본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A3%BC%ED%8C%8C%EC%88%98
최신순
조회순
천 조분의 1초 까지 정확한 반도체칩용 클럭 개발
최근 반도체 칩의 성능이 급격하게 향상됨에 따라, 보다 정확한 타이밍으로 칩 내의 다양한 회로 블록들의 동작을 동기화(synchronization)시키는 클럭(clock) 신호를 공급하는 기술이 중요해지고 있다. 우리 대학 기계공학과 김정원 교수 연구팀이 레이저를 이용해 반도체 칩 내에서 초저잡음 클럭 신호를 생성하고 분배할 수 있는 기술을 개발했다고 9일 밝혔다. 기존에는 클럭 신호의 정확성이 통상적으로 피코초(1조 분의 1초) 수준이었으나 이번에 개발된 기술을 이용하면 기존의 방식보다 월등한 펨토초(femtosecond, 10-15초, 천 조 분의 1초) 수준의 정확한 타이밍을 가지는 클럭 신호를 칩 내에서 생성하고 분배할 수 있으며, 클럭 분산 과정에서 발생하는 칩 내에서의 발열 또한 획기적으로 줄일 수 있다. 기계공학과 현민지 박사과정 학생이 제1 저자로 참여하고 고려대학교 세종캠퍼스 정하연 교수팀과의 공동연구로 이루어진 이번 논문은 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 4월 24일 字에 게재됐다. (논문명: Femtosecond-precision electronic clock distribution in CMOS chips by injecting frequency comb-extracted photocurrent pulses) 고성능의 반도체 칩 내에서 클럭 신호를 분배하기 위해서는 클럭 분배 네트워크(clock distribution network, CDN)에 많은 수의 클럭 드라이버(clock driver)들을 사용해야 하는데, 이로 인해 발열과 전력 소모가 커질 뿐 아니라 클럭 타이밍도 나빠지게 된다. 칩 내의 클럭 타이밍은 무작위적으로 빠르게 변화하는 지터(jitter)와 칩 내의 서로 다른 지점 간의 클럭 도달 시간 차이에 해당하는 스큐(skew)에 의하여 결정되는데, 클럭 드라이버들의 개수가 늘어남에 따라 지터와 스큐 모두 통상 수 피코초 이상으로 커지게 된다. 연구팀은 이 문제를 해결하기 위해 펨토초 이하의 지터를 가지는 광주파수빗(optical frequency comb) 레이저를 마스터 클럭으로 하는 새로운 방식의 클럭 분배 네트워크 기술을 선보였다. 이는 광주파수빗 레이저에서 발생하는 광 펄스들을 고속 광다이오드를 이용해 광전류 펄스(photocurrent pulse)로 변환한 후 반도체 칩 내의 금속 구조 형태로 된 클럭 분배 네트워크를 충전 및 방전하는 과정을 통해 구형파 형태의 클럭 신호를 생성하는 방식이다. 특히 이 기술을 사용하면 클럭 분배 네트워크의 클럭 드라이버들을 제거한 금속 구조만을 통해 칩 내에서 클럭을 분배할 수 있어, 타이밍 성능을 개선할 수 있을 뿐 아니라 칩 내 발열도 획기적으로 줄일 수 있다. 그 결과 지터와 스큐를 기존 대비 1/100 수준인 20펨토초 이하로 낮춘 뛰어난 타이밍 성능을 보일 수 있었으며, 칩내 클럭 분산 과정에서의 전력소모 및 발열 역시 기존 방식 대비 1/100 수준으로 낮출 수 있었다. 김정원 교수는 "현재 아날로그-디지털 변환기와 같은 고속 회로에 매우 낮은 지터의 샘플링 클럭 신호를 공급해 성능을 향상하는 연구를 진행 중ˮ이라고 밝히면서 "3차원 적층 칩과 같은 구조에서 발열을 줄일 수 있을 지에 대한 후속 연구도 계획 중ˮ이라고 밝혔다. 한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
2023.05.09
조회수 5254
정송 교수 연구팀, 아시아대학 최초 ACM MobiSys 2021 Best Paper Award 수상
