을 지하철 및 철도 등 궤도차량에 적용한 뒤 궁극적으로는 온라인전기승용차 시장을 개척하여 수송시스템을 혁신하는 것이다.국내에서는 서울특별시와 제주도를 비롯하여 많은 지방자치단체들의 친환경 도시교통시스템 구축에 온라인전기자동차 기술을 적용하고자 희망하고 있는 상황이다. 해외에서도 많은 언론과 기관들이 KAIST의 온라인전기자동차 기술에 관심을 가지고 기술개발 현황과 성과에 대해 보도를 하고 있다. 특히 KAIST는 말레이시아에서 계획하고 있는 에코단지에 온라인전기자동차 시스템을 구축하기 위해 협의를 진행하고 있다. 이와 동시에 전기자동차 시대를 앞당기기 위해 필수적인 충전 인프라 구축 사업에 있어서도 접촉식 충전방식보다 안전성과 경제성 면에서 우수한 비접촉 충전방식을 도입할 수 있도록 노력할 계획이며, 놀이공원, 수송터미널, 공항, 군부대, 산림욕장 등 특정한 구역에서의 시험사업 및 시범사업을 통해 상용화의 기반을 구축할 계획이다. ■ 온라인 전기버스의 상용화를 위해서는 ‘실험시제품 개발(09년) → 시험시제품 개발(10년) → 실용시제품 개발(11년) → 표준시제품 개발(12년) → 상용제품 개발(13년 이후)’의 로드맵에 따른 단계별 연구개발이 필요하며 이를 통한 기술적 완성도를 높여 나갈 필요가 있다. KAIST는 지방자치 단체와 연계한 시험사업과 소규모 인프라 구축사업을 통해 상용화 가능성과 기술적 완성도를 지속적으로 높여나갈 계획이다. ■ 한편 온라인전기자동차 개발 관련 급집전 핵심기술과 결과물은 타산업과의 융합연구를 통한 활용 및 파생기술 보급의 가속화를 가능하게 할 전망이다. 국내에서도 이미 일부 그룹에서 비접촉 충전기술을 이용한 새로운 수요창출을 준비하고 있는 상태이다. 급집전 기술의 주요 활용분야로는 노트북, 휴대폰, 휴대플레이어 등의 휴대기기 분야, TV•가전제품, 청소기 등의 가정용 전기기기 분야, 가정용, 산업용, 군용 등으로 활용이 가능한 로봇분야, 사파리, 보트, 물놀이 공원 등 레저분야, 시내버스, 마을버스, 고속버스, 택시, 승용차, 골프카, 대규모 단지 내 이송차량, 트럭 등 자동차 분야, BRT/PRT, 경전철, 지하철, 고속철도 등 철도분야 등을 꼽을 수 있다. ■ 미래 전기자동차 시대는 자동차 산업이 가진 엄청난 잠재력을 고려할 때 과거 아날로그 시대에서 디지털 시대로의 전환에 견줄만한 새로운 산업의 창출과 직결된다. 이러한 전기자동차 시장에서의 주도력을 가지기 위해서는 기존 산업을 점진적으로 개선 발전시키는 Evolution Path를 통한 접근이 아니라 Revolution Path를 통한 접근이 필요하다. 온라인 전기자동차 개발을 통해 전기자동차시대를 혁신적으로 앞당길 수 있다면 대한민국은 자동차 시장에서 세계 최고 수준의 경쟁력을 확보할 수 있을 것이고, Evolution을 통해서는 확보가 불가능한 원천기술을 Revolution을 통해 확보함으로써 국가 신성장 동력 확보에 크게 기여할 수 있을 것이다.
2010.03.09
조회수 20187
온라인 전기자동차 개발에 민간기업 큰 관심
- 관련 기술개발에 16개 기업에서 적극적인 참여의사 밝혀 우리대학 온라인 전기자동차 사업이 민간기업의 큰 관심을 사고 있다. 온라인전기자동차 사업단(단장 조동호 교수)은 지난 9월 1일 국내 기업 20개 업체가 참여한 가운데 관련사업 컨소시엄 구성을 위한 사업설명회를 문지캠퍼스에서 가졌다. 그 결과로 16개 업체가 컨소시엄 참여의향서를 접수했다. 대표적 기업은 전장품 분야의 현대중공업과 LS산전, 전선분야의 LS전선, 버스분야의 대우버스(주), (주)한국화이바, 운행 및 운영분야의 KT 등이다. 민간기업의 적극적인 관심표명에 따라, KAIST는 온라인전기자동차 개발에 필요한 산학협력 체제를 구축하고, 관련기업의 기술 및 자본과의 적극적인 상호교류와 투자를 통해 국책사업인 온라인전기자동차의 원천기술개발이 탄력을 받게 됐다. 배터리 및 충전문제를 비롯한 전기자동차가 가지는 문제를 해결함과 동시에 대한민국의 융합신산업을 창출하고 세계 자동차 산업의 미래를 선도할 온라인전기자동차(OLEV)를 개발하고 있다. 미국에서는 부시행정부 시절의 수소관련연구에서, 오바마 행정부로 바뀌면서 전기차 분야와 배터리 연구로 과학기술 분야의 연구기조가 바뀌었다. 일본에서도 전기차 연구에 대대적으로 투자하고 있다. 이러한 국제적인 연구환경 속에서 대한민국의 온라인전기자동차 개발이 성공적으로 수행되어 본격적으로 상용화될 경우, 우리나라가 급집전 플랫폼/ 동력관리 플랫폼 분야에서 국제표준을 주도하고 미래 세계 자동차시장에서 선도적인 역할을 수행할 수 있을 것으로 기대된다. 온라인전기자동차(OLEV)는 정차 및 주행 중에 도로에 매설된 전력선으로부터 무선으로 전력을 전송받아 구동에너지로 사용하거나 배터리를 충전하는 신개념의 전기자동차로써 전기자동차의 상용화를 크게 앞당길 수 있는 기술이다. 온라인전기자동차(OLEV) 연구팀은 도로 표면과의 충분한 이격거리에서 실용화수준의 효율성 확보, 전자파 안전성 보장, 운행 중 좌우 위치 오차 극복 등 상용화에 필요한 핵심원천기술을 확보하여 국제적으로 가장 앞서고 있다는 평가를 받고 있다. 또한 정부와 지방자치단체의 지원으로 이미 2009년에 서울시와 제주도에서 온라인전기버스 시험사업을 진행할 예정이고 2010년에는 서울시의 특정버스 노선에 온라인 전기버스를 시범 투입하기로 결정하여 본격적인 온라인 전기버스의 대중교통 시대를 맞이하게 되었다.
2009.10.12
조회수 13652
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1