본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%8C%AC%EB%8D%B0%EB%AF%B9
최신순
조회순
전염병 확산 예측하는 더 정확한 수학 공식 나왔다
인류와 전염병의 전쟁에서 수학은 최적의 방어막 구축을 위한 과학적 근거를 제시해왔다. 우리 대학 김재경 교수 연구팀은 국가수리과학연구소 최선화 선임연구원, 고려대 최보승 교수, 경북대 이효정 교수팀과 공동으로 정확도를 획기적으로 높인 전염병 확산 예측 모델을 새롭게 제시했다. 미지의 바이러스가 나타나면 과학자들은 구조와 실체를 파악하고, 제약사는 바이러스에 대항할 백신과 치료제를 개발한다. 바이러스를 제압할 무기를 만드는 동안, 방역은 국민을 보호하고 피해를 최소화하는 방어막 역할을 한다. 피해를 정확하게 예측하고, 의료진을 배치하고, 병상을 확보하는 등 대책 수립에 수학이 쓰인다. 코로나19 팬데믹은 수리 모델 기반 전염병 확산 모델의 중요성을 재조명하게 해준 사례다. 이를 통해 추정한 감염재생산지수(R값), 잠복기, 감염기 등 변수들은 질병의 확산 양상을 이해하고, 방역 정책을 설계하는 데 중요한 요소로 작용했다. 그러나 기존 모델에는 한계가 있었다. 기존 대부분 모델은 감염자와 접촉한 시점에 상관없이 모든 접촉자가 동일 확률로 감염력이 발현된다고 가정한다. 미래 상태가 현재 상태에 의해서만 결정되고, 과거의 영향을 받지 않는다는 마르코프(Markovian) 시스템에 기반하여 미래를 추정해왔다. 하지만 실제 환경에서는 현재뿐 아니라 과거 상태도 미래에 영향을 준다(비마르코프(non-Markovian) 시스템). 감염자와 접촉 이후 잠복기를 거쳐 감염되기 때문에, 접촉 시점이 오래된 사람일수록 감염력이 발현될 확률이 높다. 최보승 교수는 “현재와 과거를 모두 고려해야 하는 비마르코프 시스템은 수학적 추정과 모델링이 복잡하고, 계산이 어려워서 기존 전염병 확산 모델은 마르코프 시스템을 가정하고 추정을 진행해왔다”며 “즉, 실제 감염병 확산 양상을 정확하게 반영하지는 못했다”고 설명했다. 공동 연구팀은 현재와 과거를 모두 고려하는 새로운 감염병 확산 모델을 개발했다. 미래의 변화를 현재의 상태만으로 설명하는 상미분방정식 대신, 미래의 변화를 현재와 과거의 상태를 모두 이용하여 설명하는 지연미분방정식을 도입해 기존 모델의 한계를 극복했다. 연구진은 2020년 1월 20일부터 11월 25일까지 서울의 누적 코로나19 확진자 정보를 활용해 새로 제시한 모델의 정확도를 평가했다. 초기 바이러스의 전파로 확진자가 급증했던 시기(2020.1.20.~3.3)의 감염재생산지수를 기존 모델은 4.9, 새 모델은 2.7로 추정했다. 확진자 전염 경로를 추적해 얻은 실제 값은 2.7이었다. 즉, 기존 모델이 감염재생산지수를 2배 가까이 과대 추정하는 상황이 생길 수 있고, 이에 따라 코로나19 감염력을 과대 예측할 수 있다는 것을 보여준다. 최선화 선임연구원은 “과대 예측 문제를 해결하기 위해 기존 모델은 감염기(감염자가 다른 사람에게 전염을 일으킬 수 있는 기간) 등 추가 역학 정보를 사용해 값을 보정해 사용해왔다”며 “새로운 모델은 추가 역학 정보 없이도 감염재생산지수를 정확히 추정할 수 있다는 장점이 있다”고 설명했다. 연구를 이끈 김재경 교수는 “우리 연구진은 새로운 모델을 바탕으로 ‘IONISE(Inference Of Non-markovIan SEir model)’라는 프로그램을 개발하여, 분야 연구자들이 활용할 수 있도록 무료로 공개했다”며 “향후 공중보건 전문가들이 전염병 확산 양상을 보다 깊이 이해하고, 효과적인 방역 전략을 수립하도록 도울 것으로 기대한다”고 말했다. 연구 결과는 10월 9일 국제학술지 ‘네이처 커뮤니케이션스(Nature Communications, IF 14.7)’에 실렸다. ※ 논문명: Overcoming Bias in Estimating Epidemiological Parameters with Realistic History-Dependent Disease Spread Dynamics(제1저자: 홍혁표, 엄은진)
