본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A7%80%EC%8B%9D%EC%9E%AC%EC%82%B0%EA%B6%8C
최신순
조회순
사진에서 3차원 정보를 추론하는 인공지능 반도체 IP(지식재산권) 세계 최초 개발
우리 대학 전기및전자공학부 유회준 교수가 이끄는 PIM 반도체 설계 연구센터(AI-PIM)가 유수 학계에서 인정한 5종의 최첨단 인공지능 반도체 IP(지식재산권)를 개발했다고 29일 밝혔다. 대표적으로 심층신경망 추론 기술 및 센서 퓨전* 기술을 통해 사진으로부터 3차원 공간정보 추출하고 물체를 인식해 처리하는 인공지능(AI) 칩은 KAIST에서 세계 최초로 개발해 SRAM PIM** 시스템에 필요한 기술을 IP(지식재산권)화 한 것이다. * 센서 퓨전 : 카메라, 거리센서 등의 각종 센서로부터 얻은 데이터를 결합하여보다 정확한 데이터를 얻는 방식 ** SRAM PIM : 기존 메모리 SRAM과 DRAM 중 SRAM에 연산기를 결합한 PIM반도체 이 IP는 올해 2월 20일부터 28일까지 개최된 국제고체회로설계학회(ISSCC)에서 현장 시연을 통해 많은 주목을 받았으며, 이를 누구라도 편리하게 활용할 수 있도록 한 것이다. (웹사이트 : www.ai-pim.org) KAIST PIM 반도체 설계연구센터는 해당 IP를 포함해 ADC*, PLL** 등 총 5가지의 PIM IP를 확보했으며, 지난 28일 웹사이트를 오픈해 연구자들이 공유할 수 있는 환경을 제공하고 있다. * ADC(Analog to Digital Converter) : 아날로그 데이터를 디지털 데이터로 변환시키는 회로 ** PLL(Phase-Locked Loop) : 내부 신호의 위상과 외부 신호의 위상을 동기화할 수 있도록 설계된 회로 기존 물체 인식 인공지능 반도체는 사진과 같은 2차원 정보를 인식하는 `사진인식기술'에 불과하다. 하지만 현실 세계의 물체들은 3차원 구조물이기 때문에 3차원 공간정보를 활용해야만 정확한 `물체인식'이 가능하다. 3차원 공간정보는 사진과 같은 2차원 정보에 거리정보를 포함시켜 실제 3차원 공간을 표현한 것으로, 3차원 공간정보에 물체를 식별해 해당 물체의 위치 및 각도를 추적하는 3차원 물체인식 기술이다. 이는 자율주행, 자동화 기술, 개인용 증강현실 (AR)과 가상현실(VR) 등과 같은 3D 어플리케이션에서 사용하는 핵심기술이다. 기존 ToF 센서*를 활용해 센서 뷰 내에 있는 모든 물체에 대한 정밀한 3차원 정보를 추출하는 것은 전력 소모가 매우 크기 때문에 배터리 기반 모바일 장치(스마트폰, 태블릿 등)에서는 사용하기 어렵다. * ToF 센서 : 3차원 공간정보를 추출하는 Time-of-Flight 센서로, 레이저를 방출하고 반사된 레이저가 검출되는 시간을 측정하여 거리를 계산, 대표적인 센서로 3D 라이다 (LiDAR) 센서가 있음 또한, ToF 센서는 특정 측정 환경에서 3차원 정보가 손실되는 문제와 데이터 전처리 과정에 많은 시간이 소요된다는 문제점이 있다. 3차원 물체인식 기술은 데이터가 복잡해 기존 인공지능 2차원 사진인식 가속 프로세서로 처리하기 어렵다. 이는 3차원 포인트 클라우드 데이터를 어떻게 선택하고 그룹화하느냐에 따라 메모리 접근량이 달라진다. 