본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A4%91%EC%84%B1%EC%9B%90%EC%9E%90
최신순
조회순
양자 시뮬레이터로 양자얽힘 관측 도전
고온 초전도물질은 수십 년이 지난 지금도 어떠한 물리적인 기작으로 초전도가 형성되는지 명확하게 규명되지 않았다. 광격자 양자 시뮬레이터는 이러한 문제를 풀기 위한 새로운 접근 방식으로 이미 고전 컴퓨터가 연산할 수 없는 영역에 우위를 보여주었으며, 최근 고온 초전도체에서 관측된 반강자성을 관측하는 등 미래에 고온 초전도 문제를 풀 수 있는 강력한 후보다. 우리 대학 물리학과 최재윤 교수 연구팀이 포항공대 조길영 교수 연구팀과 공동연구를 통해 중성원자 양자 시뮬레이터의 오류 정정 기술을 개발해 최초로 2차원에서의 비국소 질서 변수를 측정함으로써 향후위상 물질과 고온 초전도체 물질 특성을 알아낼 수 있도록 하는 데 성공했다고 29일 밝혔다. 이러한 양자 시뮬레이터의 큰 단점은 관측 과정 및 양자 상태 준비 과정에서 발생하는 결함으로(예: 원자 손실), 이를 체계적으로 파악하고, 정정하는 것이 매우 어렵다. 이러한 결함은 특히 위상물질의 특성을 규정짓는 비국소 질서변수를 측정하는데 큰 걸림돌이 되며, 2차원에서는 그 효과가 더욱 커져 큰 시스템에서 비국소 질서 변수의 실험적 관측을 어렵게 만드는 주요 요소다. 일반적으로 우리가 관측하는 물리량은 국소성을 띄기 때문에, 이러한 양자역학적 특이성인 양자 얽힘(entanglement)이 물성을 지배하는 물질인 위상물질의 비국소 질서 변수를 측정하는 것은 간단하지 않다. 더욱이 2차원, 3차원 물질의 경우 실험적 노이즈에 의해 그 신호가 급격하게 약해지기 때문에 이를 실험적으로 관측하기는 매우 어렵다. 최 교수 연구팀은 양자 시뮬레이터에 비국소 질서 변수가 측정 가능하고 실험적인 결함도 함께 찾아내는 방법을 개발했다. 또한 연구팀은 2차원에서도 양자얽힘의 위상 물질의 물성을 규정짓는 것도 가능함을 보여주었다. 시뮬레이터 실시과정에서 발생한 결점까지 제거하는데 성공한 이후, 위상물질의 2차원 비국소 질서변수는 급격하게(100배 이상) 증가하는 양상을 보였으며, 원자 수에 무관하게 측정값이 일정하게 유지되는 것을 확인하는 등 이론적으로 예측된 경향을 모두 확인할 수 있었다. 해당 기술은 여러 가지 중성원자 양자 시뮬레이터에 활용이 가능하다. 원거리 상호작용이 주요한 양자 시뮬레이터의 경우, 양자 스핀 액상과 같은 2차원 위상 물질의 물성을 규정하는데 적용 가능하며, 고온 초전도체 물질을 흉내 내는 양자 시뮬레이터에도 해당 기법을 응용할 수 있을 것으로 기대된다. 최재윤 교수는 “이번 연구는 중성원자 양자 시뮬레이터에 존재하는 실험적 결함을 보정하는 것이 가능함을 보여준 최초의 연구이며, 향후 위상 양자 연산에 이용되는 양자 스핀 액상과 같은 고차원 위상 물질 발견 및 물성 규정에 주요하게 활용될 것”이라고 하였다. 우리 대학 허준혁 연구원과 포스텍 이원준 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `피지컬 리뷰 X (Physical Review X)' 14권 1호에 지난 1월 8일 출판됐다. (논문명 : Measuring nonlocal brane order with error-corrected quantum gas microscopes). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.01.29
조회수 3781
양자 기체의 스핀 상관된 제트 현상 관측 및 규명