우리 대학 AI대학원과 전기및전자공학부 소속 정송 교수 연구실의 김세연 박사과정생과 이경한 박사졸업생 (현 서울대 전기정보공학부 부교수)이 지난 주 COVID-19으로 인해 온라인으로 개최된 2021년도 ACM MobiSys 학회(https://www.sigmobile.org/mobisys/2021/)에서 Best Paper Award를 수상했다. ACM MobiSys는 모바일시스템 분야의 최고 학회로서 올해 총 266편의 논문이 제출되어 36개의 논문이 억셉트되었으며 (논문게재율: 21.6%) 이번 정송 교수 연구팀의 Best Paper Award 수상은 19년의 MobiSys 역사상 첫 아시아권 대학의 수상이다. (제1저자 소속 대학 기준) - 논문명: zTT: Learning-based DVFS with Zero Thermal Throttling for Mobile Devices (모바일 기기의 열쓰로틀링 방지를 위한 강화 학습 기반의 동적 주파수 할당 기술) - 논문 저자: 김세연 (KAIST), 빈경민 (서울대), 하상태 (U. of Colorado at Boulder), 이경한 (서울대), 정송 (KAIST) - 논문 내용: 동적 전압/주파수 할당 기술(Dynamic Voltage and Frequency Scaling, DVFS)은 운영 체제(OS) 단에서 프로세서 성능을 보장하는 동시에 에너지 소모를 줄이기 위해 동적으로 프로세서의 전압과 주파수를 조절하는 기술이다. 하지만 모바일 기기의 동적 주파수 할당 기술은 두 가지 한계점을 가지고 있다. 첫째, OS 레벨에서 수행되기 때문에 어플리케이션의 성능을 보장하지 못한다. 둘째, 모바일 기기의 특성상 빈번하게 변하는 환경을 반영하지 못하여 과열을 일으켜 열쓰로틀링(Thermal Throttling)을 야기시켜 사용자 경험(QoE)를 크게 감소시킬 수 있다. 특히, 모바일 기기에서 발열 문제는 최신 스마트폰과 같은 고성능 기기의 성능을 크게 떨어뜨리는 고질적인 문제로 알려져 있다. 해당 연구에서는 이러한 기존 기술의 한계를 해결하기 위해 모바일 기기의 과열을 예방하고, 사용자 경험을 보장하는 동시에 에너지 소모를 최소화하기 위해 심층 강화 학습(Deep-Reinforcement Learning) 기반의 동적 주파수 할당 기술을 개발했다. 이는 실시간으로 수집되는 상태 정보를 바탕으로 어플리케이션과 모바일 기기의 동작 환경에 적응하여 안정된 성능을 보장하고, 전력 소모를 크게 줄일 수 있는 기술이다. 연구팀은 해당 연구 기술이 운영 체제나 어플리케이션이 보다 최적화된 성능으로 동작하기 위한 하나의 설정 옵션으로 패키징될 수 있을 것이라고 전망하고 있다. 위 상을 수상한 김세연 박사과정생은 논문에 대해 “5G 스마트폰과 같은 모바일 단말에서 과도한 발열로 인해 발생하는 열쓰로틀링에 따른 급격한 성능 저하 문제를 강화학습 기반의 동적 전압/주파수 스케일링을 통해 획기적으로 해결한 연구”라고 설명했다. 정송 교수는 “사용자 체감 성능을 높이면서 열쓰로틀링으로 인한 급격한 성능 저하를 방지하기 위해서는, 적정한 온도를 유지하기 위한 총전력 소모 범위 내에서 프로세서 컴포넌트 (CPU, GPU 등) 간 최적의 전력 분배를 수행하는 것이 관건이지만, 주변 환경 (주변 온도, 쿨링 상황 등)과 사용자 애플리케이션 특성에 따라 허용 가능한 총 전력 소모 범위와 최적의 전력 분배가 실시간으로 변화하기 때문에 전통적인 제어기법으로는 해결하기 매우 어려운 문제였다”고 부연 설명했다. 연구팀의 이러한 결과는 전력소모 문제로 인공지능 기법의 도입이 어려울 것으로 예상되었던 모바일 플랫폼에서 조차 강화학습 기반의 시스템 제어가 성능 개선에 크게 이바지 할 수 있음을 보임으로써, 차세대 운영체제에 AI/ML 기반 제어 기법들을 적극적으로 도입하기 위한 계기를 마련한 것으로 평가받았다.