따라서 3차원 포인트 클라우드 기반 인공지능 추론은 연산 능력이 제한적이고 메모리가 작은 모바일 장치에서는 소프트웨어만으로 구현할 수 없었다. 이에 연구팀은 카메라와 저전력 거리센서 (64픽셀)를 사용하여 3차원 공간정보를 생성했고, 모바일에서도 3차원 어플리케이션 구현이 가능한 반도체 (DSPU: Depth Signal Processing Unit)를 개발함으로써 인공지능 반도체의 활용범위를 넓혔다. 모바일 기기에서 저전력 센서를 활용한 3차원 정보 처리 시스템을 구동하면서, 실시간 심층신경망 추론과 센서 퓨전 기술을 가속하기 위해서는 다양한 핵심기술이 필요하다. 인공지능 핵심기술이 적용된 DSPU는 단순 ToF센서에 의존했던 3차원 물체인식 가속기 반도체 대비 63.4% 낮춘 전력 소모와 53.6% 낮춘 지연시간을 달성했다. PIM반도체 설계연구센터(AI-PIM)의 소장인 유회준 교수는 “이번 연구는 저가의 거리센서와 카메라를 융합해 3차원 데이터 처리를 가능하게 한 인공지능 반도체를 IP화했다는 점에서 의미가 크며, 모바일 기기에서 인공지능 활용 영역을 크게 넓혀 다양한 분야에 응용 및 기술이전을 기대하고 있다”고 연구의 의의를 설명했다. 한편, 이번 연구는 과학기술정보통신부와 정보통신기획평가원의 PIM인공지능반도체핵심기술개발사업을 통해 개발되었으며, 이와 관련해 PIM 반도체 관련 기업과 연구기관에 개발된 IP들의 기술이전 및 활용을 돕고 있다.
2022.12.29
조회수 6048
SSD보다 더 빠른 차세대 저장장치 만드는 기술 개발
데이터(DB)의 초고속·대용량 처리에 적합한 정보저장장치인 기존의 *NVMe 컨트롤러를 차세대 메모리 개발에 적합하도록 초당 입출력 처리 능력 등 각종 기능적 측면에서 성능을 대폭 향상시킨 차세대 NVMe 컨트롤러 관련 기술이 우리 연구진에 의해 세계 최초로 개발됐다. 연구진은 이와 함께 이 기술을 국내·외 대학과 연구소에 무상으로 공개함으로써 관련 연구비용을 대폭 절감할 수 있게 했다. ☞ NVMe(Non Volatile Memory express): 비휘발성 메모리 익스프레스. PCI 익스프레스(PCIe) 인터페이스를 기반으로 한 저장장치를 위한 통신 규격(프로토콜)이다. SATA 인터페이스 대비 최대 6배 이상의 속도를 낼 수 있어 초고속, 대용량 데이터 처리에 적합하다. 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 *SSD의 데이터 병렬 입출력 처리를 순수 하드웨어로 구현한 차세대 NVMe 컨트롤러 'OpenExpress'를 개발하는 데 성공했다고 4일 밝혔다. ☞ SSD(Solid State Drive): 자기디스크를 이용하는 데이터 저장장치인 하드디스크(HDD)와는 달리 반도체를 이용해 데이터를 저장하는 장치로서 빠른 속도로 데이터의 읽기와 쓰기가 가능하다. 발열과 소음도 적으며, 소형화‧경량화할 수 있는 장점이 있으나, 비싼 가격이 단점으로 꼽힌다. 정 교수의 관련 논문(논문명: OpenExpress: Fully Hardware Automated Open Research Framework for Future Fast NVMe Devices)은 지난달 18일 열린 시스템 분야 최우수 학술대회인 'The USENIX Annual Technical Conference (ATC), 2020'에서 발표됐는데 아시아권 단일저자가 작성한 논문이 USENIX ATC 학술대회에 채택된 것은 해당 학술대회가 시작된 1993년 이후 27년 만에 처음이다. 