2024.10.17
조회수 1752
팬데믹 대비 관련 조약 준수 방안 제시
코로나 사태 이후, 세계보건기구(이하 WHO)는 또 다른 팬데믹이 올 것을 대비해 국가 간 백신 공급의 형평성 확보 및 원활화를 위해 팬데믹 조약을 협상 중이다. 2025년에 조약이 타결될 것으로 예측되고 있는데 KAIST 연구진이 팬데믹 조약 이후 실제 국가가 동 조약을 잘 준수할 수 있도록 하는 획기적인 방안을 제시하여 화제다. 우리 대학 문술미래전략대학원 박태정 교수가 대한민국 법학자로는 최초로 네이처 본지, 월드 뷰(World View) 코너에 WHO에서 협상 중인 팬데믹 조약의 준수 방안에 대한 연구를 게재했다고 18일 밝혔다. 박태정 교수는 현재 WHO에서 협상 중인 팬데믹 조약의 준수도를 높일 획기적인 방안을 제시했다. 실제 국내법과 달리 국제법인 조약은 국가가 준수하지 않아도 처벌받지 않기 때문에 많은 국가가 조약을 준수하지 않고 있는 태생적인 한계를 가지고 있다. 이번 팬데믹 조약도 개발도상국의 백신 접근, 백신 공급의 원활화 등 매우 중요한 의제를 포함하고 있지만 많은 국제법 학자들은 실제 팬데믹 조약 타결 후 국가들이 조약을 준수하지 않은 것을 걱정하고 있다. 이에 대해 이미 많은 학자가 팬데믹 조약의 준수도를 높일 여러 방안을 제시했다. 예를 들어, 국제원자력기구가 핵확산금지조약(NPT)의 준수를 위해서 핵 사찰단을 국가에 파견시키듯이 WHO도 별도의 독립 모니터링 위원회(Independent Monitoring Committee) 조항을 조약에 포함해 추후 팬데믹 조약 준수를 위한 위원회를 가동하자는 연구 등이 있다. 이에 대해 박태정 교수는 팬데믹 조약에 포함할 조항내용을 통해 준수도를 높이기보다는 실제 정부 부처 내의 조약 준수 절차 과정 및 관련 제도 속에서 해결의 실마리를 찾았다. 보건복지부가 팬데믹 조약 협상을 주도적으로 타결했어도 그 이후, 조항의 준수는 보건복지부 혼자서 해결할 수 있는 문제가 아니며, 식약처, 산업통상자원부, 기획재정부, 외교부, 법무부 등 여러 부처가 협력으로 해결해야 한다는 점을 설명했다. 백신 제조회사를 설득하기 위해 식약처와 산업통상자원부의 협력이 필요하고, 보건 인력 확충 및 R&D 강화를 포함한 여타 예산확보를 위해 기획재정부의 도움이, 국제협력을 위해 외교부의 도움, 그리고 조약의 수정과 법률 검토 등을 위해 법무부의 협력도 필요하다고 역설했다. 박 교수는 결국 정부 내에서 팬데믹 조약 준수와 관련한 관계부처의 협업이 얼마나 순조롭게 이루어지냐에 따라 실제 준수도가 정해질 것이라는 점을 강조했고, 보다 순조로운 협업을 위해서 보건복지부의 자체적인 대응 외에도 대통령 혹은 국무총리 산하의 팬데믹 조약 준수 관련 전담 조직(Task force) 팀을 두어 적극적인 협력을 유도할 수 있는 제도적 방안도 제시했다. 또한 팬데믹 조약을 대상으로 한 연구이지만 이번 연구 결과는 기후변화를 위한 파리 협약 조약 이행뿐만 아니라 통상, 인권, 해양 등 다양한 분야의 조약 준수도 연구에도 큰 영향을 끼칠 것으로 기대된다. 박태정 교수는 “국제법은 국가 간 미래에 대한 약속이므로 해당 국가의 미래의 비전과 전략과 직결된다. 국가가 국제법인 조약에 서명을 하였다는 것은 조약에 담겨진 미래에 청사진을 그 국가의 국민과 약속한 것이다. 그러므로 대한민국도 팬데믹 조약의 준수를 위해서 최선을 다해야 한다” 라고 설명한 후 “조약의 준수를 위해서 조약 관련 관계부처의 협력과 협업이 절실하며 대통령과 국무총리 급에서 팬데믹 조약 준수를 위한 전담 조직(Task force) 팀 구축과 같은 제도적 방안이 필요하다” 고 강조했다.
