-
자기장과 자성체 없이 전기로만 작동 가능한 그래핀 스핀 트랜지스터 돌파구 마련
우리 대학 물리학과 조성재 교수 연구팀이 그래핀으로 자기장, 자성체 없이 스핀 전류를 생성, 검출하는 실험에 성공해 차세대 그래핀 스핀 트랜지스터 개발의 돌파구를 마련했다.
차세대 신소재로 주목받는 그래핀은 탄소 원자가 벌집 모양으로 이루어진 2차원 물질(원자만큼 얇은 물질)로서 전기전도성, 탄성, 안정성이 높아 ‘꿈의 나노 물질’이라고 불린다. 이 그래핀은 전자의 스핀 확산 거리가 길어, 전자스핀을 정보화하는 분야인 스핀트로닉스 응용에 큰 기대를 받아왔다. 하지만 그래핀은 전자의 스핀과 전자의 궤도가 상호작용하는 스핀-궤도 결합 에너지가 매우 약하다는 이유로 스핀 전류를 직접 생성하거나 검출할 수 없다는 한계가 있었다.
조성재 교수 연구팀은 그래핀에 스핀-궤도 결합이 매우 큰 전이금속이자 디칼코게나이드 물질인 2H-TaS2를 접합시켜서 그 인접효과로 그래핀의 스핀-궤도 결합을 100배 이상 증가시키는 데 성공했고 이어 ‘라쉬바 효과’를 유도하는 데 성공했다.
‘라쉬바 효과’란 강한 스핀 궤도 결합으로 그래핀과 같은 2차원 물질 내부의 전기장이 자기장으로 전환되는 효과를 말한다. 이것을 이용해 스핀 전류를 생성, 검출하는 효과를 ‘라쉬바-에델스타인 효과’라고 부르는데 이번 연구에서는 이 효과를 그래핀에서 최초로 구현했다.
리준리 박사후 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노 (ACS Nano)’ 4월 8일 字 온라인판에 게재됐다. (논문명 : Gate-Tunable Reversible Rashba−Edelstein Effect in a Few-Layer Graphene/2H-TaS2 Heterostructure at Room Temperature).
라쉬바 효과가 그래핀에 유도되면, 라쉬바-에델스타인 효과에 의해 전하 전류와 스핀 전류가 상호 전환이 가능하다. 다시 말해, 자기장이나 자성체 없이 그래핀에 전류를 흘려줌으로써 스핀 전류를 생성시킬 수 있고, 그래핀 층에 흘러들어오는 스핀 전류를 전하 전류 혹은 전압 측정을 통해 검출할 수 있다.
조 교수 연구팀은 또 트랜지스터의 단자 사이에 인가되는 전압인 게이트 전압으로 그래핀 이종접합에 생성되는 스핀 전류의 크기와 방향을 제어하는 데 성공했다. 이는 추후 자기장, 자성체 없이 동작 가능한 그래핀 스핀 트랜지스터의 초석을 마련한 획기적인 연구성과로 평가받는다.
조성재 교수는 “이번 연구는 그래핀 이종접합에 자기장, 자성체 없이 전기적으로만 스핀 전류를 생성, 검출, 제어할 수 있음을 보인 최초의 연구로서 전기적으로만 작동 가능한 그래핀 스핀 트랜지스터의 개발로 이어질 것”이라며 “특히, 상온에서 실험이 성공했기 때문에 응용 가능성이 매우 크기 때문에 향후 우리나라 비메모리 산업뿐 아니라 세계적으로 스핀트로닉스 관련 물리학 및 산업에 응용할 수 있는 효과를 기대할 수 있어 의미가 매우 크다”고 강조했다.
한편, 이번 연구는 한국연구재단 미래반도체 신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.05.18
조회수 15815
-
저전력·고속 터널 전계효과 트랜지스터 개발
물리학과 조성재 교수 연구팀이 기존의 금속 산화물 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET) 대비 작동전력 소모량이 10배 이상, 대기전력 소모량이 1만 배 가까이 적은 저전력, 고속 트랜지스터를 개발했다.
조 교수 연구팀은 2차원 물질인 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 두 물질의 접합이 아닌 단일 물질의 두께 차이에 의한 이종접합 터널을 제작하는 데 성공했다. 이러한 단일 물질의 이종접합을 터널 트랜지스터에 활용하면 서로 다른 물질로 제작한 이종접합 트랜지스터에서 발생했던 격자 불균형, 결함, 계면 산화 등의 문제를 해결할 수 있어 고성능 터널 트랜지스터의 개발이 가능하다.
김성호 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 1월 27일 자 온라인판에 게재됐다. (논문명 : Thickness-controlled black phosphorus tunnel field-effect transistor fro low-power switches).