2021.07.09
조회수 10670
초안정 광대역 광주파수 안정화 기술 개발
기계공학과 김정원 교수 연구팀이 광섬유 광학 기술을 이용한 고성능 주파수 안정화 기술을 개발했다. 이 기술을 이용하면 150테라헤르츠(THz)의 넓은 대역폭에 걸쳐 일정한 간격으로 분포한 60만 개 이상의 광주파수 모드들의 선폭을 동시에 1헤르츠(Hz) 수준으로 낮출 수 있다. 이를 통해 원자시계나 주파수 분광학에 활용할 수 있고, 광주파수를 기반으로 한 양자 센서의 성능도 크게 높일 수 있을 것으로 기대된다. 권도현 박사과정이 1 저자로 참여하고 한국표준과학연구원 시간표준센터와 공동연구로 수행된 이번 연구는 국제학술지 ‘사이언스 어드밴시스(Science Advances)’ 3월 27일 자에 게재됐다. (논문명: Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform) 레이저의 선폭과 광주파수의 안정도는 시간/주파수 표준, 양자광학, 분광학 등 기초과학 분야뿐 아니라 거리 측정, 형상 이미징 및 분산형 센서 등 다양한 공학 응용에서의 측정 분해능을 결정한다. 특히 작년 5월 기본단위의 재정의를 통해 7개의 국제 단위계(SI) 중 6개(시간, 길이, 질량, 전류, 온도 및 광도)가 주파수를 기반으로 정의되기 때문에 광주파수의 안정도를 확보하는 것은 초정밀 측정 및 센서 분야에서 매우 중요한 이슈이다. 기존에는 다수의 광주파수를 안정화하기 위해 Q인자가 높은 초안정 공진기에 연속파 레이저를 주파수 잠금한 후 이를 다시 펄스 레이저에 주파수 잠금하는 방식을 사용했다. 하지만 이 방식은 장치의 크기가 클 뿐 아니라 주변 환경에 매우 민감한 수억 원 이상의 고가 장치이기 때문에 소수의 표준 연구소에서만 활용됐다. 연구팀은 부품의 신뢰성과 가격 경쟁력이 확보된 광통신용 광섬유 광학 기술을 이용한 광주파수 안정화 기술을 개발했다. 그 결과 A4 용지 절반보다 작은 면적의 소형 장치를 이용해 펄스 레이저에서 발생하는 60만 개 이상의 광주파수 모드들의 선폭을 1Hz 수준으로 낮출 수 있었다. 또한, 각각의 주파수 모드에서 1천조 분의 1(10-15) 수준의 주파수 안정도를 확보했다. 연구팀의 기술은 다양하게 활용 가능해, 특히 최근 대기 중 유해물질 모니터링 등의 분야에서 활용되고 있는 듀얼콤 분광학을 위한 고성능 광원으로 활용할 수 있다. 연구팀은 하나의 광섬유 링크에 두 펄스 레이저를 동시에 안정화하는 방식을 통해 150THz의 넓은 주파수 대역에 걸쳐 1Hz 수준의 선폭으로 흡수 스펙트럼을 측정할 수 있는 고분해능 듀얼콤 분광학 광원을 선보였다. 불변하는 원자의 특성을 이용해 고정확도 측정이 가능한 양자 센서의 경우도 광주파수 분광학 기반이기 때문에, 광주파수의 선폭과 안정도가 측정의 정확도와 신뢰도에 매우 중요하다. 김 교수는 “이번 연구 결과를 활용하면 소형, 경량, 저가의 장치로 1천조분의 1 수준의 광주파수 안정화가 가능해 다양한 양자 센서를 센서 네트워크 형태로 확장하는 데 기여할 수 있을 것이다”라고 말했다. 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.04.09
조회수 16469
김승우, 김영진 교수, 성능 저하 없는 광주파수 초정밀 전송기술 개발
〈 김영진 교수, 양재원, 김병수 박사과정, 김승우 교수 〉 우리 대학 기계공학과 김승우, 김영진 교수 공동연구팀이 펨토초 레이저 광빗*을 대기로 전파하는 도중에 발생하는 왜곡을 실시간으로 제어하고 보정할 수 있는 다채널 광주파수의 초정밀 전송 원천기술을 개발했다. * 펨토초 레이저 광빗: 시간/주파수 표준으로 활용 가능한 광대역 펄스 레이저 연구팀은 이번 기술이 차세대 우주-지상간 광대역 초고속 광통신 구현과 차세대 항법장치 성능 개선에 이바지할 것으로 기대한다고 밝혔다. 