본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%8A%B9%ED%97%88%EC%B6%9C%EC%9B%90
최신순
조회순
홍합접착을 이용 뼈미네랄 형성 기술개발
우리학교 화학과 이해신(李海臣, 37세, 오른쪽사진), 신소재공학과 박찬범(朴燦範, 41세) 교수팀이 자연계의 홍합접착현상을 모방해 지지하는 소재에 관계없이 뼈의 미네랄성분을 고속으로 형성시킬 수 있는 원천기술개발에 성공했다. 범용성이 뛰어나 다양한 소재에 적용할 수 있다. 이 기술의 핵심은 뼈의 주요성분인 인산화칼슘 미네랄결정을 다양한 표면에서 고속 성장시키는 것이다. 뼈를 구성하는 칼슘성분의 대부분(약 99퍼센트)은 인산화칼슘으로 구성되어 있다. 기존 기술은 인산화칼슘 결정을 특정물질의 표면에서만 성장시키는 한계를 지녀왔으며, 이를 필요로 하는 인공뼈, 치아 임플란트 등 다양한 지지소재에 도입할 수 없다는 단점이 제기되어 왔다. KAIST 연구팀은 이러한 난제를 자연의 홍합접착제에서 착안하여 해결하였다. 홍합은 몸에서 내는 실 모양의 분비물인 족사를 이용해 바위, 수초표면 등에 붙어산다. 접착력이 강해 파도가 치는 해안가와 같은 다른 생물체가 살기 어려운 환경에서도 문제없이 붙어서 생존한다. 연구팀은 이러한 홍합접착제를 모방한 폴리도파민(polydopamine)이라 불리는 무독성의 화학성분을 코팅하면, 각종 금속, 산화규소, 산화철, 스테인리스, 테플론, 폴리스티렌 등과 같은 다양한 지지표면에서 인산화칼슘 결정이 손쉽게 자랄 수 있음을 입증했다. 또한 연구팀은 이번 논문에서 기존 기술로는 코팅이 불가능하였던 폴리에스터 섬유, 나일론, 셀룰로오스 등 3차원 다공성 물질 내부에도 뼈미네랄을 손쉽게 형성할 수 있음을 발견했다. 이번 연구결과는 인공뼈 재생과 같은 의료용 재료뿐만 아니라 차세대 치과용 임플란트용 표면 소재 개발과 같은 다양한 응용분야에 사용될 수 있다. 관련 연구결과는 독일에서 발간되는 재료분야 국제저명학술지인 Advanced Functional Materials지 최근호(7월 9일자 온라인판)에 인사이드 커버논문으로 게재됐으며, 최근 특허출원이 완료되었다. KAIST 나노융합연구소, 교육과학기술부 우수연구센터 등으로부터 지원받아 수행된 이번 연구성과는 자연계를 모방하여 새로운 기능을 가진 스마트 소재를 개발하였다는 평가를 받았다. <용어설명> ◯ 홍합모방 접착제: 홍합의 몸에서 내는 실모양의 분비물인 접착 단백질을 모방한 인공접착제◯ 족사 [足絲] : <동물>연체동물이 몸에서 내는 실 모양의 분비물. 바위 따위에 달라붙는 작용을 하며, 홍합 따위에서 볼 수 있다. [그림] 홍합의 접착현상을 이용하여 폴리에스터 섬유에 뼈미네랄을 대량으로 형성시킨 사진 (저널표지)
2010.07.09
조회수 19139
박찬범 교수팀, 나노크기의 광감응 소재를 이용한 인공광합성 원천기술개발
신소재공학과 박찬범(朴燦範, 41세) 교수팀이 나노소재를 이용해 자연계의 광합성을 모방한 ‘인공광합성’ 시스템 개발에 성공했다. 이러한 새로운 개념의 인공광합성 기술은 고부가가치의 각종 정밀의약품들을 태양 에너지를 이용해 생산하는 친환경 녹색생물공정 개발의 전기가 될 것으로 기대된다. 식물 등 자연계의 광합성 생물체들은 태양에너지를 이용해 환원력을 재생하여 보조인자(cofactor)라는 형태로 저장하고, 이렇게 재생된 보조인자 등을 빛이 없을 때 캘빈사이클 (calvin cycle)을 통해 생존에 필요한 탄수화물 등 각종 화학물질들을 합성하는데 이용한다. [그림 1. 자연광합성을 모방한 인공광합성 공정을 이용한 정밀화학제품 생산 개념도] 박 교수팀은 이러한 자연광합성시스템을 모방하여 자연계의 광반응 (light reaction) 대신 태양전지 등에서 사용되는 양자점 (quantum dot) 등 수 나노크기의 광감응소재로 빛에너지를 전기에너지로 효율적으로 전환하고, 이를 이용하여 보조인자를 재생했다. 