무어 법칙에 따른 트랜지스터 소형화 및 집적도 증가는 현대의 정보화 기술을 가능하게 했지만 최근 트랜지스터의 소형화가 양자역학적 한계에 다다르면서 전력 소모가 급격히 증가해 이제는 무어 법칙에 따라 트랜지스터 소형화가 진행되지 못하는 상황이다. 최근에는 자율주행차, 사물인터넷 등의 등장으로 많은 양의 데이터를 저전력, 고속으로 처리할 수 있는 비메모리 반도체의 기술 발달이 시급히 요구되고 있다.
트랜지스터의 전력 소모는 크게 작동 전력 소모와 대기 전력 소모로 나뉜다. 작동 전력과 대기 전력을 같이 낮추기 위해서는 트랜지스터의 작동 전압과 대기 상태 전류를 동시에 낮추는 것이 필수적이다. 이를 위해서는 전류를 10배 증가시키는데 필요한 전압으로 정의되는 SS 값(subthreshold swing, 단위: mV/decade = mV/dec)의 감소가 필요한데, 금속 산화물 반도체 전계효과 트랜지스터에서는 SS 값이 상온에서 60 mV/dec 이하로 낮아질 수 없다. 이를 해결하기 위해서는 상온에서 SS 값을 60 mV/dec 이하로 낮출 수 있는 새로운 트랜지스터의 개발이 필요하다. 이전에 개발되었던 낮은 SS를 가지는 저전력 터널 트랜지스터의 경우 트랜지스터 채널을 구성하는 두 물질의 이종접합 계면에서 산화막 등의 문제가 발생하여 작동 상태에서 낮은 전류를 가지는 문제가 있었다. 작동 상태 전류는 트랜지스터 작동속도에 비례하기 때문에, 낮은 작동 상태 전류는 저전력 트랜지스터의 경쟁력을 떨어뜨린다.
조 교수 연구팀이 적은 전력소모를 위한 낮은 SS 값과 고속 작동을 위한 높은 작동 상태 전류를 단일 트랜지스터에서 동시에 달성한 것은 유례없는 일로 2차원 물질 기반의 저전력 트랜지스터가 기존의 금속 산화물 반도체 전계효과 트랜지스터의 전력 소모 문제를 해결하고, 궁극적으로 기존 트랜지스터를 대체하고 미래의 저전력 대체 트랜지스터가 될 수 있음을 의미한다. 조성재 교수는 “이번 연구는 기존의 어떤 트랜지스터보다 저전력, 고속으로 작동해 실리콘 기반의 CMOS 트랜지스터를 대체할 수 있는 저전력 소자의 필요충분조건을 최초로 만족시킨 개발이다”라며 “대한민국 비메모리 산업뿐 아니라 세계적으로 기초 반도체 물리학 및 산업 응용에 큰 의의를 지닌다”라고 말했다.
이번 연구는 한국연구재단 미래반도체신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.02.20
조회수 16291
-
이상엽 특훈교수, 병원균이 항생제에 내성을 갖는 원리 규명
〈 이 상 엽 교수 〉
우리 대학 생명화학공학과 이상엽 교수와 덴마크 공대(DTU) 노보 노르디스크 바이오지속가능센터(Novo Nordist Foundation Center for Biosustainability) 공동 연구팀이 박테리아 병원균이 항생제에 대한 내성을 획득하는 작동 원리를 밝혔다.
이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다.
항생제 남용 등으로 인해 항생제 내성균이 점점 더 늘어나고 있다. 이는 인류의 생존을 위협하는 문제로 그 심각성이 전 세계적으로 점점 커지고 있다.
인체 감염균이 항생제 내성을 갖는 방식에는 항생제를 분해하는 효소를 갖거나 다시 뱉어내는 등 다양한 방식이 있다. 그 중 대표적인 것은 항생제 내성 유전자를 획득해 항생제를 무용지물로 만드는 것이다.
내성 유전자는 보통 항생제를 생산하는 곰팡이나 악티노박테리아에서 발견된다. 이는 해당 항생제를 만드는 곰팡이와 박테리아가 자기 스스로를 항생제로부터 보호하기 위해 갖고 있는 것이다.
이 내성 유전자를 인체 감염균이 획득하면 항생제 내성을 갖게 된다. 이러한 사실은 게놈 정보 등을 통해 이미 알려져 있는 사실이다.
그러나 어떤 방식으로 항생제 내성 유전자들이 인체 감염균에 전달되는지는 밝혀지지 않았다.
