-
챗GPT를 이용한 개인정보 악용 가능성 규명
최근 인공지능 기술의 발전으로 챗GPT와 같은 대형 언어 모델(이하 LLM)은 단순한 챗봇을 넘어 자율적인 에이전트로 발전하고 있다. 구글(Google)은 최근 인공지능 기술을 무기나 감시에 활용하지 않겠다는 기존의 약속을 철회해 인공지능 악용 가능성에 대한 논란이 불거진 점을 상기시키며, 연구진이 LLM 에이전트가 개인정보 수집 및 피싱 공격 등에 활용될 수 있음을 입증했다.
우리 대학 전기및전자공학부 신승원 교수, 김재철 AI 대학원 이기민 교수 공동연구팀이 실제 환경에서 LLM이 사이버 공격에 악용될 가능성을 실험적으로 규명했다고 25일 밝혔다.
현재 OpenAI, 구글 AI 등과 같은 상용 LLM 서비스는 LLM이 사이버 공격에 사용되는 것을 막기 위한 방어 기법을 자체적으로 탑재하고 있다. 그러나 연구팀의 실험 결과, 이러한 방어 기법이 존재함에도 불구하고 쉽게 우회해 악의적인 사이버 공격을 수행할 수 있음이 확인됐다.
기존의 공격자들이 시간과 노력이 많이 필요한 공격을 수행했던 것과는 달리, LLM 에이전트는 이를 평균 5~20초 내에 30~60원(2~4센트) 수준의 비용으로 개인정보 탈취 등이 자동으로 가능하다는 점에서 새로운 위협 요소로 부각되고 있다.
연구 결과에 따르면, LLM 에이전트는 목표 대상의 개인정보를 최대 95.9%의 정확도로 수집할 수 있었다. 또한, 저명한 교수를 사칭한 허위 게시글 생성 실험에서는 최대 93.9%의 게시글이 진짜로 인식됐다.
뿐만 아니라, 피해자의 이메일 주소만을 이용해 피해자에게 최적화된 정교한 피싱 이메일을 생성할 수 있었으며, 실험 참가자들이 이러한 피싱 이메일 내의 링크를 클릭할 확률이 46.67%까지 증가하는 것으로 나타났다. 이는 인공지능 기반 자동화 공격의 심각성을 시사한다.
제1 저자인 김한나 연구원은 "LLM에게 주어지는 능력이 많아질수록 사이버 공격의 위협이 기하급수적으로 커진다는 것이 확인됐다”며, "LLM 에이전트의 능력을 고려한 확장 가능한 보안 장치가 필요하다”고 말했다.
신승원 교수는 “이번 연구는 정보 보안 및 AI 정책 개선에 중요한 기초 자료로 활용될 것으로 기대되며, 연구팀은 LLM 서비스 제공업체 및 연구기관과 협력하여 보안 대책을 논의할 계획이다”라고 밝혔다.
전기및전자공학부 김한나 박사과정이 제1 저자로 참여한 이번 연구는 컴퓨터 보안 분야의 최고 학회 중 하나인 국제 학술대회 USENIX Security Symposium 2025에 게재될 예정이다. (논문명: "When LLMs Go Online: The Emerging Threat of Web-Enabled LLMs") DOI: 10.48550/arXiv.2410.14569
한편 이번 연구는 정보통신기획평가원, 과학기술정보통신부 및 광주광역시의 지원을 받아 수행됐다.
2025.02.24
조회수 1381
-
2.4배 가격 효율적인 챗GPT 핵심 AI반도체 개발
오픈AI가 출시한 챗GPT는 전 세계적으로 화두이며 이 기술이 가져올 변화에 모두 주목하고 있다. 이 기술은 거대 언어 모델을 기반으로 하고 있다. 거대 언어 모델은 기존 인공지능과는 달리 전례 없는 큰 규모의 인공지능 모델이다. 이를 운영하기 위해서는 수많은 고성능 GPU가 필요해, 천문학적인 컴퓨팅 비용이 든다는 문제점이 있다.
우리 대학 전기및전자공학부 김주영 교수 연구팀이 챗GPT에 핵심으로 사용되는 거대 언어 모델의 추론 연산을 효율적으로 가속하는 AI 반도체를 개발했다고 4일 밝혔다.
연구팀이 개발한 AI 반도체 ‘LPU(Latency Processing Unit)’는 거대 언어 모델의 추론 연산을 효율적으로 가속한다. 메모리 대역폭 사용을 극대화하고 추론에 필요한 모든 연산을 고속으로 수행 가능한 연산 엔진을 갖춘 AI 반도체이며, 자체 네트워킹을 내장하여 다수개 가속기로 확장이 용이하다. 이 LPU 기반의 가속 어플라이언스 서버는 업계 최고의 고성능 GPU인 엔비디아 A100 기반 슈퍼컴퓨터보다 성능은 최대 50%, 가격 대비 성능은 2.4배가량 높였다. 이는 최근 급격하게 생성형 AI 서비스 수요가 증가하고 있는 데이터센터의에서 고성능 GPU를 대체할 수 있을 것으로 기대한다.