강현재 연구원이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature communications)’ 9월 30일 자 온라인판에 게재됐다. (논문명 : Free-space transfer of comb-rooted optical frequencies over an 18 km open-air link). 대기를 전파하는 레이저는 대기의 온도, 압력, 습도 및 바람 등의 영향을 받아 광주파수 및 위상의 안정도가 크게 떨어진다. 특히 대기가 핵심적으로 분포하는 고도 10km 이하의 대류권에서는 이와 같은 현상이 심하게 발생한다. 이러한 혹독한 대기 환경을 겪는 레이저는 고유한 특성을 잃어버려 초기에는 우수한 안정도를 갖는 레이저라도 대기를 통과한 뒤에는 우수성을 잃게 된다. 연구팀은 문제 해결을 위하여 주파수 표준에 안정화된 펨토초 레이저 광빗에서 레이저들을 추출하고 그중 하나의 파장을 이용해 대기 환경변화를 실시간으로 추적했다. 이를 음향 광학 장치를 통해 대기 환경변화를 제어함으로써 레이저의 우수한 특성이 유지될 수 있도록 했다. 연구팀은 1초 측정 시 1/1,000,000,000,000,000(천조분의 일)초의 오차를 갖는 우수한 안정도의 펨토초 레이저 광빗을 대기(18 km)에 전파시키고, 통과하는 중에 발생하는 대기의 영향을 정밀하게 측정하고 제어하는 데 성공했다. 그 결과 레이저의 성능이 대기를 통과하기 전과 후의 큰 차이가 없는, 우수한 안정도로 전송하는 다채널 광주파수 초정밀 대기전송 기술을 개발했다. 연구팀이 이용한 펨토초 레이저 광빗은 4 테라헤르츠(THz)에 이르는 광대역 주파수를 보유한 레이저로, 각각의 주파수를 하나의 레이저로 이용할 수 있어 확장성이 매우 크며 보상 채널의 한 파장으로 전체 대역을 보상해줌으로써 펨토초 레이저 광빗의 특성을 그대로 전파할 수 있다. 이 기술을 이용하면 기존의 마이크로파를 통한 지상-우주간 인공위성 통신의 통신용량 한계를 극복하고 시간 표준을 분배함으로써 항법장치의 성능을 개선할 수 있다. 또한, 빛의 직진성을 통해 에너지 효율을 획기적으로 개선하고 도청 및 감청에 대한 보안성 또한 확보할 수 있을 것으로 기대된다. 주저자인 강현재, 양재원 연구원은 “대기 중으로 전파하는 레이저가 대기 영향을 받아도 레이저의 특성을 그대로 유지해 전송될 수 있다는 것을 보여줬다. 이는 광섬유를 통해 전파하던 레이저를 공간의 제약을 뛰어넘어 활용할 수 있다는 가능성을 보여주는 결과이다”라며 “광시계 분배 및 동기화로 차세대 항법장치의 성능 개선과 인공위성-지상간 초고속 광통신 연구에도 활용될 수 있을 것으로 기대한다”라고 말했다. 이번 연구는 한국연구재단의 과학기술분야 기초연구사업-개인연구사업- 리더연구(국가과학자)지원을 받아 수행됐다. □ 그림 설명 그림1. 펨토초 레이저 광빗 기반 광파수의 초정밀 생성 및 대기 전송
2019.10.22
조회수 11003
신인식 교수, 스마트폰 기반 터치사운드 위치파악 기술 개발
〈 왼쪽부터 아니쉬 뱐잔카 석사과정, 김효수 연구교수, 신인식 교수 〉 1분 1초가 소중한 아침 출근 준비 시간, 거울을 보며 양치질을 하는 시간은 유일하게 멍하니 다른 생각을 할 수 있는 순간일 것이다. 만약 양치질 중 거울을 바라보는 것만으로 오늘의 중요한 뉴스, 궁금했던 유튜브 영상, 날씨 등을 미리 확인할 수 있다면 하루를 계획하는 데 큰 도움이 될 것이다. 우리 대학 전산학부 신인식 교수, 김효수 연구교수 연구팀이 가구, 거울 등의 주변 사물들을 터치 입력 도구로 사용할 수 있는 스마트폰 기반의 터치 사운드 위치파악 기술을 개발했다. 이 기술은 사람들이 항상 휴대하는 스마트폰, 태블릿 PC 등을 사용한 기술로, 언제 어디서나 책상 등의 주변 사물들을 가상 키보드로 활용해 장문의 문자, 메일 등을 손쉽게 작성할 수 있고 체스와 같은 보드게임도 즐길 수 있다. 또한 단순 디스플레이 기능만 제공하던 스마트 TV나 거울과 같은 스마트기기에 터치 입력 기능을 삽입해 좀 더 편리하고 효율적인 기기 활용을 할 수 있다. 