이상엽 교수와 덴마크 공대 공동 연구팀은 항생제 내성 유전자가 직접적으로 인체 감염균에 전달되는 것이 아니라 연구팀이 캐리백(carry-back)이라고 이름 지은 복잡한 과정을 통해 이뤄지는 것을 규명했다.
우선 인체 감염균과 방선균이 박테리아간의 성교에 해당하는 접합(conjugation)에 의해 인체 감염균의 DNA 일부가 방선균으로 들어간다.
그 와중에 항생제 내성 유전자 양쪽 주위에도 감염균의 DNA가 들어가는경우가 생긴다. 이 상태에서 방선균이 죽어 세포가 깨지면 항생제 내성 유전자와 감염균의 DNA 조각이 포함된 DNA들도 함께 나오게 된다.
이렇게 배출된 항생제 내성 유전자에는 인체 감염균의 일부 DNA가 양쪽에 공존하고 있다. 이 때문에 인체 감염균은 자신의 게놈에 재삽입이 가능해지고 이를 통해 항생제 내성을 획득한다.
연구팀은 생물정보학적 분석과 실제 실험을 통해 이를 증명했다.
이 교수는 “이번 연구결과는 인체 감염 유해균들이 항생제 내성을 획득하는 방식 중 한 가지를 제시한 것이다”며 “병원 내, 외부의 감염과 예방 관리시스템, 항생제의 올바른 사용에 대해 다시 한 번 생각할 수 있는 기회를 제공할 것이다”고 말했다.
이번 연구는 노보 노르디스크 재단과 미래창조과학부 원천기술과(바이오리파이너리를 위한 시스템대사공학 연구사업)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 항생제 내성 유전자가 전달되는 캐리백 현상의 모식도
2017.06.19
조회수 18064
-
오지훈 교수, 이산화탄소 90%이상 분해 가능한 광전극 구조 개발
우리 대학 EEWS 대학원 오지훈 교수 연구팀이 빛을 이용해 이산화탄소를 분해하기 위한 금 나노 다공성 박막과 실리콘(Silicon) 기반의 새로운 광전극 구조를 개발했다.
광전기화학적 이산화탄소 변환은 태양광 에너지를 이용해 물과 이산화탄소를 연료로 바꿔주는 기술로 많은 주목을 받고 있다. 연구팀이 개발한 기술은 이를 위한 반도체 광전극 구조의 기본 틀을 제공할 것으로 기대된다.
송준태 박사가 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 8일자 내면 표지 논문에 게재됐다.
안정적인 이산화탄소를 환원시키기 위해서는 낮은 과전압을 지닌 우수한 촉매가 필요하다. 그 중 금(Au)은 이산화탄소를 일산화탄소로 환원시키는 전기 촉매로 알려져 있다.
그러나 금은 과전압이 비교적 높고 일산화탄소 생산성이 낮아 수소가 많이 발생하는 문제점이 있다. 또한 가격이 비싸기 때문에 사용량도 조절을 해야 한다.
연구팀은 문제 해결을 위해 나노 다공성 구조를 갖는 금 박막을 제작하는 데 성공했다. 금을 박막형태로 기판 재료에 증착해 이를 양극산화 처리한 뒤 연속적인 환원 처리를 통해 제작했다.
높은 전류 효율을 보였다. 이전의 나노구조 촉매는 0.1mm의 두꺼운 호일을 이용해 제작됐다면 연구팀의 박막은 약 5만 배 정도 얇은 200나노미터 수준으로서 금 기반 촉매의 제작비용을 최소화했다.
나아가 연구팀은 직접 제작한 나노다공성 금 박막을 촉매로 활용하기 위해 새로운 실리콘(Si) 광전극 구조를 개발했다. 기존 방법인 나노 입자 형태로 반도체 표면에 촉매를 형성하면 전기화학적 처리 과정에서 기판 자체에 영향을 주게 된다.
따라서 연구팀은 금 박막을 표면 전체에 연결될 수 있는 메쉬 패턴 구조로 제작해 광전극에 영향을 주지 않고도 독립적으로 표면의 전극 접합을 통해 전기화학처리를 가능하게 했다.
제작된 광전극은 실리콘에서 생성된 광전압과 금 박막층의 높은 촉매 특성이 작용돼 기존의 일산화탄소 변환을 위해 필요한 에너지보다 더 낮은 양으로도 변환이 가능하다.
오 교수는 “다양한 반도체 및 촉매 재료도 쉽게 적용 가능한 플랫폼 역할을 할 수 있을 것이다”며 “다른 연구자들이 우리 연구팀의 구조를 적용해 이산화탄소 광전환의 광변환 효율을 향상시킬 수 있을 것이다”고 말했다.
