본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%B4%88%EB%B0%95%ED%98%95
최신순
조회순
해상도 높인 초박형 4D 카메라 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 금속 나노 광 흡수층을 통해 고해상도 4D 영상 구현이 가능한 초박형 라이트필드 카메라를 개발했다고 4일 밝혔다. `라이트필드 카메라'는 곤충의 시각 구조에서 발견되는 형태에 착안해 미세렌즈와 대물렌즈를 결합한 진보된 형태의 카메라다. 한 번의 2차원 촬영으로 빛의 공간 뿐만 아니라 방향까지 4차원 정보를 동시에 획득한다. 그러나 기존 라이트필드 카메라는 미세렌즈 배열의 *광학 크로스토크(Optical crosstalk)로 인한 해상도 저하와 대물렌즈의 위치로 인한 크기의 한계가 존재한다. ☞ 광학 크로스토크(Optical Crosstalk): 어떤 통신회선의 전기 신호가 다른 통신회선과 전자기적으로 결합해 혼선을 일으키는 통신 용어를 크로스토크라고 하며, 광학에서는 한 렌즈를 통과한 빛이 다른 렌즈로부터 들어온 빛과 겹쳐 생기는 현상으로 영상이 중첩되어 촬영되는 것을 의미한다. 연구팀이 개발한 `4D 카메라'는 나노 두께의 광 흡수 구조를 미세렌즈 배열(Microlens arrays) 사이에 삽입해 대비도 및 해상도를 높였으며, 기존의 카메라가 가지는 외부 광원, 추가 센서 부착의 한계를 극복할 수 있다. 이러한 특징을 이용해 의료영상, 생체인식, 모바일 카메라 또는 다양한 가상현실/증강현실 카메라 분야에 적용 가능할 것으로 기대된다. 연구팀은 미세렌즈 배열의 광학 크로스토크를 제거하기 위해 200나노미터(nm) 두께 수준의 금속-유전체-금속 박막으로 이루어진 광 흡수층을 렌즈 사이에 배치하고, 대물렌즈와 미세렌즈 사이의 간격을 일정 수준으로 줄여 초박형 라이트필드 카메라를 개발하는 데 성공했다. 높은 광학적 손실성과 낮은 분산성을 갖는 크로뮴(Cr) 금속과 높은 투과율을 갖는 유리층을 나노미터 두께로 적층한 구조(Cr–SiO2–Cr)는 가시광선 영역의 빛을 완전히 흡수할 수 있다. 나노 광 흡수층을 미세렌즈 배열 사이에 배치해 미세렌즈들 사이의 광학 크로스토크를 제거하고 고 대비 및 고해상도 3차원 영상을 획득하는 데 도움을 준다. 연구팀은 광 흡수 구조를 갖는 미세렌즈 배열을 포토리소그래피(Photolithography), 리프트 오프(Lift-off), 열 재유동(Thermal reflow) 공정을 통해 양산 제작했다. 또한, 라이트필드 카메라의 전체 두께를 최소화하기 위해 미세렌즈의 방향을 이미지센서 방향의 역방향으로 배치하고 대물렌즈와 미세렌즈 사이 거리를 2.1mm 수준으로 줄여, 전체 5.1mm의 두께를 갖는다. 이는 현재까지 개발된 라이트필드 카메라 중 가장 얇은 두께다. 나노 광 흡수 구조를 갖는 미세렌즈에 의해 이미지센서에 기록되는 원시 영상은 기존 미세렌즈를 통한 영상에 비해 높은 대비도와 해상도를 가지며, 연구팀은 이를 영상처리 기법을 통해 시점 영상 및 3차원 영상으로 재구성했을 때 향상된 정확도를 가짐을 확인했다. 정기훈 교수는 "초박형이면서 고해상도의 라이트필드 카메라를 제작하는 새로운 방법을 제시했다ˮ며 "이 카메라는 생체인식, 의료 내시경, 휴대폰 카메라와 같이 다시점(Multi-view), 재초점(Refocusing)을 요구하는 초소형 영상장치로 통합돼, 초소형 4D 카메라의 새로운 플랫폼으로 활용될 것ˮ이라고 말했다. 우리 대학 바이오및뇌공학과 배상인 박사과정이 주도한 이번 연구 결과는 국제 학술지 `어드밴스드 옵티컬 머티리얼즈(Advanced Optical Materials)'에 1월 20일 字 게재됐다. (논문명: High Contrast Ultrathin Light-field Camera using inverted Microlens arrays with Metal-Insulator-Metal Optical Absorber) 한편 이번 연구는 과학기술정보통신부의 개인연구지원사업, 산업 통산 자원부의 기술혁신프로그램, 보건복지부의 보건의료기술연구개발사업으로 수행됐다.
