본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%B4%88%EC%A0%84%EB%8F%84%EC%B2%B4
최신순
조회순
양자 시뮬레이터로 양자얽힘 관측 도전
고온 초전도물질은 수십 년이 지난 지금도 어떠한 물리적인 기작으로 초전도가 형성되는지 명확하게 규명되지 않았다. 광격자 양자 시뮬레이터는 이러한 문제를 풀기 위한 새로운 접근 방식으로 이미 고전 컴퓨터가 연산할 수 없는 영역에 우위를 보여주었으며, 최근 고온 초전도체에서 관측된 반강자성을 관측하는 등 미래에 고온 초전도 문제를 풀 수 있는 강력한 후보다. 우리 대학 물리학과 최재윤 교수 연구팀이 포항공대 조길영 교수 연구팀과 공동연구를 통해 중성원자 양자 시뮬레이터의 오류 정정 기술을 개발해 최초로 2차원에서의 비국소 질서 변수를 측정함으로써 향후위상 물질과 고온 초전도체 물질 특성을 알아낼 수 있도록 하는 데 성공했다고 29일 밝혔다. 이러한 양자 시뮬레이터의 큰 단점은 관측 과정 및 양자 상태 준비 과정에서 발생하는 결함으로(예: 원자 손실), 이를 체계적으로 파악하고, 정정하는 것이 매우 어렵다. 이러한 결함은 특히 위상물질의 특성을 규정짓는 비국소 질서변수를 측정하는데 큰 걸림돌이 되며, 2차원에서는 그 효과가 더욱 커져 큰 시스템에서 비국소 질서 변수의 실험적 관측을 어렵게 만드는 주요 요소다. 일반적으로 우리가 관측하는 물리량은 국소성을 띄기 때문에, 이러한 양자역학적 특이성인 양자 얽힘(entanglement)이 물성을 지배하는 물질인 위상물질의 비국소 질서 변수를 측정하는 것은 간단하지 않다. 더욱이 2차원, 3차원 물질의 경우 실험적 노이즈에 의해 그 신호가 급격하게 약해지기 때문에 이를 실험적으로 관측하기는 매우 어렵다. 최 교수 연구팀은 양자 시뮬레이터에 비국소 질서 변수가 측정 가능하고 실험적인 결함도 함께 찾아내는 방법을 개발했다. 또한 연구팀은 2차원에서도 양자얽힘의 위상 물질의 물성을 규정짓는 것도 가능함을 보여주었다. 시뮬레이터 실시과정에서 발생한 결점까지 제거하는데 성공한 이후, 위상물질의 2차원 비국소 질서변수는 급격하게(100배 이상) 증가하는 양상을 보였으며, 원자 수에 무관하게 측정값이 일정하게 유지되는 것을 확인하는 등 이론적으로 예측된 경향을 모두 확인할 수 있었다. 해당 기술은 여러 가지 중성원자 양자 시뮬레이터에 활용이 가능하다. 원거리 상호작용이 주요한 양자 시뮬레이터의 경우, 양자 스핀 액상과 같은 2차원 위상 물질의 물성을 규정하는데 적용 가능하며, 고온 초전도체 물질을 흉내 내는 양자 시뮬레이터에도 해당 기법을 응용할 수 있을 것으로 기대된다. 최재윤 교수는 “이번 연구는 중성원자 양자 시뮬레이터에 존재하는 실험적 결함을 보정하는 것이 가능함을 보여준 최초의 연구이며, 향후 위상 양자 연산에 이용되는 양자 스핀 액상과 같은 고차원 위상 물질 발견 및 물성 규정에 주요하게 활용될 것”이라고 하였다. 우리 대학 허준혁 연구원과 포스텍 이원준 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `피지컬 리뷰 X (Physical Review X)' 14권 1호에 지난 1월 8일 출판됐다. (논문명 : Measuring nonlocal brane order with error-corrected quantum gas microscopes). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.01.29