연구팀이 개발한 시스템은 지난 11월 4~7일 중국 선전에서 열린 모바일 및 센싱 분야의 최고 권위 국제학회 ACM SenSys에서 발표돼 호평을 받았으며, 우수성을 인정받아 ‘베스트 페이퍼 러너-업 어워드(best paper runner-up award)’를 수상했다. 터치 사운드 기반 입력 기술은 다양한 사용 환경에서도 1cm 이내의 오차를 갖는 정확한 터치 입력을 일관성 있게 제공하는 것이 가장 중요하다. 사용자들은 책상, 벽, 거울 등 매번 다른 재질의 사물을 터치 입력 도구로 활용할 수 있어야 하고, 사용 중에도 책이나 가방과 같은 주변 물체의 위치 및 소음 수준이 바뀔 수 있기 때문이다. 연구팀은 사용자가 손톱 등으로 사물을 터치했을 때 발생하는 터치 충돌 소리가 고체 표면을 통해 전달되는 과정을 분석했다. 소리가 공기를 통해 전달될 때와는 달리 고체 표면에 전달될 때에는 주파수에 따라 다른 속도로 전달되는 분산(dispersion) 현상을 겪는다. 분산 현상으로 인해 주파수별로 소리 도달 시간 차이는 소리 전달 거리에 비례해 증가하며, 주변 소음이 변화해도 비례 관계는 변하지 않는다. 김효수 연구교수는 이러한 관찰에 기반해 고체 표면을 통해 전달된 터치 소리를 스마트폰에 녹음하고 간단한 조정 과정을 통해 주파수별 소리 도달 시간 차이와 소리 전달 거리의 관계를 파악했다. 이후 이 값을 이용해 사용자의 터치 입력 위치를 정확하게 계산하는 기술을 개발했다. 개발한 시스템은 약 17인치의 터치스크린에서 평균 0.4cm 이내의 측정 오차를 보였다. 특히 나무 책상, 유리 거울, 아크릴 보드 등 다양한 종류의 사물에서 주변 물체의 위치나 소음이 변하는 상황에서도 항상 1cm 이내의 측정 오차를 기록하는 정확성을 보였다. 특히 기존 기술이 터치 입력 위치파악에만 수백 초 소요되는 것과 달리 정확성과 편리한 사용을 위해 약 10초 이내의 간단한 조정을 통해 기술을 적용하는 데 성공했다. 연구팀은 실제 사용자를 대상으로 한 실험에서도 사용자 경험 및 정확성 등 모든 지표에서 긍정적인 반응을 얻었다고 밝혔다. 신 교수는 “우리가 주위에서 흔히 볼 수 있는 거울, 책상, 벽 등의 표면을 마치 터치스크린처럼 사용할 수 있다면 재미있고 유용한 앱들이 많이 활성화될 것이다”라며 “이 기술은 마이크로폰 3~4개 설치만으로도 터치 입력을 가능하게 하는 새로운 터치 인터페이스 기술이다”라고 말했다. 이번 연구는 Microsoft Research Asia(마이크로소프트연구소 아시아)의 지원을 받아 수행됐다. ※ 데모 비디오 링크 http://cps.kaist.ac.kr/research/ubitap/ubitap_demo.mp4 □ 사진 설명 사진1. 터치 입력 기술 사용 예제
2018.12.13
조회수 11798
민범기 교수, 광학적 시공간 경계 통한 빛 제어 기술 개발
〈 민범기 교수, 손재현 박사과정, 이강희 박사 〉 우리 대학 기계공학과 민범기 교수 연구팀이 광학적인 시공간 경계(spatiotemporal boundary)를 이용해 빛의 색과 위상을 동시에 제어하는 기술을 개발했다. 기계공학과 전원주 교수, 물리학과 이상민 교수와의 공동 연구로 진행된 이번 연구는 특수 미세 금속 구조를 반도체 표면 위에 제작해 기존 연구결과에 비해 훨씬 높은 자유도를 갖는 시공간 경계를 구현했다. 이 시공간 경계는 빛의 주파수를 변환할 수 있는 초박막형 광학 소자에 응용 가능할 것으로 기대된다. 이강희 박사, 손재현 박사과정이 공동 1저자로 참여한 이번 연구는 광학분야 국제 학술지 ‘네이처 포토닉스(Nature Photonics)’ 10월 8일자 온라인 판에 게재됐다. 광 주파수 변환 소자는 광학적 비선형성으로 인해 빛의 색이 변화하는 현상을 주로 이용해 빛을 사용한 정밀 측정과 통신 기술에서 핵심 역할을 하고 있다. 