2021.02.04
조회수 79587
해상도 높인 곤충 눈 구조 초박형 카메라 개발
바이오및뇌공학과 정기훈 교수 연구팀이 고해상도 이미징을 위한 곤충 눈 구조의 초박형 카메라를 개발했다. 이 카메라는 독특한 시각 구조를 가진 제노스 페키(Xenos peckii)라는 곤충의 눈을 모사해 개발돼, 상용 카메라보다 더 얇은 렌즈 두께와 넓은 광시야각을 갖는다. 이러한 특징을 이용해 모바일, 감시 및 정찰 장비, 의료영상 기기 등 다양한 소형 카메라가 필요한 분야에 적용 가능할 것으로 기대된다. 김기수 박사과정이 주도한 이번 연구결과는 국제 학술지 ‘빛 : 과학과 응용 (Light : Science & Applications)’ 2월 27일 자 온라인판에 게재됐다. (논문명: 고대비 고해상도 이미징을 위한 생체모사 초박형 카메라, Biologically Inspired Ultrathin Arrayed Camera for High Contrast and High Resolution Imaging) 최근 초소형 및 초박형 스마트 기기의 개발로 소형화된 이미징 시스템의 수요가 커지고 있다. 그러나 기존의 카메라는 물체의 상이 일그러지거나 흐려지는 현상인 수차를 줄이기 위해 다층 렌즈 구조를 활용하기 때문에 렌즈 두께를 감소하는 데 한계가 있다. 또한, 기존의 곤충 눈을 모사한 미세렌즈 배열(Microlens arrays)은 렌즈 사이의 광학 크로스토크(Optical crosstalk)로 인해 해상도가 저해되는 단점이 있다. 연구팀은 문제 해결을 위해 제노스 페키 곤충의 시각 구조를 모사한 렌즈를 제작했고 이를 이미지 센서와 결합해 초박형 카메라를 개발했다. 곤충의 눈은 렌즈와 렌즈 사이의 빛을 차단하는 색소 세포(pigment cells)가 존재해 각 렌즈에서 결상(어떤 물체에서 나온 광선 등이 반사 굴절한 다음 다시 모여 그 물체와 닮은꼴의 상을 만드는 현상)되는 영상들 간의 간섭을 막는다. 이러한 구조는 렌즈들 사이의 광학 크로스토크를 막아 고 대비 및 고해상도 영상을 획득하는 데 도움을 준다. 연구팀은 이러한 광 차단 구조를 포토리소그래피(Photolithography) 공정으로 매우 얇게 제작해 렌즈들 사이의 광학 크로스토크를 효율적으로 차단했다. 렌즈의 두께를 최소화하기 위해 렌즈의 방향을 이미지 센서 방향인 역방향으로 배치했으며, 이를 통해 최종 개발된 카메라 렌즈의 두께는 0.74mm로 이는 10원짜리 동전 절반 정도의 두께이다. 연구팀은 카메라의 원거리에 있는 물체를 모든 렌즈에서 같은 시야각을 통해 동일한 영상을 획득하고, 이 배열 영상들은 해상도를 하나의 이미지로 합성했다. 합성된 영상은 합성 전 단일 채널 영상보다 향상된 해상도를 가짐을 확인했다. 정기훈 교수는 “실질적으로 상용화 가능한 초박형 카메라를 제작하는 방법을 개발했다”라며 “이 카메라는 영상획득이 필요한 장치에 통합돼 장치 소형화에 크게 기여할 것으로 확신한다”라고 말했다.