조회수 3779
훈트 금속의 새로운 존재 가능성 증명
우리 대학 물리학과 한명준 교수 연구팀이 *`훈트 금속'이라고 알려진 특이 양자 상태의 새로운 존재 가능성을 최초로 증명했다고 1일 밝혔다. ☞ 훈트 금속(Hund metal): 전기저항 없이 전류가 흐르는 초전도 현상을 나타내거나 외부 조건의 미세한 변화에도 물질이 크게 바뀌는 특성을 가져 기존 반도체 소재를 뛰어넘는 응용 가능성으로 주목받는 차세대 신물질이다. 훈트 금속이란 `훈트의 법칙'으로 잘 알려진 독일의 물리학자 `프리드리히 헤르만 훈트(Friedrich Hermann Hund; 1896~1997)'의 이름을 딴 독특한 양자역학적 상태를 띠는 금속을 가리킨다. 학계에서는 일반적으로 알려진 전형적인 금속들을 `페르미 금속(Fermi liquid metal)'이라 부르는데, 이와는 성질이 뚜렷이 구분되는 특이한 금속을 이해하는 것은 오랫동안 학계의 중요한 관심사가 되고 있다. 이러한 특이 금속들에 관한 연구가 고온 초전도 현상이나 양자 임계 현상과 같은 대표적인 물리학의 신비를 이해하는 단서를 줄 것이라 믿고 있기 때문이다. 훈트 금속도 그 가운데 하나로서, 미국의 이론 물리학자들에 의해 최초로 그 개념이 제시된 이래, 미국과 유럽 학자들의 주도하에 지난 10여 년간 활발한 연구가 이뤄지고 있다. 특별히 이 금속 상태는 원자 내에서 전자가 가질 수 있는 양자역학적 상태를 나타내는 `오비탈(orbital)'의 개수가 `3' 이상인 경우가 주로 연구돼왔으며, 그 값이 `2'인 경우에는 나타날 수 없다는 것이 상식으로 여겨졌다. 이번 연구는 이와 같은 기존의 통념을 뒤엎는 것으로서, 연구진은 오비탈 수가 `2'인 경우에도 훈트 금속이 발현될 수 있다는 것을 이론적으로 증명했다. 연구진은 통상적인 훈트 금속보다 그 신호가 약하다는 점에서 이를 `약한 훈트 메탈(weak Hund metal)'이라고 이름 붙였으며, 더 나아가 훈트 금속과 관련 상태들을 이해하고 분류하는 기준을 새롭게 제시했다. 이는 기존의 상식을 뒤집는 결과일 뿐 아니라, 지금까지 난항을 겪고 있던 많은 관련 연구들에 새로운 돌파구를 제시할 수 있다는 점에서 큰 주목을 받고 있다. 연구를 주도한 한명준 교수는 “이번 결과는 논문을 심사한 심사위원들조차 처음에는 받아들이기 어려워했을 만큼 획기적이다”며, “관련 실험 데이터나 현상들을 이해하는 새로운 틀을 마련한 기초 이론 연구로서, 최근까지 학계가 어려움을 겪고 있던 초전도와 관련된 여러 문제를 해결하는 토대가 될 수 있을 것으로 기대한다”고 연구의 의미를 설명했다. 우리 대학 물리학과 이시헌 연구원이 제1 저자로 참여하고 미국 브룩헤이븐 국립 연구소(Brookhaven National Laboratory)의 최상국 박사와 함께 진행한 이번 연구 결과는 물리학 분야 최고 권위지 `피지컬 리뷰 레터스(Physical Review Letters)'에 5월 17일 字 온라인 출판됐다. (논문명: Hund Physics Landscape of Two-Orbital Systems) 한편, 이번 연구는 한국연구재단의 중견연구자 지원사업과 미래소재 디스커버리사업의 지원을 받아 수행됐다.