일반적인 광학 현상에서는 빛의 중첩(superposition) 원리가 성립하기 때문에 여러 빛이 동시에 물질을 통과해도 서로에게 영향을 주지 않는다. 하지만 빛의 세기가 매우 강하면 빛의 전기장이 물질을 이루는 원자핵, 전자 상호작용에 영향을 줘 빛의 주파수를 배로 늘리거나 두 빛의 주파수를 합하거나 뺀 빛을 형성하는 등의 비선형 광학 현상을 관찰할 수 있다. 이럴 경우 대부분 비선형 형상 구현에 필요한 강한 빛을 얻기 위해 고출력 레이저를 사용하거나 아주 좁은 공간에 빛을 집속시키는 방법을 사용한다. 또한 빛이 통과하고 있는 물질을 빛 스스로가 아닌 다른 외부 자극을 이용해 변화시킬 때에도 주파수 변환 현상을 볼 수 있다. 이렇게 시간에 따라 동적으로 변화하는 물질, 시간 경계 등을 이용하면 약한 빛에서도 주파수 변환을 일으킬 수 있다. 이는 통신 분야에서 유용하게 활용 가능하다. 그러나 외부 자극을 이용한 물성의 변화는 개념적으로만 연구돼 왔고, 다양한 이론적 예측 결과들을 실제로 구현하는 데 어려움이 있었다. 연구팀은 문제 해결을 위해 원자 구조를 모사한 금속 미세구조를 배열해 인공적인 광학물질(메타물질)을 개발했고 이 인공 물질을 매우 빠르게 변화시켜 시공간 경계를 만들어내는 데 성공했다. 기존 연구들이 약간의 굴절률에만 변화를 주는 것에 그쳤다면 이번 연구는 물질의 분광학적 특성을 자유롭게 설계 및 변화시킬 수 있는 플랫폼을 제공했다. 이를 이용해 빛의 색을 큰 폭으로 변화시키면서 주파수 변화량 역시 제어할 수 있는 소자를 개발했다. 연구팀은 주로 개념적으로만 진행되던 시공간 경계에서의 주파수 변환에 관한 연구를 광학물질을 이용해 실현 및 응용할 수 있는 단계로 발전시켰다는데 의의가 있다고 밝혔다. 민 교수는 “주파수 스펙트럼의 변화를 자유롭게 설계하고 예측할 수 있어 폭넓은 활용이 가능하다”며 “광학 분야에서 동적인 매질에 연구에 새 방향을 제시하게 될 것이다”라고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업과 미래유망융합기술파이오니어사업 및 글로벌프론티어사업 파동에너지극한제어연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 협대역의 테라헤르츠파를 입사시켰을 때 시간적 경계의 변화에 따른 주파수 변환 실험 결과 그림2. 기술 개념도
2018.11.05
조회수 12193
김정원 교수, 초저잡음 마이크로파 주파수 합성기 개발
우리 대학 기계항공공학부 김정원 교수 연구팀이 광섬유 광학 기술을 이용해 X-밴드 레이더에 활용할 수 있는 초저잡음 마이크로파 주파수 합성기를 개발했다. 이번 기술은 레이더 뿐 아니라 통신, 센서, 정밀계측 등 다양한 분야에서 활용 가능하고 기술이전을 통한 국산화도 가능할 것으로 기대된다. 권도현 박사과정이 1저자로 참여한 이번 연구 성과는 ‘포토닉스 리서치(Photonics Research)’ 2018년도 1월호에 게재됐다. 레이더는 자율주행 자동차, 기상관측, 천문연구, 항공관제, 군용탐지 등 민간 및 군용 분야에서 다양하게 활용된다. 고성능 레이더 내에서의 속도 탐지 및 이미지 분해능 개선, 통신 및 신호처리 능력 향상을 위해서는 레이더 송신신호의 위상잡음(phase noise)을 낮추는 것이 필수적이다. 또한 우수한 주파수 스위칭과 변조 성능 역시 레이더 신호원의 중요한 요구 조건이다. 하지만 위상잡음이 낮은 마이크로파 주파수 합성기는 고가일 뿐더러 수출승인(EL) 품목으로 자국 밖 수출이 금지되거나 특별 허가를 받아야 하는 경우가 많다. 김 교수 연구팀은 고가의 재료나 실험실 밖 환경에서 사용이 어려운 기술 없이도 부품의 신뢰성과 가격경쟁력이 확보된 광섬유광학 기술과 상용 디지털신디사이저(DDS) 부품만을 이용했다. 이를 통해 매우 우수한 위상잡음 수준을 가지며 주파수 스위칭 및 다양한 변조가 가능한 마이크로파 주파수 합성기를 개발했다. 