2020.03.23
조회수 17122
정기훈 교수, 곤충 눈 구조 모방한 초박형 카메라 개발
〈 왼쪽부터 장경원 박사과정, 정기훈 교수, 황순홍 박사과정 〉 우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 독특한 눈 구조를 가진 곤충인 제노스 페키(Xenos peckii)를 모사한 초박형 디지털카메라를 개발했다. 제노스 페키를 모사해 개발한 초박형 디지털카메라는 기존 이미징 시스템보다 더 얇으면서 상대적으로 넓은 광시야각과 높은 분해능을 갖는다. 감시 및 정찰 장비, 의료용 영상기기, 모바일 등 다양한 소형 이미징 시스템에 적용 가능할 것으로 기대된다. 금동민, 장경원 박사과정이 주도한 이번 연구결과는 국제 학술지 ‘빛 : 과학과 응용(Light : Science & Applications)’ 10월 24일 자에 게재됐다. (논문명: 제노스 페키의 시각기관을 모사한 초박형 디지털카메라, Xenos peckii vision inspires an ultrathin digital camera) 정 교수 연구팀은 자연계에서 발견되는 광학 구조를 모방하는 연구를 꾸준히 진행해 왔다. 반딧불이의 배 마디 구조를 분석해 광효율을 높은 LED 렌즈를 개발한 바 있고, 생체모사를 통한 무반사 기판을 제작하는 등 해당 분야를 선도하고 있다. 최근 전자기기 및 광학기기의 소형화로 초박형 디지털카메라에 대한 수요가 증가하고 있다. 그러나 기존의 카메라 모듈은 광학적 수차를 줄이기 위해 광축을 따라 복수의 렌즈로 구성돼 있어 부피가 매우 크다는 단점이 있다. 이런 모듈을 단순히 크기만 줄여 소형기기에 적용하면 분해능과 감도가 떨어지게 된다. 연구팀은 문제 해결을 위해 곤충인 제노스 페키의 시각구조를 적용한 렌즈를 제작했고 이를 이미지 센서와 결합한 초박형 디지털카메라를 개발했다. 곤충의 겹눈구조는 수백, 수천 개의 오마티디아라 불리는 아주 작은 광학 구조로 이뤄져 있다. 일반적인 겹눈구조는 수백, 수천 개의 오마티디아에서 한 개의 영상을 얻지만, 제노스 페키는 다른 곤충과는 달리 각 오마티디아에서 개별의 영상을 획득할 수 있다. 또한 오마티디아 사이에 빛을 흡수할 수 있는 독특한 구조를 가져 각 영상 간 간섭을 막는다. 연구팀이 개발한 카메라는 2mm 이내의 매우 작은 크기로 제노스 페키의 겹눈구조를 모방해 수십 개의 마이크로프리즘 어레이와 마이크로렌즈 어레이로 구성된다. 마이크로프리즘과 마이크로렌즈가 한 쌍으로 채널을 이루고 있으며 각각의 채널 사이에는 빛을 흡수하는 중합체가 존재하며 각 채널 간 간섭을 막는다. 각각의 채널은 화면의 다른 부분들을 보고 있으며 각 채널에서 관측된 영상들은 영상처리를 통해 하나의 영상으로 복원돼 넓은 광시야각과 높은 분해능을 확보할 수 있다. 정기훈 교수는 “초박형 카메라를 제작하는 새로운 방법을 제시했다”며 “이 연구는 기존의 평면 CMOS 이미지 센서 어레이에 마이크로 카메라를 완전히 장착한 초박형 곤충 눈 카메라의 첫 번째 데모이며 다양한 광학 분야에 큰 영향을 미칠 것으로 확신한다.”라고 말했다. □ 그림 설명 그림1. (좌) 제노스 페키의 SEM 영상. (우) 형광 염색된 제노스 페키의 시각구조 그림2. (좌) MEMS 공정을 통해 제작된 마이크로프리즘 어레이의 SEM 영상. (우) 완성된 초박형 디지털 카메라의 광학 영상 그림3. (좌) Xenos peckii의 시각기관을 통해 얻은 영상. (우) 초박형 디지털 카메라를 통해 얻은 영상