2024.06.18
조회수 2443
약물 가상 스크리닝 기술로 코로나19 치료제 후보 발굴
우리 대학 생명화학공학과 이상엽 특훈교수(연구부총장)와 한국파스퇴르연구소 김승택 박사 공동연구팀이 ‘약물 가상 스크리닝 기술을 이용한 코로나19 치료제 개발’에 성공했다고 8일 밝혔다. 이번 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 7월 7일 字 온라인 게재됐다. ※ 논문명 : Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay ※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 김승택(한국파스퇴르연구소, 교신저자), 장우대(한국과학기술원, 제1저자), 전상은(한국파스퇴르연구소, 제2저자), 포함 총 4명 코로나바이러스감염증-19(이하 코로나19)는 글로벌 팬데믹으로 전개되고 있으며 현재 인류 보건을 심각하게 위협하는 상황이다. 코로나19 치료 목적으로 미국식품의약국(FDA)에서 정식 승인을 받은 렘데시비르(상품명 베클러리)가 현재 임상에서 사용 중이지만, 사망률은 감소시키지 못하고 회복 기간을 5일 정도 단축함으로써 치료 효과가 기대에 미치지 못하는 것으로 알려졌다. 또한 렘데시비르는 정맥 주사제여서 의료기관에서 입원을 통해 수일 동안 투여받아야 하므로 팬데믹 상황에 적합하지 않은 약물이다. 따라서 코로나19로 인한 사망률을 획기적으로 감소시키고, 치료 기간을 단축시키는 경구용 치료제 개발이 시급한 상황이었다. 이에 이상엽 특훈교수와 한국파스퇴르연구소 김승택 박사 공동연구팀은 약물 가상 스크리닝 기술을 이용한 약물 재창출 전략으로 코로나19 치료제 개발 연구를 수행했다. 연구팀은 팬데믹 상황에 대응한 신속한 치료제 개발을 위해 가상 스크리닝 기술을 이용한 약물 재창출 전략을 수립했다. 약물 재창출은 이미 안전성이 검증된 FDA 승인 약물 또는 임상 진행 중인 약물을 대상으로 새로운 적응증을 찾는 방식이다. 이 전략은 신약 개발 과정에 소요되는 시간을 단축시킬 수 있어 코로나19와 같은 팬데믹 상황에 적합한 신약 개발 전략이다. 우리 대학 생명화학공학과 장우대 박사는 우선 FDA 승인 약물 또는 임상 진행 중인 약물을 데이터베이스에서 수집해 6,218종의 약물 가상 라이브러리를 구축했다. 실험으로 이 약물들을 모두 검증하기에는 시간과 비용이 많이 소요되기 때문에 바이러스 치료제로 가능성이 있는 약물만 신속하게 선별할 수 있는 컴퓨터 기반 가상 스크리닝 기술을 도입했다. 기존의 도킹 시뮬레이션 기반의 가상 스크리닝 기술은 높은 위양성률(false positive rate)로 인해 유효물질 도출 비율(hit rate)이 매우 낮은 것이 문제점인 상황이었다. 연구팀은 구조 유사도 분석 모듈과 상호작용 유사도 분석 모듈을 도킹 전후에 도입하여 가상 스크리닝의 정확도를 높이는 데 성공했다. 이번 연구를 통해 개발된 가상 스크리닝 기술은 단백질-약물 복합체 구조 정보를 이용하여 다양한 후보 약물을 빠르고 정확하게 스크리닝할 수 있는 것이 특징이다. 연구팀은 또한 바이러스 치료제로 주로 사용되는 핵산 유사체(nucleotide analogues) 기반 전구약물(prodrug)의 활성형 구조를 자동으로 생성하는 알고리즘을 개발했다. 