-
가뭄현상이 DNA에 적용되면?
한미 공동연구진이 가뭄이 들면 논바닥이 쩍쩍 갈라지는 현상에 착안해서 물을 품고 있는 DNA 박막 위에 탈수 반응을 일으킬 수 있는 유기 용매를 뿌려 DNA 균열을 원하는 대로 만들어 낼 수 있는 기술을 개발했다. 이를 통해 만들어진 균열 구조 안에 친환경 온열소재, 적외선 발광체 등을 넣어 기능성 바이오 소재를 제작, 스마트 헬스케어 분야에 활용할 수 있을 것으로 보인다.
우리 대학 화학과 윤동기 교수, 기계공학과 유승화 교수, 미국 코넬대 화학공학과 박순모 박사 연구팀이 DNA 박막의 탈수 현상에 기반한 미세구조 균열을 제작했다고 29일 밝혔다.
본래 유전 정보를 저장하는 기능을 하는 DNA는 두 가닥이 서로 꼬여있는 이중나선 사슬 구조, 사슬과 사슬 사이는 2~4 나노미터*(1나노미터는 10억분의 1미터) 주기의 규칙적인 모양을 갖는 등 일반적인 합성 방법으로는 구현하기 힘든 정밀한 구조재료로 구성되어 있다. 이 구조를 변경하기 위해서 DNA를 빌딩블록으로 사용하여 정밀하게 합성하거나 오리가미(종이접기) 기술을 이용해 구현해 왔지만 매우 복잡한 설계과정이 필요하고, 특히 염기서열이 조절된 값비싼 DNA를 이용해야 하는 단점이 있었다.
*수분이 있으면 DNA 사슬 지름이 2 나노미터, 수분이 없으면 4 나노미터가 됨.
연구팀은 이를 극복하기 위해, 연어에서 추출한 DNA 물질을 이용해 기존보다 천 배 이상 저렴한 비용으로 화장용 붓을 이용해 마치 DNA를 수채화 물감과 같이 사용해 그림을 그리듯이 정렬시켰다. 그리고 3D 프린터를 이용해 지름이 2나노미터인 DNA 분자들을 원하는 방향으로 정렬시키면서 말려 얇은 막을 만들었다.
여기에 유기 용매(예: 테트라하이드로퓨란, THF) 방울을 떨어뜨리면 끓는점이 낮은 유기 용매가 DNA내의 수분을 빼앗아 가면서 크랙이 형성되는 현상을 연구팀은 관찰했다. 이때 DNA의 사슬 옆면이 사슬 끝부분에 비해, 물을 상대적으로 많이 포함하고 있어 더 많은 수축이 일어나 결국 DNA 사슬 방향으로 크랙이 형성됐고, DNA 사슬 방향을 원하는 방향으로 조절할 수 있기에 연구팀은 이 크랙도 원하는 방향으로 조절할 수 있는 결과를 얻었다.
연구팀이 개발한 DNA 기반 미세 균열(크랙) 구조 형성 및 제어 기술은 생체 친화적 소재인 DNA로 이루어진 수십-수백 나노미터의 박막에 DNA 사슬방향으로 생긴 크랙(균열)에 다양한 기능성 소재를 채워 넣는 공정이 가능하다. 예로, 온열 소재의 경우 겨울에 따뜻하게 하고 적외선 발광체를 넣으면 탈모나 피부케어 등에 응용되는 등, 생체친화적인 패턴을 바탕으로 기능성을 부여함으로써, 향후 다양한 기능성 바이오 소재 및 헬스케어 분야에 활용될 수 있을 것으로 기대된다.
윤동기 교수는 “DNA 미세 크랙 패터닝은 코끼리 피부가 갈라지는 현상이 체온을 유지하기 위한 한 방법이고, 극심한 가뭄에, 땅이 갈라지는 일은 비가 많이 올 때 더 많은 물을 흡수하기 위함이라는 자연의 현상을 그대로 따라 구현했다”며, “이번 연구는 반도체 패턴만큼이나 작은 DNA 빌딩블록 기반의 미세구조 패턴을 제조한 것으로 환경친화적인 면을 고려할 때 그 의의가 더 크다고 할 수 있다”라고 언급했다.