이번 연구는 김주영 교수의 창업기업인 ㈜하이퍼엑셀에서 수행했으며 미국시간 7월 12일 샌프란시스코에서 진행된 국제 반도체 설계 자동화 학회(Design Automation Conference, 이하 DAC)에서 공학 부문 최고 발표상(Engineering Best Presentation Award)을 수상하는 쾌거를 이뤘다.
DAC은 국제 반도체 설계 분야의 대표 학회이며, 특히 전자 설계 자동화(Electronic Design Automation, EDA)와 반도체 설계자산(Semiconductor Intellectual Property, IP) 기술 관련하여 세계적인 반도체 설계 기술을 선보이는 학회다. DAC에는 인텔, 엔비디아, AMD, 구글, 마이크로소프트, 삼성, TSMC 등 세계적인 반도체 설계 기업이 참가하며, 하버드대학교, MIT, 스탠퍼드대학교 등 세계 최고의 대학도 많이 참가한다.
세계적인 반도체 기술들 사이에서 김 교수팀이 거대 언어 모델을 위한 AI 반도체 기술로 유일하게 수상한 것은 매우 의미가 크다. 이번 수상으로 거대 언어 모델의 추론에 필요한 막대한 비용을 획기적으로 절감할 수 있는 AI 반도체 솔루션으로 세계 무대에서 인정받은 것이다.
우리 대학 김주영 교수는 “미래 거대 인공지능 연산을 위한 새로운 프로세서 ‘LPU’로 글로벌 시장을 개척하고, 빅테크 기업들의 기술력보다 우위를 선점하겠다”라며 큰 포부를 밝혔다.
2023.08.04
조회수 7487
-
챗GPT에 사용된 트랜스포머로 다공성 소재 예측
다공성 소재는 넓은 공극과 표면 면적을 지니고 있어, 가스 흡착, 분리, 촉매 등 다양한 에너지 및 환경 분야에서 적용된다. 다공성 소재 중 한 종류인 금속 유기 골격체(MOF)는 무한대에 가까운 경우의 수를 갖는 넓은 물질 공간(materials space) 안에 존재하기에, 인공지능을 사용해 최적의 물질을 추출하고 특성을 예측하려는 연구가 활발히 진행되고 있다. 하지만 이러한 모델들은 대부분 특정한 물성 한 종류만 학습할 수 있으며, 모든 재료 특성에 보편적으로 적용할 수 없다는 단점이 존재한다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 세계 최초로 멀티모달 트랜스포머를 적용한 인공지능(AI)을 통해 다공성 소재의 다양한 물성을 예측하는 기술을 개발했다고 5일 밝혔다. 멀티모달 트랜스포머는 비디오 프레임과 오디오 트랙, 웹 이미지와 캡션, 교육용 비디오와 음성 대본과 같이 서로 다른 형태의 정보를 효과적이고 효율적으로 결합하도록 설계된 신경망 모델의 일종이다.
김지한 교수 연구팀은 챗GPT(ChatGPT)에서 사용된 모델인 트랜스포머를 다공성 소재에 도입해 모든 성능을 예측할 수 있는 멀티모달 인공 신경망을 개발했다. 멀티모달은 사진(이미지)과 설명(자연어)같이 서로 다른 형태의 데이터를 함께 학습하며, 이는 인간과 비슷하게 입체적이고 종합적인 사고를 할 수 있도록 도와준다. 연구팀이 개발한 멀티모달 트랜스포머 (MOFTransformer)는 원자 단위의 정보를 그래프로 표현하고, 결정성 단위의 정보를 3차원 그림으로 전환 후 함께 학습하는 방식으로 개발했다. 이는 다공성 소재의 물성 예측의 한계점이었던 다양한 물성에 대한 전이 학습을 극복하고 모든 물성에서 높은 성능으로 물성을 예측할 수 있게 했다.
김지한 교수 연구팀은 다공성 소재를 위한 트랜스포머를 개발해 1백만 개의 다공성 소재로 사전학습을 진행했으며, 다공성 소재의 가스 흡착, 기체 확산, 전기적 특성 등의 다양한 소재의 물성을 기존의 발표된 머신러닝 모델들보다 모두 더 높은 성능으로 (최대 28% 상승) 예측하는 데 성공했고, 또한 논문으로부터 추출된 텍스트 데이터에서도 역시 높은 성능으로 예측하는 데 성공했다.
연구팀이 개발한 기술은 물질의 특성을 계산 및 예측하는 새로운 방법론을 제시했으며, 이를 통해 소재 분야에서 새로운 소재의 설계와 개발에 도움이 될 뿐만 아니라, 기존의 소재에 대한 깊은 이해를 얻을 수 있을 것으로 기대된다. 더불어, 멀티모달 트랜스포머는 다공성 소재뿐만 아니라 다른 종류의 소재에도 확장 가능한 범용적인 모델이므로, 인공지능을 통한 소재 과학의 발전에 크게 이바지할 수 있을 것이다.
생명화학공학과 강영훈, 박현수 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 3월 13일에 게재됐다. (논문명: A multi-modal pre-training transformer for universal transfer learning in metal–organic frameworks)
한편 이번 연구는 과학기술정보통신부의 지원으로 국가 소재 연구 데이터 사업단, 그리고 한국연구재단 (NRF) 중견 연구자 지원 사업의 지원을 받아 수행됐다.
2023.04.05
조회수 9707