전구약물은 그 자체로는 약효가 없고 체내 대사를 통해 활성형 구조로 변환되어야만 약효를 나타낸다. 따라서 전구약물은 활성형으로 구조변환 후, 도킹 시뮬레이션을 수행하는 것이 중요하다. 연구팀은 렘데시비르를 포함한 여러 핵산유사체 기반 전구약물들의 활성형 구조를 자동으로 생성하는 데 성공하였고, 도킹 시뮬레이션의 정확도를 향상시킬 수 있었다. 연구팀은 가상 스크리닝 플랫폼으로 사스-코로나바이러스-2(SARS-CoV-2)의 복제와 증식에 필수적인 역할을 하는 단백질 가수분해 효소(3CL hydrolase, Mpro)와 RNA 중합효소(RNA-dependent RNA polymerase, RdRp)를 저해할 수 있는 후보 화합물을 15종과 23종으로 각각 선별했다. 그 후, 가상 스크리닝으로 선별된 38종의 약물에 대해 한국파스퇴르연구소의 생물안전 3등급(BSL-3) 실험실에서 세포 이미지 기반 항바이러스 활성 분석 플랫폼을 활용해 약효를 검증했다. 먼저 사스-코로나바이러스-2를 감염시킨 원숭이 신장세포(Vero cell)를 이용한 시험관 내(in vitro) 실험을 수행한 결과, 38종의 약물 중 7종의 약물에서 항바이러스 활성이 확인됐다. 또한, 검증된 7종의 약물에 대해 인간 폐 세포(Calu-3 cell)에서 추가적인 검증 실험을 수행했고, 3종의 약물에서 항바이러스 활성이 확인됐다. 후보 약물에는 암 및 특발성 폐섬유증(idiopathic pulmonary fibrosis)으로 임상이 진행 중인 오미팔리십(omipalisib), 암 및 조로증(progeria)으로 임상이 진행 중인 티피파닙(tipifarnib), 식물 추출물로써 항암제로 임상이 진행 중인 에모딘(emodin)이 있다. 특히 오미팔리십은 현재 코로나19 표준 치료제인 렘데시비르 대비 항바이러스 활성이 약 200배 이상 높은 것으로 확인됐고, 티피파닙은 렘데시비르와 유사한 수준으로 항바이러스 활성이 확인됐다. 세포 수준에서 항바이러스 효과가 확인된 약물은 바이러스 감염 동물모델을 이용한 전임상시험이 필요하다. 이에 연구팀은 과기정통부의 코로나 치료제 전임상 지원사업을 통해 후보 약물 중 하나의 약물에 대해 약효를 평가했다. 그러나 이 과정에서 동물에 대한 약물 독성이 나타났다. 약물의 독성을 최소화하면서 치료 유효 농도에 도달할 수 있는 최적의 약물 농도를 찾기 위해 추가적인 전임상시험을 진행할 예정이다. 또한, 나머지 후보 약물들에 대해서도 전임상시험을 계획 중이다. 연구팀 관계자는 이번 연구를 통해 예측 성능이 우수한 약물 가상 스크리닝 플랫폼을 구축했고, 이를 통해 코로나19 치료제로 유망한 후보물질을 단기간에 발견할 수 있었다고 설명했다. 이상엽 특훈교수는 “이번 연구를 통해 신종 바이러스 출현 시 신속하게 대응할 수 있는 기반 기술을 마련했다는 데에 의의가 있으며, 이를 통해 향후 코로나바이러스 계열의 유사한 바이러스나 신종 바이러스 출현 시에도 적용할 수 있는 기술을 개발하고자 한다”라고 밝혔다. 한편 이번 연구는 과기정통부가 지원하는 KAIST 코로나대응 과학기술 뉴딜사업과 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2021.07.08
조회수 13191
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1