빠른 입출력 장치에 특화된 NVMe 인터페이스 기술은 하드디스크(HDD)용으로 설계된 기존의 SATA(Serial ATA) 규격이 SSD에서 제대로 성능을 발휘하지 못하자 이를 대체하기 위해 개발됐다. NVMe는 SSD 성능을 최대한 활용할 수 있도록 개발된 초고속 데이터 전송규격으로 자리를 잡았으며 현재 다양한 플래시 기반 저장장치에 적용되고 있다. NVMe는 또 학계와 산업계에서 차세대 메모리를 기반으로 한 시스템 장치 구성을 위해 계속 연구되고 있다. 전 세계 ICT 분야의 주요 기업들은 NVMe를 사용하는 데 필요한 하드웨어 NVMe 컨트롤러 관련 지식 재산권(IP) 확보를 위해 막대한 비용을 투자해 독자적인 개발에 나서고 있다. 하지만 해당 IP는 외부에 공개가 되지 않아 대학이나 연구소 등에서 이를 연구목적으로 사용하기에는 어려움이 많다. 미국 실리콘밸리에 있는 소수의 벤처기업이 자체적으로 개발한 IP를 일부 제공하지만 한 달에 약 4천만 원의 이용료를 내야 한다. 또 IP 수정을 위한 단일 사용 소스 코드를 받기 위해서는 복사본 당 약 1억 원을 지급해야 하는 등 막대한 비용지출이 필요하다. 이러한 문제해결을 위해 정명수 교수 연구팀은 자유롭게 수정이 가능한 하드웨어 NVMe 컨트롤러 지식 재산권(IP)인 `OpenExpress'를 개발하고 이를 무상으로 공개했다. 이 공개용 컨트롤러는 수십 개 이상의 하드웨어 기본 IP들과 여러 핵심 NVMe IP 코어로 구성돼 있다. 정 교수팀은 실제 성능평가를 위해 OpenExpress를 이용한 NVMe 하드웨어 컨트롤러를 프로토타입(시제품)으로 제작하고, OpenExpress에서 제공되는 모든 로직은 높은 주파수에서 동작하도록 설계했다. 'OpenExpress'를 이용해 개발한 FPGA 스토리지 카드 시제품은 최대 7GB/s의 대역폭을 지원한다. 따라서 초고속 차세대 메모리 등의 연구에 적합하며, 다양한 스토리지 서버 작업 부하를 비교 테스트에서도 인텔의 새로운 고성능 저장장치인 옵테인 SSD(Optane SSD)보다 76% 높은 대역폭과 68% 낮은 입출력 지연시간을 보였다. 사용자의 필요에 따라 실리콘 장치 합성을 하게 되면 훨씬 더 높은 성능을 도출할 수 있을 것으로 예상된다. 정 교수팀이 개발한 이 컨트롤러는 비영리를 목적으로 하는 대학 및 연구소들이라면 `OpenExpress' 공개 소스 규약 내에서 자유로운 사용과 함께 수정사용도 가능해서 차세대 메모리를 수용하는 NVMe의 컨트롤러와 소프트웨어 스택에 관한 연구에 적합하다. 정명수 교수는 "이번 연구성과를 공개했기 때문에 기존 SSD 기술을 이끄는 몇몇 세계 최고 기업들만이 갖고 있던 컨트롤러를 대학과 연구소에서도 이젠 무상 사용이 가능하다ˮ면서 "초고속 차세대 메모리 등 저장장치 시스템의 연구를 위한 초석을 다졌다는 점에서 의미가 있다ˮ고 강조했다. 한편 이번 연구는 차세대 메모리 개발 및 공급업체인 '멤레이(MemRay)'의 지원을 받아 진행됐으며 해당 연구에 대한 자세한 내용은 웹사이트(http://camelab.org)에서 확인할 수 있다.
2020.08.04
조회수 25185
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1