2018.11.20
조회수 9090
최정우, 조병진, 김상욱 교수, 3차원 그래핀 기반 평판 스피커 개발
우리 대학 전기 및 전자공학부 최정우, 조병진 교수, 신소재공학과 김상욱 교수 공동 연구팀이 3차원 그래핀 에어로젤을 이용해 전기 에너지로부터 박막의 진동 없이 소리를 발생시킬 수 있는 초박형 열음향 스피커를 개발했다. 이번 연구 결과는 나노 분야 학술지 ‘에이씨에스 에이엠아이(ACS AMI : ACS advanced Materials & Interfaces)’ 8월 17일자 온라인 판에 게재됐고 9월 9일자 IEEE 스펙트럼을 통해 외신에 소개됐다. 이번 연구는 김충선 박사과정, 이경은 박사과정, 기계공학과 이정민 박사가 공동 저자로 참여했다. 열음향 스피커란 얇은 도체에 교류 전기 신호를 인가함으로써 발생되는 열의 파동을 통해 공기의 진동을 발생시키는 원리로 소리를 낼 수 있는 스피커이다. 기존의 다이내믹 스피커와 다르게 매우 얇고 유연하게 만들 수 있다. 또한 박막의 진동 없이 소리를 발생시킬 수 있고 모든 방향으로 동일한 위상의 소리가 발생되기 때문에 어떠한 구조물에 붙이더라도 감쇄 없이 소리를 발생시킬 수 있는 장점이 있다. 열음향 스피커는 열을 발생시키는 도체의 열용량이 작을수록 효율이 높아져 그래핀 등의 얇은 박막이 스피커 구현의 적합한 재료로 여겨진다. 그러나 매우 얇은 나노 박막들을 지지하기 위한 기판에 의한 열 손실은 열음향 스피커의 효율을 감소시키는 문제점으로 지적됐다. 연구팀은 수 나노미터의 그래핀으로 이루어진 삼차원 그래핀 에어로젤 구조를 열음향 스피커에 적용시켜 그래핀의 열용량은 유지하면서 기판으로의 열 손실은 최소화된 삼차원 그래핀 열음향 스피커를 제안했다. 김상욱 교수 연구팀에서 개발한 이 삼차원 그래핀 구조는 산화 그래핀 용액을 동결 건조하고 열처리해 환원 및 도핑하는 간단한 과정을 통해 얻어질 수 있어 대량 생산이 가능하고 원하는 모양대로 가공이 가능하다. 최정우, 조병진 교수 공동 연구팀은 삼차원 그래핀이 최적의 효율로 소리를 발생시키기 위한 조건 및 구조를 이론적, 실험적으로 규명했다. 그리고 이를 사용해 어레이 형태의 스피커를 제작했고 현재까지 보고된 이차원 및 삼차원 열음향 스피커에 비해 향상된 음압 레벨을 보임을 입증했다. 제 1저자인 김충선 박사과정은 "이번 연구를 통해 대량 생산이 가능한 삼차원 그래핀 에어로젤로 손쉽게 제작이 가능한 열음향 스피커를 개발했다"며 "교내의 다양한 주제로 연구중인 그룹들이 가지고 있는 기술의 융합이 성과를 내는 데 큰 도움이 됐다"고 말했다. 이번 연구는 삼성미래기술 육성센터 및 한국연구재단 창의연구지원사업 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 16개의 삼차원 그래핀 에어로젤로 구성된 어레이 열음향 스피커 그림2. 제작 과정 및 삼차원 그래핀 에어로젤의 특성