우리 대학 물리학과 최재윤 교수 연구팀이 ‘극저온 중성원자로 구성된 보즈-아인슈타인 응집체를 이용해 스핀 상관된 물질파 방출’에 성공했다. 물리학과 김경태 박사가 제 1저자로 참여한 이번 연구는 물리학 분야 권위지인 ‘피지컬 리뷰 레터스(Physical Review Letters)’에 지난 7월 22일에 게재됐다. 극저온 중성 원자로 구현된 보즈 아인슈타인 응집체 (Bose-Einstein condensate, BEC)는 수만 개 이상의 원자들이 하나의 파동함수로 기술되는 양자 상태로, 중성 원자가 갖는 스핀 자유도를 활용하면 진공 압축 (squeezed vacuum state)상태를 구현 할 수 있으며, 이를 활용하여 다양한 양자 정보 연구를 수행할 수 있다. 양자 얽힘 상태 생성의 미시적인 과정은 두개의 스핀0인 원자가 충돌 이후 스핀1과 스핀-1로 변환되는 것으로, 생성된 스핀 쌍은 (+1,-1)와 (-1,+1)의 중첩 상태인 양자 얽힘 상태가 된다. 이러한 스핀 충돌 과정을 스핀 쌍 생성 충돌이라 하며, 이는 한 광자가 절반의 에너지를 가지 두개의 얽힌 광자로 나누어지는 과정과 매우 유사함이 알려져 있다. 현재까지 BEC에서 수행한 대부분의 양자 정보 연구는 루비둠-87 원자를 사용하였는데, 이 경우 스핀 쌍 생성률이 낮고, 생성된 양자 얽힘 상태의 원자들이 특정 위치에만 고정될 수밖에 없는 한계점이 있다. 따라서 양자 정보 처리를 목적으로 하는 비국소적 측정이나 조종을 위해서는 원자 앙상블을 나누는 과정 등이 필요하며, 이 과정에서 생성되는 추가적인 잡음을 제거하는 방법은 아직까지 보고된 바가 없다. 최재윤 교수 연구팀은 리튬-7 원자의 스피너 응집체를 이용하여 높은 운동에너지를 갖는 스핀 쌍들이 생성 이후 유도 증폭되는 것을 관측하였으며, 또한 이러한 스핀 쌍들이 서로 결맞는 상태임을 보고하여 선행 연구의 제한점을 극복하는 새로운 방향을 제시하였다. 리튬-7원자의 경우 강한 스핀 상호작용 에너지를 가짐이 오래전부터 알려져 있었으나, 양자 기체 생성의 어려움으로 인해 그동안 실험적으로 구현되지 못하였다 [이 시스템을 보유한 연구단은 아직까지 최재윤 교수 연구팀이 유일하다, Physical Review Research 2, 033471 (2020)]. 연구팀은 이차원 평면에 물질파 방출을 위해 BEC를 이차원 포텐셜에 가두었으며, 스핀0 상태의 응집체에서의 스핀 쌍을 생성 유도하였다. 생성된 스핀 쌍은 BEC를 지나며 증폭되어 충분히 많은 원자들이 포텐셜 외부로 분출되는 것을 관측했다. 아래 그림은 해당 실험의 각 스핀 성분 사진으로, 좌우의 스핀+1,-1의 중심을 기준으로 반대편에 반대 스핀 성분을 가진 원자들을 찾기 쉽다는 것을 알 수 있다. 충돌과정에서 각운동량 보존(스핀)과 선형 운동량 보존(무게중심)이 동시에 보존되어야 하기 때문에, 서로 반대 방향으로 뻗어 나가는 원자들은 필연적으로 강한 스핀 상관관계를 가지게 된다. 이번 연구에서 주목할 점은 스핀 상태의 측정 방향에 따른 상관 함수 분석을 통해, 방출된 물질파가 확장된 벨 상태의 특징적인 스핀 상관관계를 가진다는 것을 확인할 수 있었다는 점이다. 이 현상을 이용하면 비고전적 원자 앙상블의 생성과 동시에 분리가 가능해, 공간적으로 멀리 떨어진 거시적 양자 얽힘 상태를 효율적으로 생성할 수 있을 것으로 전망한다. 해당 연구는 최순원 교수(Berkeley/MIT)와의 협력 연구를 통해 진행됐으며, 삼성 미래 기술 육성 재단 및 한국연구재단 양자 컴퓨팅 기술개발 사업의 지원을 받아 수행됐다.
2021.09.01
조회수 8214
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1