이 주파수 합성기는 광섬유 레이저 기술을 이용해 펄스(pulse) 형태의 빛을 생성한다. 이 때 빛 펄스 간의 시간 간격을 매우 일정하게 만들어 1초 동안 1 펨토초(1천조분의 1초)라는 아주 작은 시간의 오차를 갖는 빛 펄스들을 생성했다. 그리고 이 빛 펄스들을 전기 신호로 변환하는데 이 때 펄스 간 시간 간격에 의해 정해지는 반복률(repetition-rate)의 정수배에 해당하는 임의의 사인파(sinusoidal) 형태의 전기 신호를 생성할 수 있다. 이번 연구에서는 여러 가능한 주파수 대역들 중에서 최근 이슈가 된 사드(THAAD) 레이더를 비롯한 고성능 레이더와 우주 통신 분야에서 그 중요성이 커지는 X-밴드(8-12 GHz) 마이크로파 주파수 대역에서 동작하는 주파수 합성기를 구현했다. 이번 기술은 기존의 최고 성능 오븐제어 수정발진기(OCXO) 기반 주파수 합성기들의 위상잡음보다 월등하게 우수한 성능을 보였다. 또한 전자전(electronic warfare) 및 레이더 시스템에서 중요하게 여겨지는 빠른 주파수 변환 속도와 다양한 주파수 변조 기능 역시 가능함을 선보였다. 이 시스템의 또 다른 장점은 기존 마이크로파 주파수 합성기와 달리 매우 낮은 잡음의 광신호 또한 함께 생성할 수 있다는 것이다. 이러한 저잡음 광신호를 이용하면 레이더 수신기에서 이전에는 없던 새로운 신호 분석 기능도 제공할 수 있다. 김 교수는 “이 연구에서는 X-밴드 신호원을 선보였지만 같은 원리를 활용해서 보다 고주파 대역의 초저잡음 신호도 생성할 수 있다”며 “드론처럼 소형, 저속 물체들에 대한 민감한 탐지에도 활용 가능할 것이다”고 말했다. 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 광섬유광학 기반 X-밴드 레이더 신호원의 개념도 그림2. 10-GHz에서의 위상잡음 측정 결과와 기존의 최고성능 주파수 합성기들과의 성능 비교
2018.01.18
조회수 15282
공승현 교수, 실내 극미약 GNSS신호 초고속 감지기술 개발
〈 김태선 연구원, 공승현 교수 〉 우리 대학 조천식녹색교통대학원 공승현 교수 연구팀이 범지구 위성항법 시스템인 GNSS(Global navigation Satellite System)를 실내에서도 사용할 수 있는 극미약 GNSS 신호 초고속 탐지기술을 개발했다. 연구팀의 기술을 활용하면 전 세계 어디서든 실내외 상관없이 GNSS 신호만으로 위치를 파악할 수 있기 때문에 대체기술 혹은 별도 장치가 필요하지 않아 활용도가 높을 것으로 기대된다. 이번 연구 성과는 국제 학술지 ‘IEEE 시그널 프로세싱 매거진(IEEE SPM)’ 9월호에 게재됐다. 대중에 가장 많이 알려진 GPS는 1970년대 美 국방부가 개발한 미국 기반의 위성항법장치이다. 이러한 시스템은 미국 뿐 아니라 러시아의 GLONASS, 유럽의 GALILEO, 중국의 COMPASS 등 여러 가지가 존재하는데 GNSS는 이 모든 기술들을 포함하는 시스템이다. 기존의 GNSS는 2만km 상공에서 지구 전역으로 신호를 방사하기 때문에 지상의 작은 안테나가 수신하는 신호는 매우 미약하다. 특히 건물 벽을 투과해 실내로 침투하는 GNSS는 외부에서 수신하는 신호의 세기보다 1천 배 이상 감소된 극미약 신호가 된다. 이러한 극미약 GNSS 신호를 탐지하기 위해 기존의 주파수 영역 상관기법을 사용하면 계산량이 1백만 배 이상 증가하게 되고 신호탐지를 위한 계산 시간도 폭발적으로 증가한다. 위와 같은 문제로 인해 지난 20여 년 간 GNSS 신호를 이용한 실내 측정 기술은 거의 불가능한 것으로 알려졌다. 연구팀은 문제 해결을 위해 실내 극미약 GNSS 신호의 탐지 시간을 획기적으로 줄일 수 있는 ‘합성기반 주파수 가설 탐지 기술 SDHT(Synthesized Doppler frequency hypothesis Testing)’를 개발했다. 일반적으로 GNSS 신호를 탐지하는 작업은 GNSS 신호의 코드 위상과 도플러 주파수를 정확히 알아내는 과정이다. 