2016.09.30
조회수 13572
기억 및 논리 연산 가능한 메타물질 개발
〈 민 범 기 교수 〉 우리 대학 기계공학과 민범기 교수 연구팀이 메타물질의 광학적 특성을 기억할 수 있는 메모리 메타물질과 이를 응용한 논리연산 메타물질을 개발했다. 이번 연구결과는 과학전문지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 27일자 온라인 판에 게재됐다. (논문명 : Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operation) 메타물질은 자연에서 발견되지 않은 특이한 광학적 성질을 얻기 위해 인위적으로 설계된 물질이다. 이는 빛의 파장보다 훨씬 짧은 구조물로 구성됐으며 고해상도 렌즈 및 투명망토 등에 응용 가능해 활발한 연구가 이뤄지고 있다. 메타물질의 변조된 광학적 특성을 유지시키기 위해선 외부의 지속적 자극이 공급돼야 하는데 이는 많은 전력 소모의 원인이 된다. 이 단점을 극복하기 위해 외부 자극 제거 후에도 변조된 특성이 유지 가능한 메모리 메타물질이라는 개념이 대두됐다. 메모리 메타물질은 변화된 광학적 특성을 기억한다는 장점을 갖는다. 하지만 기존에 보고된 메모리 메타물질은 고온에서만 기억되거나 부피가 큰 광학적 장치에 의해서만 동작 가능해 현실적 응용에 한계를 보였다. 연구팀은 문제 해결을 위해 메타물질에 그래핀과 강유전체 고분자를 접목시켰다. 연구팀이 사용한 강유전체 고분자는 탄소를 중심으로 불소, 수소가 결합한 분자로 외부 전압의 극성에 따라 회전할 수 있다. 이 강유전체 고분자는 상온에서도 안정적으로 변화 상태를 유지할 수 있고, 그래핀과 접촉돼 메모리 성능을 개선하고 초박형으로 제작 가능하다. 또한 다중 상태의 기억이 가능하고 빛의 편광 상태도 기억할 수 있음을 증명했다. 연구팀은 메모리 메타물질의 원리를 응용해 논리 연산이 가능한 논리연산 메타물질 또한 개발했다. 이 논리연산 메타물질은 단일 입력에 의해서만 변조 가능했던 기존 메타물질의 단점을 해결했다. 그래핀을 두 개의 강유전체 층과 샌드위치 구조를 가진 메타물질을 제작해 두 전기적 입력의 논리 연산 결과가 광학적 특성으로 출력되게 만들었다. 이를 통해 다중 입력에 의한 조절이 가능해져 메타 물질의 특성을 다양하게 변화시키고 조절할 수 있는 방법론을 제시했다. 민 교수는 “메모리 메타물질을 통해 저전력으로 구동 가능한 초박형 광학 소자에 응용 가능할 것으로 전망한다”고 말했다. 기계공학과 김우영, 김튼튼 박사, 김현돈 박사과정이 1저자로 참여한 이번 연구는 한국연구재단 중견연구자 지원사업, 국가그린나노기술개발사업, 미래유망융합기술 파이오니어사업, 세계적수준의 연구센터(WCI) 사업, 미래창조과학부 글로벌프론티어 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 메모리 메타물질의 구조도 그림2. 강유전체에 의해 그래핀에 비휘발적 도핑이 되는 모식도 그림3. 투과도의 다중상태 (00, 01, 10, 11)의 메모리 특성 (본 논문의 대표도)
2016.02.24
조회수 13422
초슬림 휴대폰 나온다!