2021.06.02
조회수 52008
이진환 교수, 스핀 전류로 초전도를 제어하는 신기술 개발
〈 이진환 교수, 최석환 박사 〉 우리 대학 물리학과 이진환 교수가 포항공대 및 연세대와의 공동 연구를 통해 스핀 전류를 이용해 물질의 초전도를 제어하는 기술을 최초로 개발했다. 연구팀이 사용한 물질은 철계열 초전도체인 FeAs 원자층과 페로브스카이트 Sr2VO3 원자층이 반복해서 자기조립에 의해 형성된 헤테로 구조 물질이다. 스핀 제어 주사 터널링 현미경의 탐침과 시료 사이에 흐르는 스핀 분극 전류에 의해 FeAs층의 자성이 C2구조와 C4구조 사이에서 변화하고 이로 인해 FeAs층의 초전도가 켜지고 꺼짐을 원자수준에서 명확히 보일 수 있었다. 최석환 박사(현 BK 박사후연구원)가 제1저자로 참여한 이번 연구는 대표 물리 학술지 ‘피지컬 리뷰 레터스(Physical Review Letters, PRL)’에 11월 27일자로 PRL 대표 논문(Editors’ Suggestion)으로 출판됐다. 이 연구는 스핀 분극 전류와 비분극 전류를 활용해 자성 배열을 국소적으로 바꿈으로써, 나노 자성 메모리를 구현하거나 초전도를 제어하는 트랜지스터 소자를 개발하는데 필요한 기본적인 물리 원리를 최초로 밝혔으며 동시에 이를 원자 수준에서 규명한 것으로 평가받고 있다. 이 연구는 상위 3%의 가장 중요한 PRL 논문에 대해 해당 분야의 권위자의 해설이 함께 실리는 Viewpoint in Physics에도 선정됐으며, 미국 국립 연구소들이 주도하는 일반인 대상의 과학 전문 온라인 뉴스 매체인 Phys.org에 매월 가장 중요한 10개 연구만 선정되는 특집(Feature) 기사로 소개되기도 했다. 또 이진환 교수가 독자 설계 제작하여 이 연구에 활용된 장비는 지난 10월호 최고 권위의 과학 장비 저널인 ‘리뷰 오브 사이언티픽 인스트루먼츠(Review of Scientific Instruments, RSI)’지의 표지 논문으로 선정되기도 했다. 이 장비의 측정 정밀도를 향상시키기 위해 개발하였으나 일반적인 모든 센서와 증폭기의 성능을 향상시킬 수 있는 수학적인 모델이 같은 과학 장비 저널 RSI에 수학적인 논문으로는 예외적으로 별도 정규 논문으로 게재됐다. 이진환 교수는 “모두가 그 기본 원리가 잘 알려진 간단한 주사 탐침 현미경 또는 상용 현미경으로 실험할 때, 우리는 반강자성 탐침을 이용한 스핀 제어 기능, 고자기장 구조에서 불가능할 것으로 여겨졌던 넓은 가변온도 기능, 체계적인 스핀제어 실험을 위한 다중 시료 장착 기능 등을 과감히 설계에 반영하였고, 그 결과 자연스럽게 다른 경쟁 그룹들이 수년 내에 따라 할 수 없는 자성과 초전도의 동시 제어 실험을 체계적으로 수행할 수 있었다”면서 “학내에 공용 헬륨 액화기가 없는 등 기초과학 연구 환경상의 약간의 어려움이 있지만, 이 연구의 물리학적인 성취를 실용적인 소자로 구현하기 위한 확장 연구와 함께, 앞으로도 보다 다양한 측정 기술 혁신으로 첨단 과학의 발전을 선도할 수 있기 위해 최선을 다할 것”이라고 말했다. 이번 연구는 한국연구재단이 추진하는 미래융합 파이오니어 사업과 이공학 개인기초연구지원 사업 등의 지원을 받아 수행됐다. 이 연구 논문은 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.227001 에서 확인할 수 있으며, Viewpoint in Physics와 Phys.org 특집 기사는 https://physics.aps.org/articles/v10/127 및 https://phys.org/news/2017-12-scientists-superconductivity-currents.html 에서 찾아볼 수 있다. □ 그림 설명 그림1. 연구 개념도
2017.12.26
조회수 20410
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1