또한 자연계의 복잡한 캘빈 사이클 대신 산화환원 효소반응을 보조인자 재생에 연결시킴으로써 빛에너지로부터 시작하여 최종적으로 정밀화학물질 생산이 가능한 반응시스템을 개발했다. 인류가 지구 온난화와 화석 연료의 고갈이라는 문제를 안고 있는 가운데, 온난화의 원인인 이산화탄소를 배출하지 않고 또한 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고있는데, 이번에 개발된 인공광합성기술은 에너지원으로 무한한 태양광을 사용한다는 장점 때문에 그 파급효과가 매우 클것이다. 특히 각종 정밀화학물질 합성에 있어서 산화환원효소들이 매우 뛰어난 응용가능성/다양성을 가졌음에도 불구하고 이들의 효율적 사용을 위하여 필수적으로 요구되는 보조인자의 재생에 대한 연구는 지난 20여년동안 수행되어 왔으나 현재까지도 성공적인 결과가 거의 없어 향후 생물공학분야에서 해결되어야 할 미해결 난제들 중의 하나였다. 박교수팀의 연구성과는 산화환원효소를 산업적으로 활용하기 위한 토대를 마련한 것이다. [그림 2. 산화환원효소 기반 인공광합성을 통한 고부가가치 정밀화학제품 생산] 관련 연구결과는 독일에서 발간되는 나노분야 국제저명학술지인 Small지 최근호(4월 23일자 온라인판)에 게재됐으며, 최근 특허출원이 완료됐다. 이번 연구는 교육과학기술부 신기술융합형 성장동력사업(생물공정연구단) 등으로부터 지원을 받아 수행됐으며, 나노과학과 생명공학분야의 창의적인 융합을 통하여 새로운 공정기술을 개발하는데 크게 기여했다는 평가를 받았다.
2010.04.23
조회수 22846
최성민 교수팀의 탄소나노튜브에 대한 연구성과 미국 화학학회의 Research Highlight 로 선정
최성민 교수팀의 탄소나노튜브에 대한 연구성과 미국 화학학회의 Research Highlight 로 선정 KAIST 원자력 및 양자공학과 최성민 교수팀은 탄소나노튜브의 산업적 응용에 필수적인 수용액 및 유기용매에의 안정적인 분산기술을 개발하였으며, 중성자 산란기법을 이용하여 그 분산특성을 규명하였다. 이 연구결과는 재료과학 분야 최고권위지인 Advanced Materials (19, 929, 2007)에 게제되었으며, 미국 화학학회의 Research Highlight로 선정되어 ‘Heart Cut" 5월 7일자에 소개되었다. 탄소나노튜브의 산업기술적 응용을 위한 다양한 프로세싱을 위해서는 탄소나노튜브를 수용액 또는 유기용매에 분산할 필요가 있다. 이를 위하여 그간 계면활성분자, DNA 등을 이용한 탄소나노튜브 분산기술이 사용되어 왔으나, 건조 등 프로세싱 과정에서 분산이 쉽게 파괴되는 단점이 있었다. 최성민 교수팀은 이를 극복하기 위하여 계면활성분자를 이용한 탄소나노튜브 수용액 분산을 얻은 후 탄소나노튜브 표면에 흡착된 계면활성분자를 in-situ 상태에서 중합반응시킴으로써 친수성의 안정된 표면 분자막을 갖는 탄소나노튜브를 개발하였다. 이렇게 얻어진 기능성 탄소나노튜브는 냉동건조 등 프로세싱 이후에도 수용액 및 유기용매에 아주 쉽게 분산되는 특성을 갖고 있어 탄소나노튜브 응용기술 개발에 크게 기여할 것으로 기대된다. 과학기술부 원자력연구개발사업의 지원으로 수행된 이 연구에는 박사과정 김태환씨와 도창우씨가 중추적으로 참여하였으며, 관련기술을 특허출원 하였다. 탄소나노튜브의 수용액 분산 및 흡착된 계면활성분자의 in-situ 중합과정과 냉동건조 후의 수용액 재분산 특성 비교 (사진: 중합하지 않은 탄소나노튜브(좌), 계면활성분자를 중합한 탄소나노튜브(우))
2007.05.09
조회수 22007
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1