- ‘솔더 접착제 복합 필름’ 신소재와 ‘초음파 접합’ 신기술 발명 -- 전자기기의 초박형 모듈 접속 가능케 하는 원천기술 - 우리 학교 신소재공학과 백경욱 교수 연구팀이 휴대형 전자기기의 모듈접속을 완벽하게 대체할 수 있는 초박형 접합기술 개발에 성공했다. 연구팀은 초미세 솔더‧접착제 필름을 이용한 복합 신소재를 개발하고 수직방향 초음파 접합 공정을 고안해 이를 동시에 사용함으로써 신뢰성이 높은 초박형 접속을 구현해 낼 수 있었다. 개발된 기술은 두께가 매우 얇으면서도 신뢰성 또한 완벽히 개선해 소켓형 커넥터를 대체해 전자산업에 커다란 변화를 가져올 것으로 기대된다. 스마트폰과 같은 휴대형 전자제품에서는 카메라, 디스플레이, 터치스크린 등과 같은 다양한 기능의 모듈을 연결하면서 소형화를 동시에 추구하고 있는 것이 현재 추세다. 최근에는 다양한 기능으로 인해 사용되는 모듈의 개수가 점점 더 늘어나고 있으나 기존 모듈연결에 쓰이던 전기 콘센트 형태의 소켓형 커넥터는 큰 부피를 가지며 소형화가 거의 불가능하다는 단점이 있어 이를 대체할 수 있는 새로운 모듈 접속방법에 대한 개발이 지속적으로 요구돼 왔다. 백 교수 연구팀은 이런 문제를 완벽하게 개선할 수 있는 대안으로 열에 의해 녹아서 전극과 합금 결합을 형성할 수 있는 초미세 솔더 입자와 열에 의해 단단히 굳으며 전극을 감싸 기계적으로 보호할 수 있는 열경화성 접착제 필름의 복합 신소재를 개발했다. 이 소재를 이용해 기존의 소켓형 커넥터보다 두께는 1/100 수준으로 얇아지면서 전기적 특성, 기계적 특성, 신뢰성이 모두 우수한 접속부를 구현해 냈다. 공정 측면에서도 기존에 시도해오던 접합방식은 뜨거운 금속 블록으로 열을 인가해 생산관리가 어렵고 최대 소비전력이 약 1000W, 접합시간이 최대 15초 정도 걸렸다. 이에 반해 백 교수 연구팀은 기존 방식을 개선해 열을 가하지 않고 초음파 진동만을 이용해 접합부 자체에서 열을 발생시킴으로써 소비전력을 100W 이하로 줄이면서 접합시간도 1초~5초까지 줄일 수 있는 공정개발에도 성공했다. 백경욱 교수는 “초미세 솔더 입자가 함유된 이방성 접착제 필름 신소재와 종방향 초음파를 이용한 접합공정기술은 휴대전화의 소형화, 경량화뿐만 아니라 제조 생산성까지 크게 향상 시킬 수 있는 첨단 기술”이라며 “휴대전화는 물론 터치스크린 패널 조립, LED 백라이트유닛(Back Light Unit) 등 다양한 전자제품 조립 분야에 광범위하게 쓰일 수 있을 것으로 기대 된다”고 말했다. 한편, 백 교수가 이기원 박사과정 학생과 공동으로 개발한 이번 기술은 세계 최대 규모의 전자부품기술학회(Electronic Components and Technology Conference) 등의 저명 학술 대회에서 최우수 학생 논문상 2회 수상을 비롯하여 세션 최우수 논문으로도 선정되어 세계적으로 그 연구 성과를 인정받고 있다. (상) 기존 소켓형 모듈 커넥터 (하) KAIST의 초박형 모듈 접속 기술
2011.12.06
조회수 13250
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1