한편 유승화 교수는 “이번 연구를 통해 DNA 필름의 수축 과정에서 발생하는 균열과 DNA의 배열 패턴 사이의 관계를 고체역학 이론에 기반한 시뮬레이션으로 명확하게 분석하고 예측할 수 있었다”며, “DNA 필름에 국한되지 않은 다양한 이방성 소재에서의 균열 제어와 패터닝 기술 발전에 기여할 수 있는 토대를 마련했다고 생각한다”고 의견을 덧붙였다.
화학과 이소은 석사과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머터리얼즈 (Advanced Materials)’ 3월 15일 자 온라인 판에 게재됐다. (논문명 : On-demand Crack Formation on DNA Film via Organic Solvent-induced Dehydration)
한편 이번 연구는 과학기술정보통신부-한국연구재단의 멀티스케일 카이랄 구조체 연구센터, 중견연구 과제의 지원을 받아 수행됐다.
2024.03.29
조회수 3481
-
피부형 센서 패치 하나로 사람 움직임을 측정하는 기술 개발
우리 대학 전산학부 조성호 교수 연구팀이 서울대 기계공학과 고승환 교수 연구팀과 협력 연구를 통해 딥러닝 기술을 센서와 결합, 최소한의 데이터로 인체 움직임을 정확하게 측정 가능한 유연한 `피부 형 센서'를 개발했다.
공동연구팀이 개발한 피부 형 센서에는 인체의 움직임에 의해 발생하는 복합적 신호를 피부에 부착한 최소한의 센서로 정밀하게 측정하고, 이를 딥러닝 기술로 분리, 분석하는 기술이 적용됐다.
이번 연구에는 김민(우리 대학), 김권규(서울대), 하인호(서울대) 박사과정이 공동 제1 저자로 참여했으며 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 5월 1일 字 온라인판에 게재됐다. (논문명 : A deep-learned skin decoding the epicentral human motions).
사람의 움직임 측정 방법 중 가장 널리 쓰이는 방식인 모션 캡처 카메라를 사용하는 방식은 카메라가 설치된 공간에서만 움직임 측정이 가능해 장소적 제약을 받아왔다. 반면 웨어러블 장비를 사용할 경우 장소제약 없이 사용자의 상태 변화를 측정할 수 있어, 다양한 환경에서 사람의 상태를 전달할 수 있다.
다만 기존 웨어러블 기기들은 측정 부위에 직접 센서를 부착해 측정이 이뤄지기 때문에 측정 부위, 즉 관절이 늘어나면 더 많은 센서가 수십 개에서 많게는 수백 개까지 요구된다는 단점이 있다.
공동연구팀이 개발한 피부 형 센서는 `크랙' 에 기반한 고(高) 민감 센서로, 인체의 움직임이 발생하는 근원지에서 먼 위치에 부착해서 간접적으로도 인체의 움직임을 측정할 수 있다. `크랙' 이란 나노 입자에 균열이 생긴다는 뜻인데, 연구팀은 이 균열로 인해 발생하는 센서값을 변화시켜 미세한 손목 움직임 변화까지 측정할 수 있다고 설명했다.
연구팀은 또 딥러닝 모델을 사용, 센서의 시계열 신호를 분석해 손목에 부착된 단 하나의 센서 신호로 여러 가지 손가락 관절 움직임을 측정할 수 있게 했다. 사용자별 신호 차이를 교정하고, 데이터 수집을 최소화하기 위해서는 전이학습(Transfer Learning)을 통해 기존 학습된 지식을 전달했다. 이로써 적은 양의 데이터와 적은 학습 시간으로 모델을 학습하는 시스템을 완성하는 데 성공했다.
우리 대학 전산학부 조성호 교수는 "이번 연구는 딥러닝 기술을 활용해 실제 환경에서 더욱 효과적으로 사람의 실시간 정보를 획득하는 방법을 제시했다는 점에서 의미가 있다ˮ며 "이 측정 방법을 적용하면 웨어러블 증강현실 기술의 보편화 시대는 더욱 빨리 다가올 것ˮ 이라고 예상했다.
한편, 이번 연구는 한국연구재단 기초연구사업(선도 연구센터 지원사업 ERC)과 기초연구사업 (중견연구자)의 지원을 받아 수행됐다.
< 피부형 센서 패치로 손가락 움직임 측정 모습 >
2020.05.20
조회수 12969