그런데 기존 방식의 알고리즘은 도플러 주파수의 가설 수를 2만 개 이상 검증을 해야 한다. 결국 소요 시간이 기하급수적으로 늘어난다. 반면 연구팀이 개발한 알고리즘은 가까운 도플러 주파수 가설에 따라 수행된 위상동기식 상관 결과를 이용해 우회적으로 검증하는 기술이다. 따라서 20여 개의 가설만 기존 방식으로 검증하고, 나머지 19980개의 가설은 단순한 산술연산만으로 검증을 수행하면 모든 작업을 완료할 수 있다. 결과적으로 SDHT는 기존 기술보다 1천 여배 적은 계산량, 800배 빠른 속도로 신호를 탐지할 수 있다. 약 15초의 소요시간으로 많은 건물 내의 극미약 GNSS 신호를 탐지할 수 있는 것이다. 연구팀은 추가 연구를 통해 미약한 GNSS 신호를 탐지하는 기술을 더욱 강화하고 실내 전파 난반사에 강한 위치 측정 기술을 개발하면 거의 모든 건물 내에서 수초 이내에 GNSS만을 이용한 실내 GNSS 단독 측정이 가능할 것으로 예상했다. 공 교수는 “기술 개발을 통해 전 세계적으로 실내 GNSS 측위 기술을 선도하게 됐다”며 “향후 실내 GNSS 시스템을 상용화하고 새로운 시장을 창출할 수 있을 것으로 기대한다”고 말했다. 연구팀은 국내 특허 등록 및 해외 출원 중이며 KAIST 창업원의 지원을 통해 기술사업화를 추진하고 있다. □ 그림 설명 그림1. SDHT 기술을 이용한 GPS 실내 측위 시스템의 측위 결과
2017.09.28
조회수 13472
김정원 교수, 美 광학회 발행 저널에 초청 리뷰논문 게재
〈 김 정 원 교수 〉 우리 대학 기계항공공학부 김정원 교수가 국내 연구자로는 최초로 ‘어드밴시스 인 옵틱스 앤 포토닉스(AOP : Advances in Optics and Photonics)’ 지의 초청 리뷰논문을 2016년 9월호에 게재했다. AOP는 미국광학회(Optical Society of America, OSA)에서 발행하는 광학 분야의 가장 권위 있는 리뷰 저널이다. 광학 및 광공학에서 가장 중요하면서 많은 사람들이 관심을 가지는 최신 토픽들에 대해 분야를 대표하는 연구자가 그 분야를 소개하는 심도 있는 초청 리뷰 논문을 싣고 있다. 김 교수의 논문은 최근 각광받고 있는 초저잡음 광섬유 모드잠금된 레이저(ultralow-noise mode-locked fiber laser)와 광주파수빗(optical frequency comb)에 대한 것으로 저잡음 광섬유 레이저의 물리적 원리와 구현 방법, 지난 25년간의 동향, 최신 응용 분야들과 앞으로의 전망을 76페이지에 걸쳐 종합적으로 소개하고 있다. 김 교수 연구팀은 2011년 세계 최초로 100아토초(1경분의 1초)의 타이밍 지터를 가지는 광섬유 레이저를 선보인 것을 비롯해 다양한 종류의 저잡음 광섬유 레이저들을 개발했다. 또한 이를 입자가속기 제어, 저잡음 클럭 발진기 및 마이크로파 발생기, 원격탐지 등의 기초과학 및 공학응용 분야들에 적용하는 연구를 수행 중이다. 창간 8년째인 AOP 지에 국내 최초로 초청 리뷰 논문을 게재한 것은 김 교수가 우리 대학에서 자체적으로 수행한 초저잡음 광섬유 레이저와 각종 초정밀 응용들에 관한 연구가 세계적인 수준으로 인정받음을 의미한다. 김 교수는 “이번 리뷰 논문은 광섬유 레이저와 광주파수빗을 전공하거나 이용하는 대학원생들과 다른 분야 연구자들에게 분야 전체의 개요와 앞으로의 전망에 대하여 소개하여, 이러한 최신 광원들이 보다 폭넓게 활용되는 것을 목표로 했다”고 말했다. 김 교수 연구팀의 박사후 연구원 (2010-2011년)이었고 현재는 중국 천진대에 근무하는 Youjian Song 교수와 공동으로 집필한 이번 리뷰 논문은 한국연구재단의 중견연구자지원사업과 우주핵심기술개발사업의 지원을 받아 수행됐다.
2016.08.30
조회수 12639
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1