1저자인 송준태 박사는 “발상의 전환을 통해 매우 간단하지만 중요한 새로운 타입의 광전극 구조를 개발했고, 이를 통해 효율적인 이산화탄소 환원이 가능해졌다”며 “생성물의 평형 전위보다 더욱 낮은 전위조건에서 이산화탄소 환원을 하는 결과를 낸 것은 처음이다”고 말했다.
이번 연구는 KAIST EEWS 대학원 정성윤 교수가 공동으로 참여했고 한국이산화탄소 포집 및 처리 연구개발센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게재된 논문 이미지
그림2. 실리콘 광전극 모식도 및 전자현미경 사진
그림3. 제작된 광전극의 광전기화학적 이산화탄소 특성
2017.02.24
조회수 19037
-
전자기기용 ‘그래핀’ 실용화에 한걸음 다가서다
- Nano Letters지 발표, 금속 위에 합성된 그래핀의 친환경, 저비용 분리기술 개발 -
금속 위에서 합성된 넓은 면적(대면적)의 그래핀*을 실용화하기 위한 최대의 걸림돌인 그래핀 분리기술을 저렴하면서도 친환경적으로 처리할 수 있는 획기적인 방법이 국내 연구진에 의해 개발되었다.
※ 그래핀(Graphene) : 흑연의 표면층을 한 겹만 떼어낸 탄소나노물질로, 높은 전도성과 전하 이동도를 갖고 있어 향후 응용 가능성이 높아 꿈의 신소재로 불림
우리 학교 김택수 교수와 조병진 교수 연구팀이 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)과 글로벌프론티어사업의 지원으로 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nano Letters"지 온라인 속보(2월 29일자)로 게재되었다.
(논문명 : Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process)
특히 이번 연구성과는 그동안 어떠한 연구팀도 정확히 측정할 수 없었던 그래핀과 촉매금속간의 접합에너지를 처음으로 정밀히 측정하는데 성공하고, 이를 이용해 촉매금속을 기존처럼 일회용으로 사용하는 것이 아니라, 무한대로 재활용할 수 있게 하여 친환경적이면서도 저렴한 고품질 대면적 그래핀 생산의 원천기술을 개발하였다는 점에서 의미가 크다.
촉매금속 위에서 합성된 대면적 그래핀은 디스플레이, 태양전지 등에 다각적으로 활용될 수 있어 이에 대한 연구가 전 세계적으로 활발히 진행되고 있다. 그러나 이 대면적 그래핀을 실제 전자기기에 응용하기 위해서는 단원자 층인 그래핀을 촉매금속으로부터 손상 없이 떼 내는 것이 무엇보다도 중요하다.
지금까지는 화학약품을 이용해 금속을 녹여 제거함으로써 그래핀을 촉매금속으로부터 분리해왔다. 그러나 이 방법은 금속을 재활용할 수 없을 뿐만 아니라 생산단가도 높아 경쟁력이 없고, 특히 금속을 녹이는 과정에서 많은 양의 폐기물이 발생하여 환경문제를 일으킬 수 있으며, 공정단계 또한 매우 복잡해 그래핀의 양산화에 큰 장벽으로 작용하였다.
김택수, 조병진 교수팀은 금속위에서 합성된 그래핀의 접합에너지를 정밀측정한 후 이를 이용하면 그래핀을 금속으로부터 쉽게 분리할 수 있다는 사실을 밝혀냈다.
또한 이 방법을 사용해 기계적으로 분리된 그래핀을 다른 기판에 전사하지 않고 곧바로 그 위에 전자소자를 제작하는데 성공하여, 기존의 복잡한 그래핀 생산단계를 획기적으로 줄였다. 아울러 그래핀을 떼어낸 후 그 금속기판을 수차례 재활용하여 그래핀을 반복적으로 합성하여도 처음과 같은 양질의 그래핀을 합성할 수 있음을 확인하여 친환경, 저비용 그래핀 양산기술에 새로운 길을 열었다.
이번 연구결과를 통해 매우 간단한 단일 공정만으로 그래핀을 금속으로부터 손쉽게 떼 내어 그래핀 응용소자를 제작할 수 있음에 따라, 향후 그래핀 상용화를 크게 앞당길 수 있을 것으로 전망된다. 조병진 교수는 “이번 연구는 그래핀과 촉매금속간의 접합에너지를 정밀 측정하는데 성공하여 그 결합상태를 규명하였다는 점에서 학문적 의의가 있을 뿐만 아니라, 이를 실제 그래핀 생산기술에 활용하여 지금까지 대면적 그래핀 실용화의 가장 큰 기술적 문제를 해결하였다는 점에서도 의미가 크다”고 연구의의를 밝혔다.
2012.02.28
조회수 19079